ElmerSolver Manual

CSC —IT Center for Science

September 6, 2011

ElmerSolver Manual

About this document

The ElmerSolver Manual is part of the documentation of Elfiméte element software. EImerSolver Man-
ual describes the Elmer Solver options common for all speeifjuation solvers. The different equations
solver options are described separately in EImer Modelsudhimhe EImerSolver Manual is best used as a
reference manual rather than a concise introduction to ttem

The present manual corresponds to EImer software versiio6Windows NT and Unix platforms. Lat-
est documentations and program versions of ElImer are &@ilar links are provided) dittp://www.csc.fi/elmer

Copyright information

The original copyright of this document belongs to CSC — Iht@éefor Science, Finland, 1995-2009. This
document s licensed under the Creative Commons Attribuio Derivative Works 3.0 License. To view a
copy of this license, visitittp://creativecommons.org/licenses/by-nd/3.0/

Elmer program is free software; you can redistribute it anavnodify it under the terms of the GNU
General Public License as published by the Free Softwaradrtion; either version 2 of the License, or (at
your option) any later version. Elmer software is distrémiin the hope that it will be useful, but without
any warranty. See the GNU General Public License for moraildet

Elmer includes a number of libraries licensed also undez fisensing schemes compatible with the
GPL license. For their details see the copyright noticelénsource files.

All information and specifications given in this documenvédeen carefully prepared by the best ef-
forts of CSC, and are believed to be true and accurate as efutiriting. CSC assumes no responsibility or
liability on any errors or inaccuracies in Elmer softwaredocumentation. CSC reserves the right to modify
Elmer software and documentation without notice.

http://www.csc.fi/elmer
http://creativecommons.org/licenses/by-nd/3.0/

Contents

Table of Contents 3
1 Structure of the Solver Input File 6
1.1 Introduction. e 6
1.2 Thesections of solverinputfile. 6
1.3 Keywordsyntax oo 10
1.4 RunningseveralSeqUENCES. v v v v it e e e e 13
2 Restart from existing solutions 14
2.1 Restartfile e 14
2.2 Initialization of dependentvariables o L. 15
3 Solution methods for linear systems 16
3.1 Introduction. 16
3.2 Directmethods. 16
3.3 Preconditioned iterationmethods o 17
3.4 Multilevel methods. e 18
3.5 Keywordsrelated to linear systemsolvers. 21
3.6 Implementationissues. e e 25
Bibliography e e e 26
4 Nonlinear System Options 27
4.1 Introduction. e 27
4.2 Keywords related to solution of nonlinearsystems. 27
5 Integration of time-dependent systems 30
5.1 Introduction. e 30
5.2 Timediscretization strategies. 30
5.3 Keywordsrelated to time discretization 31
5.4 Onthe treatment of time derivatives in EImer Solvercode. 33
6 Solving eigenvalue problems 34
6.1 Introduction. e 34
6.2 Theory. 34
6.3 Keywords related to eigenvalue problems. Lo oL 35
6.4 Constructing matricesMandD inSolvercade 36
7 Generic solver utilities 38
7.1 Solveractivation. e 38
7.2 Variablenames. 38
7.3 ldxExportedvariables. 39
7.4 Dirichletconditions. 39
7.5 SoftLimiters e 40
7.6 Periodicconditions. e 41

CONTENTS 4

10

11

12

7.7 Settingnodalloads. 42
7.8 Computingnodalloads 42
7.9 ENErgynorm o e e e 42
7.10 Computingnodalweights. 43
7.11 Active and passiveelements. L 43
7.12 Timingthe solvers. e 43
Meshing Utilities 44
8.1 Introduction. e 44
8.2 Keywordsrelatedtomeshutilities 44
Adaptive Solution 45
9.1 Introduction. e 45
9.2 Theory. e e 45
9.3 Keywordsrelated to the adaptive solution. 47
9.4 Implementingown errorestimators a7
Parallel runs 50
10.1 Introduction. e e 50
10.2 Preprocessing of ParallelRuns. 51
10.3 Parallel Computationsin Elmer. 54
10.4 Post-processingof ParallelRuns. 59
Compilation and Linking 61
11.1 Compilingthewhole package 61
11.2 Compiling a user defined subroutine. 62
Basic Programming 63
12.1 Introduction. L e 63
12.2 Basic Elmer Functionsand Structures. 63
12.3 Writinga User Function. e 71
12.4 Writinga SOIVEL e e e 83
12.5 Compilation and Linking of User Defined Routines/Fiored 95
Format of mesh files 96
A.1 Theformatofheaderfile. 96
A.2 Theformatofnodefile. 96
A.3 Theformatofelementfile. 97
A.4 The format of boundary elementfile 97
A.5 Theformatofsharednodesfile. 97
A.6 Exceptionson parallelmeshformat 98
Format of result output files 99
B.1 FormatVersions 99
B.2 Generalstructure. L e 99
B.3 The positionsfile. 102
Format of ElImerPost Input File 103

