Octave CFITSIO Toolkit 0.0.6

FITS file functionality for GNU Octave.

John Donoghue

Copyright (©) 2019-2023 John Donoghue

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.

Distribution

The GNU Octave CFITSIO package is free software. Free software is a matter of the users’ freedom
to run, copy, distribute, study, change and improve the software. This means that everyone
is free to use it and free to redistribute it on certain conditions. The GNU Octave CFITSIO
package is not, however, in the public domain. It is copyrighted and there are restrictions on its
distribution, but the restrictions are designed to ensure that others will have the same freedom
to use and redistribute Octave that you have. The precise conditions can be found in the GNU
General Public License that comes with the GNU Octave CFITSIO package and that also appears
in Appendix A [Copying], page 28.

To download a copy of the GNU Octave CFITSIO package, please visit https://gnu-octave.
github.io/octave-cfitsio//index.

https://gnu-octave.github.io/octave-cfitsio//index
https://gnu-octave.github.io/octave-cfitsio//index

Table of Contents

1

Installing and loading 1
1.1 Windows install. o 1
1.2 Online Direct install e 1
1.3 Off-line dnstallo i e 1
1.4 Loadingoviir ittt 1

Basic Usage Overview i .. 2
2.1 OVEIVIEW o ottt ettt e e e e e e e e e 2
2.2 Using the toolKit. 2

2.2.1 Reading Data. ... 2
2.2.2 Reading Information i 2
2.2.3 Low level functionality ... 2

Function Reference................ 3

3.1 High Level File Functions.......... ... e 3
R O 11T 1) o PP 3
3.1.2 SN O . . oo 3
31,3 tsread ..o 4
314 BSWIIEE. ¢ oo 4

3.2 Low Level File Functions. e 5
3.2.1 matlab.iofits.closeFile. 5
3.2.2 matlab.iofits.createFile 5
3.2.3 matlab.iofits.deleteFile. i 6
3.2.4 matlab.jo.fits.fileMode. 6
3.2.5 matlab.iofits.fileName 6
3.2.6 matlab.io.fits.openDiskFile 7
3.2.7 matlab.jo.fits.openFile. 7

3.3 Low Level HDU Functionsouiii et 7
3.3.1 matlab.io.fits.copyHDU 8
3.3.2 matlab.io.fits.deleteHDU 8
3.3.3 matlab.io.fits.getHDUnum. 8
3.3.4 matlab.io.fits.getHDUoff 9
3.3.5 matlab.jo.fits.getHDUtype. . ..ot 9
3.3.6 matlab.io.fits.getNumHDUs 9
3.3.7 matlab.jo.fits.movAbsHDU 9
3.3.8 matlab.iofitsmovNamHDU 10
3.3.9 matlab.io.fits.movRelHDU 10
3.3.10 matlab.io.fits.writeChecksum....... i 10

3.4 Low Level Keyword Functions i 11
3.4.1 matlab.iofits.deleteKey ... 11
3.4.2 matlab.iofits.deleteRecord 11
3.4.3 matlab.jo.fits.getHdrSpace o 11
3.4.4 matlab.jo.fits.readCardo 11
3.4.5 matlab.jo.fits.readKey 12
3.4.6 matlab.io.fits.readKeyCmplx 12
3.4.7 matlab.io.fits.readKeyDbl 12
3.4.8 matlab.io.fits.readKeyLonglong i 12

ii

3.4.9 matlab.io.fits.readKeyLongStr.o i 13
3.4.10 matlab.jo.fits.readKeyUnito 13
3.4.11 matlab.io.fits.readRecord. o 13
3.4.12 matlab.io.fits.writeComment i 14
3.4.13 matlab.io.fits.writeDate 14
3.4.14 matlab.io.fits.writeHistory........ ..o 14
3.4.15 matlab.jofits.writeKey 14
3.4.16 matlab.io fits.writeKeyUnit o 15
3.5 Low Level Image Manipulation.......... i 15
3.5.1 matlab.io.fits.createlmg e 15
3.5.2 matlab.io.fits.getImgSizeo 15
3.5.3 matlab.io.fits.getImgTypeo 16
3.5.4 matlab.iofits.insertImg. 16
3.5.5 matlab.jo.fits.readlmg. ... e 16
3.5.6 matlab.io.fits.setBscale. 17
3.5.7 matlab.io.fits.setTscale. 17
3.5.8 matlab.io.fits.writelmg 17
3.6 Low Level Utility Functions. e 18
3.6.1 matlab.io.fits.getConstantNames, 18
3.6.2 matlab.io.fits.getConstantValue i i 18
3.6.3 matlab.io.fits.getOpenFiles.o i 18
3.6.4 matlab.io.fits.getVersion. 18
3.7 Low Level Compression Functions. 19
3.7.1 matlab.io.fitsdimgCompress.ot e 19
3.7.2 matlab.io.fits.isCompressedImg. 19
3.7.3 matlab.io.fits.setCompressionType.ooitiii e 19
3.7.4 matlab.jo.fits.setHCompScale. 19
3.7.5 matlab.io.fits.set HCompSmooth 20
3.7.6 matlab.jo.fits.setTileDim o 20
3.8 Low Level Binary and ASCIT Tables 20
3.8.1 matlab.io.fits.createThl. o 20
3.8.2 matlab.io.fits.deleteCol. e 21
3.8.3 matlab.jo.fits.deleteROWs 21
3.8.4 matlab.io.fits.get ACOIParms. 21
3.8.5 matlab.io.fits.getBColParms....... i 22
3.8.6 matlab.io.fits.getColName.ot 22
3.8.7 matlab.io.fits.getColTypeo 23
3.8.8 matlab.io.fits.getEqCoIType.ot 23
3.8.9 matlab.io.fits.getNumQCols. i 23
3.8.10 matlab.io.fits.getNumRows...... 23
3.8.11 matlab.io fits.getROWSIZe . . .« ..ot 24
3.8.12 matlab.io.fits.insert ATbL 24
3.8.13 matlab.io.fits.insert BTbl 24
3.8.14 matlab.io.fits.insertCol. 25
3.8.15 matlab.io.fits.insertRowso 25
3.8.16 matlab.io.fits.read ATbIHdr. 25
3.8.17 matlab.io.fits.read BTbIHAr.o 25
3.8.18 matlab.io.fits.readCol 26
3.8.19 matlab.io.fits.writeCol 26
3.9 Import fUnCtIONS. 27
3.9 1 IMPOTt _fibS . e e 27