Basic element types 105

CONTENTS 5

E Higher-order finite elements 108
E.1 Theory. e e e 108
E.2 Higher-orderelementsinElmer 109
E.3 ElmerSolver services for higher-orderelements 111
E.4 Higher-orderelements. 113
E.5 Line 113
E.6 Quadrilateral e e 114
E.7 Triangle. e e e 115
E.8 Brick 116
E.9 Tetrahedron. e 118
E.10 Pyramid. e e e e 119
E.11 Wedge. e e 121
Bibliography e e e 123

Index 124

Chapter 1

Structure of the Solver Input File

1.1 Introduction

Solving partial differential equation (PDE) models witletsolver of EImer requires that a precise description
of the problemis given using the so-called solver input biliefly referred to as the sif file. This file contains
user-prepared input data which specify the location of nfigshand control the selection of physical models,
material parameters, boundary conditions, initial cand#, stopping tolerances for iterative solvers, etc. In
this chapter, the general structure of the file is describd.explain how the input data is organized into
different sections and describe the general keyword symfaigh is used in these sections to define the
values of various model parameters and to control the swiytiocedures.

In the case of simple problem setups the solver input file meawitten automatically by the prepro-
cessor of Elmer software, so that knowing the solver inpatfirmat may be unnecessary. Creating a more
complicated setup, or using keywords introduced by the, ismvever, requires the knowledge of the file
format and keyword syntax.

In the following the general structure of the input file isfiiteistrated by using simple examples, without
trying to explain all possibilities in an exhaustive mann@éfe then describe the keyword syntax in more
detail, showing also how model parameters whose valuesdepesolution fields can be created. The later
chapters of this manual, and ElImer Models Manual, which$eswon describing the PDE models Elmer can
handle, provide more detailed material on specific issumeETutorials also gives complete examples of
solver input files.

1.2 The sections of solver input file

The material of the solver input file is organized into diffiet sections. Each section is generally started
with a row containing the name of the section, followed by mbar of keyword commands, and ended with
a row containing the wor&nd. The names for starting new sections are

e Header
e Simulation

Constants

Body n

Material n

Body Force n

Equation n

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 7

e Solver n
e Boundary Condition n
e Initial Condition n

Heren associated with the section name represents an integeifieleneeded for distinguishing between
sections of the same type. A basic keyword command includadection is nothing more than a statement
which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basicaligrayed without trying to explain all possi-
bilities in an exhaustive manner. The later chapters ofrtranual and Elmer Models Manual provide more
detailed material on specific issues. Elmer Tutorials algesgcomplete examples of solver input files.

Header section

The location of mesh files is usually given in the header eactDften this is also the only declaration given
in the header section. If the ElImer mesh files (see Appendiar@)located in the directory ./mymesh, the
header section may simply be

Header
Mesh DB "." "mymesh"
End

Note that separate equations can nevertheless be distretsng different meshes if the location of mesh
files is given in the solver section described below.

Simulation section

The simulation section is used for giving general informatihat is not specific to a particular PDE model
involved in the simulation. This information describes ttwordinate system used, indicates whether the
problem is stationary or evolutionary, defines the file nafoesutputting, etc. Without trying to describe
many possibilities and the details of commands, we only tiiedollowing simple example:

Simulation
Coordinate System = "Cartesian 1D"
Coordinate Mapping(3) = 1 2 3
Simulation Type = Steady State
Steady State Max lterations = 1
Output Intervals(1) = 1
Post File = "case.ep”
Output File = "case.dat"

End

Constants section

The constants section is used for defining certain physaatants. For example the gravity vector and the
Stefan-Boltzmann constant may be defined using the commands

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
End

If the constants are not actually needed in the simulathig gection can also be left empty.

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 8

Body, material, body force and initial condition sections

The Elmer mesh files contain information on how the compaiteti region is divided into parts referred
to as bodies. A body section associates each body with ariequset, material properties, body forces,
and initial conditions by referring to definitions given irspecified equation section, material section, body
force section, and initial condition section. To manage dafds, the different sections of the same type
are distinguished by integer identifiers that are parts efstaction names. Note that the integer in the body
section name is an identifier for the body itself.

For example, one may define

Body 1
Material = 1
Body Force = 1
Equation = 1
Initial Condition = 2
End

Material properties, body forces, an equation set, andalnionditions are then defined in the material
section

Material 1

End

the body force section

Body Force 1

End

the equation section

Equation 1

End

and the initial condition section

Initial Condition 2

End

What material properties and body forces need to be spediépdnds on the mathematical models involved
in the simulation, and the initial condition section useddwing initial values is only relevant in the so-
lution of evolutionary problems. We here omit the discussid these very model-dependent issues; after
reading this introductory chapter the reader should be tallederstand the related documentation given in
Elmer Models Manual, which focuses on describing the diffitimathematical models, while the contents
of equation section will be described next.

Equation and solver sections

Equation section provides us a way to associate each botlyanset of equation solvers. That is, if the
set defined consists of more than one equation solver, dgueyaical phenomena may be considered to
occur simultaneously over the same region of space. Indalidquation solvers are actually defined in
solver sections, the contents of an equation section beisigdlly a list of integer identifiers for finding the
solver sections that define the solvers. The keyword commagivén in the solver sections then control the
selection of physical models, linearization proceduresaflinear models, the selection of solution methods
for resulting linear equations, convergence tolerandes, e
For example, if only two solvers are needed, one may simpiyéa list of two solver identifiers

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 9

Equation 1
Active Solvers(2) = 1 2
End

Then the solver definitions are read from the solver sections
Solver 1
End
and
Solver 2
End
Finally, we give an example of solver definitions, withowtinig to explain the commands at this point;

Solver 1

Equation = "Poisson"

Variable = "Potential"

Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct"

Steady State Convergence Tolerance = 1le-06
End

Boundary condition section

Boundary condition sections define the boundary conditfonshe different equations. The Elmer mesh
files contain information on how the boundaries of the bodiesdivided into parts distinguished by their
own boundary numbers. The keywofadrget Boundaries is used to list the boundary numbers that
form the domain for imposing the boundary condition. Forrepée the declaration

Boundary Condition 1
Target Boundaries(2) = 1 2

End
means that the boundary condition definitions that followarn the two parts having the boundary numbers
land 2.

Text outside sections

We finally note that some commands, such as comments staitedh& symbol ! and MATC expres-
sions described below, may also be placed outside sectiomtibams. An exception of this type is also the
command

Check Keywords "Warn"

usually placed in the beginning of the input file. When thisnoeand is given, the solver outputs warning
messages if the input file contains keywords that are nadign the file of known keywords. If new
keywords are introduced, misleading warning messages eavdided by adding the new keywords to the
keyword fileSOLVER.KEYWORD®Bcated in the directory of the shared library files of El®@elver.

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 10

1.3 Keyword syntax

As already illustrated, a basic keyword command used in theesinput file is a statement which sets the
value of a solution parameter with the equal sign. Such a canchin its full form also contains the data
type declaration; for example

Density = Real 1000.0
Valid data types generally are

o Real

Integer

Logical
e String
o File

If the keyword is listed in the keyword fiIEOLVER.KEYWORD®e data type declaration may be omitted.
Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of Bpédaata type, with the array size
definition associated with the keyword. We recall our pregi@xamples of the equation and boundary
condition sections, where we defined two lists of integensgithe commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defmed a

My Parameter Array(3,3) = Real 1 2 3 \
456 \
789

Defining parameters depending on field variables

Most solver parameters may depend on time, or on the fieldablas defined in the current simulation
run. Such dependencies can generally be created by meaabudért data, MATC functions, or Fortran
functions. MATC has the benefit of being an interpreted laug making an additional compilation step
with a compiler unnecessary.