iii

1 Installing and loading

The GNU Octave CFITSIO toolkit must be installed and then loaded to be used.

It can be installed in GNU Octave directly from octave-cfitsio, or can be installed in an off-line
mode via a downloaded tarball.

The toolkit has a dependency on the cfitsio library (https://heasarc.gsfc.nasa.gov/fitsio/
), so it must be installed in order to successfully install the GNU Octave toolkit.

For Fedora: yum install cfitsio-devel

The toolkit must be then be loaded once per each GNU Octave session in order to use its
functionality.

1.1 Windows install

If running in Windows, the package may already be installed, to check run:

pkg list cfitsio
Otherwise it can be installed by installing the requirements and then using the online or offline
install method.

1.2 Online Direct install

With an internet connection available, the package can be installed from octave-cfitsio using the
following command within GNU Octave:

pkg install https://sourceforge.net/projects/octave-cfitsio/files/v0.0.6/octave-cfitsit
On GNU Octave 7 and higher, the package can be installed in the simpler form of:
pkg install -forge cfitsio

The latest released version of the toolkit will be downloaded and installed.

1.3 Off-line install
With the toolkit package already downloaded, and in the current directory when running GNU
Octave, the package can be installed using the following command within GNU Octave:

pkg install octave-cfitsio-0.0.6.tar.gz

1.4 Loading
Regardless of the method of installing the toolkit, in order to use its functions the toolkit must
be loaded using the pkg load command:
pkg load cfitsio
The toolkit must be loaded on each GNU Octave session.

https://heasarc.gsfc.nasa.gov/fitsio/
https://heasarc.gsfc.nasa.gov/fitsio/

2 Basic Usage Overview

2.1 Overview

The octave-cfitsio toolkit provides high and low level functionality for reading and writing FITS
format files.

The high level functions provide base read and write of data to octave.

The low level functions almost direct access to the cfitsio API and are provided under the
matlab.io.fits namespace.

Since GNU Octave does not support the matlab import command, a import_fits function is
provided.

Running the statement:
import_fits
Is the equivalent of running in matlab:

import matlab.io.fits;

2.2 Using the toolkit

The package must be loaded each time a GNU Octave session is started:
pkg load cfitsio
After loading the toolkit, the toolkit functions are available.

2.2.1 Reading Data

To read the primary image data of a fits file, use the fitsread function:
imagedata = fitsread("thefitsfile.fits");

2.2.2 Reading Information

To read information about the content in a fits file, use the fitsinfo functions.
info = fitsinfo("thefitsfile.fits");

2.2.3 Low level functionality

Where functionality is required that is not met be the high level functions, most of the cfitsio
functions are available in the matlab.io.fits namespace.
import the fits functions so don't have to use the full namespace each time
import_fits;

open the file
fd = fits.openFile('tst0012.fits');

get number of hdus in the file
n = fits.getNumHDUs (£d);

for each hdu, go to it, print out the type
for j =1:n

hdutype = fits.movAbsHDU (fd, j);

printf ('HDU %d: "%s"\n', j, hdutype);
endfor

close the file
fits.closeFile (fd);

3 Function Reference

The functions currently available in the toolkit are described below:

3.1 High Level File Functions
3.1.1 fitsdisp

info = fitsdisp(filename)
info = fitsdisp(filename, propertyname, propertyvalue)
Display metadata about fits format file

Inputs

filename - filename to open.
propertyname, propertyvalue - property name/value pairs

Known property names are:

'Index’ Value is a scalar or vector of hdu numbers to display

"Mode’ display mode of ’standard’ (default), 'min’ or ’full’

'standard’ display mode shows the standard keywords for the selected HDUs.
'min’ display mode shows only the type and size of the selected HDUs.
'full” display shows all keywords for the selected HDU.