Simple interpolating functions can be created by meanshofiéa data. The following example defines
the parametebensity the value of which depends on the variabkmperature

Density = Variable Temperature
Real
0 900
273 1000
300 1020
400 1000
End

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 11

This means that the value @fensity is 900 whenTemperature is 0, and the following lines are
interpreted similarly. Elmer then uses linear interpalatio approximate the parameter for argument values
not given in the table. If the value of the independent vdeab outside the data set, the first or the last
interpolating function which can be created from the tatedavalues is used to extrapolate the value of the
parameter.

If the field variable has several independent componenth, asithe components of displacement vector,
the independent components may be used as arguments inteifudefinition. For example, if a three-
component field variable is defined in a solver section udiegcommands

Variable = "Displ"
Variable DOFs = 3

then the solver of EImer knows, in addition to the three-comgnt vectoDispl , three scalar fieldBispl
1, Displ 2 andDispl 3 . These scalar fields may be used as independent variablasamepter defini-
tions, and used in the definitions of initial and boundaryditions, etc.

More complicated functions can be defined using MATC langudgere the basic usage of MATC in
connection with the solver input file is illustrated; for atiditional documentation, see a separate manual
for MATC. For example, one may define

Density = Variable Temperature
MATC "1000* (1-1.0e-4 =« (tx-273))"

This means that the parameensity depends on the value @emperature as

p = po(l —B(T —Top)), (1.1)

with pg = 1000, 3 = 10~* andT, = 273. Note that the value of the independent variable is knowtx as
in the MATC expression.

If the independent variable has more than one componenvatti@bletx will contain all the compo-
nents in valuesx(0) ,tx(1) ,...tx(n-1) , wheren is the number of the components of the independent
variable. A MATC expression may also take several scalanragnts; one may define, for example,

My Parameter = Variable Time, Displ 1
Real MATC ".."

The values of the scalar field$me andDispl 1 can then be referred in the associated MATC expression
by the name#x(0) andtx(1l) , respectively.

In addition to using MATC functions, Fortran 90 functionsyraso be used to create parameter defini-
tions, etc. In the same manner as MATC functions are used, ayed&fine

Density = Variable Temperature
Procedure "“filename" "proc"

In this case the file "filename" should contain a shareabléUsix) or .dIl (Windows) code for the user
function whose name is "proc". The call interface for thetFeor function is as follows

FUNCTION proc(Model, n, T) RESULT(dens)
USE DefUtils)
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000 * (1-1.0d-4(T-273.0d0))
END FUNCTION proc

The Model structure contains pointers to all informatiomatithe model, and may be used to obtain field
variable values, node coordinates, etc. The argument rimtlex of the node to be processed, and T is the
value of the independent variable at the node. The functionlsl finally return the value of the dependent
variable.

The independent variable can also be composed of seveegdémdient components. We may thus define

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 12

Density = Variable Coordinate
Procedure "filename" "proc"

Now the argument T in the Fortran function interface showddlyeal array of three values, which give the
X,y and z coordinates of the current node.

Parameterized keyword commands

The solver input file also offers possibilities for creatipgrameterized commands that utilize MATC. In the
solver input file an expression following the symbol $ is gatig interpreted to be in MATC language. If
the solver input file contains the lines

$solvertype = “lterative"
$tol = 1.0e-6

then one may define, e.g.,

Solver 1

Linear System Solver = $solvertype

Linear System Convergence Tolerance = $tol
En.OII.
Solver 2
Linear System Solver = $solvertype
Linear System Convergence Tolerance = $100 * tol

End
Alternative keyword syntax

There are some alternative keyword syntaxed that may sorastbe needed. The size of a integer or real
number may be given in parenthesis with the keyword, but wiio the Size declaration. Therefore the
following to are exactly the same

Timestep Intervals(3) = 1 10 100
Timestep Intervals = Size 3; 1 10 100

This feature is usefull when giving vectors and matriceslmé&GUI since there the keyword body is fixed
and cannot include any size declaration. Note that in admweémicolon is used as an alternative character
for newline.

Another convention is to use two colons to make in-lined digiits in the sif files. The following to
expressions are equal

Body Force 1
Heat Source = 1.0
End

and

Body Force 1 :: Heat Source = 1.0

CSC — IT Center for Science [@)sv-nD |

1. Structure of the Solver Input File 13

1.4 Running several sequences

Execution within command file

When reading the strinBUNin the command file the solver stops the reading and perfdnmsdmputa-
tion with the instructions so far obtained. After a succésfecution the solver continues to interpret the
command file. Using this functionality it is therefore pdisito create scripts where some parameter value
is changed and the problem is recomputed. For example, gdiinsame sequence to the end of.gie

file could be used to test the solution with different linealver

RUN
Solver 1::Linear System lIterative Method = BiCgstabl
RUN

It should be noted that not quite all features support thixedure. For example, some preconditioners
create static structures that will not be recreated.

CSC — IT Center for Science [@)sv-nD |

Chapter 2

Restart from existing solutions

Often, the user wants to restart a run. This may be eitherlgitopcontinue a - to what reason ever -
interrupted simulation, but also to read in values needieéein initial conditions or in boundary conditions.

2.1 Restartfile

Any output file given by the syntax
Output File String

can be used as a restart point for a new simulation. The liimitas, that the mesh, the previous case has
been run on is identical to the one the new run is performed lanparallel runs, additionally, also the
partitions of the mesh have to coincide.

The syntax for restarting then is given in tBamulation section by declaring the restart file name as
well as theRestart Position

Simulation
Restart File = "previousrun.result"
Restart Position = 101

End

This would restart the current simulation from the timeétén level 101 of the previously stored result file
previousrun.result
Upon running the new simulation, a similar message in thedstad output of EImer should be seen:

LoadRestartFile:

LoadRestartFile: --------memmmmmmmmeeeeeeeee e
LoadRestartFile: Reading data from file: previousrun.res ult
LoadRestartFile: ASCII 1

LoadRestartFile:

LoadRestartFile: Restart time = 100.0

LoadRestartFile: All done

LoadRestartFile: --------memmmmmmemeeeeeeeeeee e
LoadRestartFile:

If the amount of stored time/iteration levels a priori is kabwn, the user can insert the syntax
Restart Position = 0

in order to make sure to reload the last stored time-/iteratével.

Result files from steady state simulations often contairtipialiteration steps (with only the last con-
taining the converged solution). Nevertheless, thesamtsts of solutions are - if reloaded - interpreted as
different time-levels. In this case the user might want tfirgea time being set for the restart, especially if
continuing with transient runs. This is done with the keyavor

CSC — IT Center for Science [@)sv-nD |

2. Restart from existing solutions 15

Restart Time Real

in order to manually set the time for the zeroth time-leveth& new simulation.

2.2 Initialization of dependent variables

Initialization of variables and their boundary conditiomg default is done before reading in of previous
results. That has two main implications:

1. Values set in the sectidmitial Condition are overwritten by corresponding values of the
variable being loaded afterwards from the restart file

2. On other variables dependent values of variables withieitial- or boundary conditions are by default
not initiated with those values from the restart file

The latter can be influenced with two keyworéRestart Before Initial Conditions (default
False) andlnitialize Dirichlet Condition (defaultTrue).
Restart Before Initial Conditions = Logical True would first load the variables

from the restart file and then apply initial conditions to $hovariables that have not been set by the ear-
lier solution. This is necessary if one of the initial comalits is dependent on the earlier solution. By

default, first the initial conditions from the solver inpuefare set and thereafter the restart files (if existing)
is read.

Initialize Dirichlet Condition by default is set to true, which means that Dirichlet Con-
ditions are set before the simulation and thus also befageptrticular solver for that variable is being
executed. If now a boundary condition for one variable isedefent on the value of another, the first time
Dirichlet condition is set from the initial value of variadd - either set or read in from a restart file. If this is
not wanted, the user can switttitialize Dirichlet Condition = False which will set the
Dirichlet condition on the fly, during the execution of thethe variable attached solver.

CSC — IT Center for Science [@)sv-nD |

Chapter 3

Solution methods for linear systems

3.1 Introduction

Discretization and linearization of a system of partiafeliéntial equations generally leads to solving linear
systems
Az = b, (3.1)

where A andb are of orders: x n andn x 1, respectively. A specific feature of the coefficient matsix
resulting from the finite element discretization is thathetrix is sparse, i.e. only a few of the matrix entries
in each row differ from zero. In many applications the system also have a very large orderso that the
chief part of the computation time in performing the simidatis typically spent by solvers for the linear
systems.

Solution methods for linear systems fall into two large gatées: direct methods and iterative methods.
Direct methods determine the solution of the linear systeat#y up to a machine precision. They perform
in a robust manner leading to the solution after a predetethnumber of floating-point operations. Never-
theless, the drawback of direct methods is that they areresiyein computation time and computer memory
requirements and therefore cannot be applied to the salofitinear systems of very large order. The ef-
ficient solution of large systems requires generally theafdeerative methods which work by generating
sequences of improving approximate solutions.

ElmerSolver provides access to both direct and iterativehods. The iterative methods available fall
into two main categories: preconditioned Krylov subspaeghmods and multilevel methods. Iteration meth-
ods that combine the ideas of these two approaches may alsonisgucted. Such methods may be very
efficient leading to a solution after a nearly optimal numtfesperation counts.

The development of efficient solution methods for lineartayss is still an active area of research, the
amount of literature on the topic being nowadays vast. Thedfithe following discussion is to provide
the user the basic knowledge of the solution methods availatEImerSolver. The detailed description of
methods is omitted. For a more comprehensive treatmengetiter is referred to references mentioned.

3.2 Direct methods

A linear system may be solved in a robust way by using diredhods. There are two different options
for direct methods in ElmerSolver. The default method zeii the well-known LAPACK collection of
subroutines for band matrices. In practice, this solutiathad can only be used for the solution of small
linear systems as the operation count for this method isadmor.

The other direct solver employs the Umfpack routines toesjvarse linear systemy [Umfpack uses
the Unsymmetric MultiFrontal method. In practice it may Ibe tmost efficient method for solving 2D
problems as long as there is enough memory available.

It should be noted that the success of the direct solversispeery much on the bandwidth of the sparse
matrix. In 3D these routines therefore usually fail miséyab

CSC — IT Center for Science [@)sv-nD |

3. Solution methods for linear systems 17

Elmer may be also compiled withllumps SuperLU , andPardiso . The licensing scheme of these
softwares do not allow the distribution of precompiled liaa but every user may themselves compile a
version that includes these solvers. Many times the besaitinolver for a particular problem may be found
among these.

3.3 Preconditioned iteration methods

ElmerSolver contains a set of Krylov subspace methods ®it#rative solution of linear systems. These
methods may be applied to the solution large linear systernspid convergence generally requires the use
of preconditioning.

3.3.1 Krylov subspace methods

The Krylov subspace methods available in ElImerSolver are

e Conjugate Gradient (CG)

Conjugate Gradient Squared (CGS)

Biconjugate Gradient Stabilized (BiCGStab)
BiCGStab()

Transpose-Free Quasi-Minimal Residual (TFQMR)

Generalized Minimal Residual (GMRES)
e Generalized Conjugate Residual (GCR)

Both real and complex systems can be solved using thesathlgsr For the detailed description of some
of these methods se8][and [4].

A definite answer to the question of what is the best iterati@ihod for a particular case cannot be
given. In the following only some remarks on the applicaypitif the methods are made.

The CG method is an ideal solution algorithm for cases wharebefficient matrix4 is symmetric and
positive definite. The other methods may also be appliedsescaherel is non-symmetric. It is noted that
the convergence of the CGS method may be irregular. The Bi@its&d TFQMR methods are expected
to give smoother convergence. In cases where BiCGStab adegnk well it may be advantageous to use
the BiCGStah() method, with¢ > 2 a parameter. Faster convergence in terms of iteration saquay be
expected for increasing values of the paramététowever, since more work is required to obtain the iterate
as/ increases, optimal performance in terms of computatiommakwnay be realized for quite a small value
of ¢. Starting with the valué = 2 is recommended.

The GMRES and GCR methods generate gradually improvingtésrthat satisfy an optimality condi-
tion. The optimality may however come with a significant cgiste the computational work and computer
memory requirements of these methods increase as the nwhiberations grows. In practice these meth-
ods may be restarted after solution updates have been performed in order to avoid tbreasing work
and storage requirements. The resulting methods are eeféoras the GMRE%{) and GCR{n) meth-
ods. Here the choice of: has to be controlled by the user. It should be noted that theezgence of the
restarted algorithms may be considerably slower than thatlloversions. Unfortunately, general guidelines
for determining a reasonable value farcannot be given as this value is case-dependent.

The GCR method suits well to situations where the linearesols preconditioned by applying some
other iterative method such as a multigrid solver. When swedted iterations are employed, using the GCR
method as a linear solver is recommended.

CSC — IT Center for Science [@)sv-nD |

3. Solution methods for linear systems 18

3.3.2 Preconditioning strategies

The performance of iteration methods depends greatly osghetrum of the coefficient matrit. The rate
at which an iteration method converges can often be imprbyeadansforming the original system into an
equivalent one that has more favorable spectral propefiigs transformation is called preconditioning and
a matrix which determines the transformation is called a@nelitioner.

In ElImerSolver preconditioning is done by transformidglj into the system

AM ™'z =0, (3.2)

where the preconditioneY/ is an approximation tod andz is related to the solutiom by z = Mz. In
practice, the explicit construction of the inver®&~! is not needed, since only a subroutine that for a given
v returns a solutiom to the system

Mu = (3.3)

is required.

ElmerSolver provides several preconditioning strategiesese include Jacobi preconditioning and in-
complete factorization preconditioners. The preconditig step 8.3) may even be defined in terms of some
iteration method for the syster8.Q) with M = A. This possibility is considered in Secti@mw.3below.

The Jacobi preconditioner is simply based on takifigo be the diagonal ofl. More sophisticated pre-
conditioners may be created by computing incomplete Lbféxations ofA. The resulting preconditioners
are referred to as the ILU preconditioners. This approaghgythe preconditioner matri/ in the form
M = LU whereL andU are lower and upper triangular with certain elements thigean the factorization
process ignored.

There are several ways to choose a set of matrix positiorisatieaallowed to be filled with nonzero
elements. ILU preconditioners of fill levéV referred to as the ILU(N) preconditioners are built so that
ILU(0) accepts nonzero elements in the positions in whidhas nonzero elements. ILU(1) allows nonzero
elements in the positions that are filled if the first step oti€dan elimination is performed fot. ILU(2)
accepts fill in positions that are needed if the next step afsSian elimination is performed with ILU(1)
factorization, etc.

Another strategy is based on numerical tolerances. Thétiegpreconditioneris referredto as the ILUT
preconditioner. In the creation of this preconditioner €&aan elimination is performed so that elements of
a given row of the LU factorization are obtained but only edents whose absolute value (scaled by the norm
of all values of the row) is over a given threshold value areepted in the preconditioner matrix.

Obviously, the additional computation time that is spemtrgating the preconditioner matrix and solving
systems of the type3(3) should be compensated by faster convergence. FindingtmalpLU precondi-
tioner for a particular case may require the use of trial amdre Start with ILU(0) and try to increase the
fill level N. As N increases, more and more elements in the incompleteakttofization of the coefficient
matrix are computed, so the preconditioner should in ppiedde better and the number of iterations needed
to obtain a solution should decrease. At the same time theamemsage grows rapidly and so does the time
spent in building the preconditioner matrix and in applythg preconditioner during iterations. The same
applies to the ILUT preconditioner with decreasing thrddhvalue.

3.4 Multilevel methods

A class of iterative methods referred to as multilevel mdthprovides an efficient way to solve large linear
systems. For certain class of problems they perform negtiyrally, the operation count needed to obtain a
solution being nearly of order. Two different multilevel-method approaches are avadablElmerSolver,
namely the geometric multigrid (GMG) and algebraic muldgAMG).

3.4.1 Geometric multigrid

Given a meshr; for the finite element discretization of problem the geomatnultigrid method utilizes
a set of coarser meshfg, k = 2, ..., N, to solve the linear system arising from the discretizati@Qme
of the fundamental ideas underlying the method is based @iid#a of coarse grid correction. That is, a

CSC — IT Center for Science [@)sv-nD |

3. Solution methods for linear systems 19

coarser grid is utilized to obtain an approximation to theem the current approximate solution of the
linear system. The recursive application of this strateggdb us to multigrid methods.

To utilize different meshes multigrid methods require tlewelopment of methods for transferring vec-
tors between fine and coarse meshes. Projection operatoused to transfer vectors from a fine m&gh
to a coarse mesf#,; and will be denoted by, ™", while interpolation operatotg’, , transfer vectors from
a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursivgaithm: GivenA, b and an initial guessg
for the solution of the systemxz = b seti = 1 and do the following steps:

1. If i = N, then solve the systemz = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithmaaiven number of times to obtain a new
approximate solutiof.

3. Perform coarse grid correction by starting a new appbeedf this algorithm withA = If“AI}H,
b= I (Ay —b),i =i+ 1 and the initial guess = 0.

4. Compute a new approximate solution by setting v -+ Iz‘i+1€

5. Do post-smoothing by applying some iterative algoritlome given number of times to obtain a new
approximate solutio.

6. If the solution has not yet converged, go to step 2.

In ElmerSolver one may choose the Jacobi, CG or BiCGStakrittignas the method for smoothing itera-
tions.

The full success of multigrid methods is based on the faderabmbination of the properties of ba-
sic iteration methods and methods for transferring vedietsveen meshes. The smoothing iterations give
rapid convergence for oscillatory solution componentdevboarse grid correction entails an efficient solu-
tion method for smooth solution components. For a comprgkenntroduction to the geometric multigrid
method the reader is referred 9]

3.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied imxave do not have the luxury of having
a set of appropriate hierarchical meshes. The alternagitlea algebraic multigrid (AMG) method which
uses only the matrixd to construct the projectors and the coarse level equatidMG is best suited for
symmetric and positive semidefinite problems. For otheesypf problems the standard algorithm may fail.
For more information on AMG see referenéd.|

The AMG method has two main phases. The set-up phase indluelescursive selection of the coarser
levels and definition of the transfer and coarse-grid opesafl he solution phase uses the resulting compo-
nents to perform a normal multigrid cycling until a desiredaracy is reached. The solution phase is similar
to that of the GMG.

Note that the AMG solvers in ElImerSolver are not fully matufdey may provide good solutions for
some problems while desperately failing for others.

Classical Ruge-Stuiben algorithm

The coarsening is performed using a standard Ruge-Stilaesearong algorithm. The possible connections
are defined by the entries in the matrlx The variable is strongly coupled to another variabjéf

a;j < —c_max|a;| OF ai; > ¢y max|akl, (3.4)

where0 < ¢_ < 1 and0 < ¢y < 1 are parameters. Typically. =~ 0.2 andc, ~ 0.5. Once the negative
(P~) and positive PT) strong couplings have been determined the variables widediinto coarse() and
fine (F") variables using the standard coarsening scheme.

CSC — IT Center for Science [@)sv-nD |

3. Solution methods for linear systems 20

The interpolation matrix may be constructed using @&-splitting and the strong couplings of the
matrix. The interpolation of coarse nodes is simple as tleeyain unchanged. The interpolation of fine
nodes starts from the fact the smooth ewranust roughly satisfy the conditiate = 0 or

ai;:€; + Z ajje; = 0. (35)
J#i
By manipulation
ai;e; + o Z aije; + B; Z aij€e; = 0, (3.6)
jecnp; jecnp;t
where 5 5
Y ot Qg
o = =% Y and 8 = _aERT Y (3.7)

ZJ’GCQPI i Z,jeCmP;r aij

The interpolation thus becomes

. _a.a,,/a.,’ jEP-77
l je;ﬂ o Y —Biazj/ai, jE€ P

This is known adlirect interpolation It may be modified by using also the stroignodes in the
interpolation. This means that in formuld.p) the following elimination is made for eaghe F' N P;

€; — — Z ajkek/ajj. (3.9)

keCNP;

This is known astandard interpolationIn practice it means that the number of nodes used in thepiote
lation is increased. This may be important to the qualityhef interpolation particularly if the number of
directC-neighbors is small.

After the interpolation weights have been computed the lestatoefficients may be truncated if they
are smallj.e, w; < ¢, max |wyg|, wherec,, =~ 0.2. The other values must accordingly be increased so that
the sum of weights remains constant. The truncation is éiss@npreventing the filling of the coarse level
matrices.

Cluster multigrid

There is also an implementation of the agglomeration ortefusultigrid method. It is a variant of the
algebraic multigrid method. In this method the componengsgeouped and the coarse-level matrices are
created simply by summing up the corresponding rows andwodu In other words, the projection matrix
includes just ones and zeros.

The cluster multigrid method should be more robust for peatd where it is difficult to generate an
optimal project