Outputs

info - the metadata of the file. If no output variable is provided, it displays to the screen.

Examples
filename = file_in_loadpath("demos/tst0012.fits");

fitsdisp(filename);
3.1.2 fitsinfo

info = fitsinfo(filename)
Read information about fits format file

Inputs

filename - filename to open.

Outputs

info - a struct containing the structure and information about the fits file.

Examples
filename = file_in_loadpath("demos/tst0012.fits");

info = fitsinfo(filename);

Chapter 3: Function Reference 4

3.1.3 fitsread

data
data
data
data
data

fitsread(filename)

fitsread(filename, ’raw’)

fitsread(filename, extname)

fitsread(filename, extname, index)

fitsread(filename, ____, propertyname, propertyvalue)

Read the primary data, or specified extension data. It scales the data and applied Nan to any
undefined values.

Inputs

filename - filename to open.

exttype - can be 'primary’, ’asciitable’, 'binarytable’, ’image’, 'unknown’.

index - can be used to specify which table when more than one of a given type exists.

‘raw’- If the 'raw’ keyword is used, the raw data from the file will be used without replacing
undefined values with Nan

Known property names are:

Info input info from fitsinfo call.

PixelRegion
pixel region to extract data for in an image. It expects a cell array of same size
as the number of axis in the image. Each cell should be in vector format of: start,
[start stop] or [start, increment, stop].

TableColumns
A list of columns to extract from a ascii or binary table.

TableRows
A list of rows to extract from an ascii or binary table.

Outputs

data - The read data from the table or image.

Examples

filename = file_in_loadpath("demos/tst0012.fits");

read the primary image data
imagedata = fitsread(filename) ;

read the 1st non primary image
imagedata = fitsread(filename, "image");

read the first binary table, selected columns
tbldata = fitsread(filename, "binarytable", "TableColumns", [1 2 11]);

read the first ascii table
atbldata = fitsread(filename, "asciitable");

3.1.4 fitswrite

fitswrite(data, filename)
fitswrite(data, filename, propertyname, propertyvalue)
Write image data data to FITS file filename. If the fie already exists, overwrite it.

Chapter 3: Function Reference 5

Inputs

data - imagedata to write to a file.
filename - filename to write to.
propertyname, propertyvalue - property name/value pairs

Additional properties can be set as propertyname, propertyvalue pairs. Known property
names are:

WriteMode
Set mode for writing to image as ’overwrite’ (default) or 'append’ to append
images.

Compression
Set compression type to use for image as 'none’ (default), ’gzip’, 'rice’, "hcompress’
or 'plio’.

Outputs

None

Examples

filename = tempname();
X = double([1:3;4:6]);
fitswrite(X, filename);

3.2 Low Level File Functions

3.2.1 matlab.io.fits.closeFile

closeFile(file)
Close the opened fits file

This is the equivalent of the fits_close_file function.

Inputs

file - opened file returned from openFile or createFile.

Outputs

None

Examples

import_fits;
filename = file_in_loadpath("demos/tst0012.fits")

fd = fits.openFile(filename) ;
fits.closeFile(£fd);

See also: matlab.io.fits.createFile, matlab.io.fits.openFile.
3.2.2 matlab.io.fits.createFile

file = createFile(filename)
Attempt to create a file of the given input name.

If the filename starts with ! and the file exists, it will create a new file, otherwise, if the file
exists, the create will fail.

This is the equivalent of the cfitsio fits_create_file function.

Chapter 3: Function Reference

Inputs

filename - filename to open.

Outputs
file - opened file identifier.

Examples

import_fits;

fd = fits.createFile("myfitsfile.fits");
fits.createImg(fd, 'uinti6', [100 100]);
fits.closeFile(fd);

See also: matlab.io.fits.openFile.

3.2.3 matlab.io.fits.deleteFile

deleteFile(file)
Force a close and delete of a fits file.

This is the equivalent of the fits_delete_file function.

Inputs
file - opened fits file.

Outputs

None

3.2.4 matlab.io.fits.fileMode

mode = fileMode(file)
Return the file mode of the opened fits file.

This is the equivalent of the fits_file_mode function.

Inputs
file - opened fits file.

Outputs
mode - The mode will return as a string 'READWRITE’ or ’'READONLY’

3.2.5 matlab.io.fits.fileName

filename = fileName(file)
Return the file name of the opened fits file.

This is the equivalent of the fits_file_name function.

Inputs
file - opened fits file.

Outputs

filename - name of the fits file.

Chapter 3: Function Reference 7

3.2.6 matlab.io.fits.openDiskFile

file = openDiskFile(filename)
file = openDiskFile(filename, mode)
Attempt to open a file of the given input name, ignoring any special processing of the filename.

This is the equivalent of the cfitsio fits_open_diskfile function.

Inputs
filename - filename to open.

mode - If the option mode string '/READONLY”’ (default) or '/READWRITE’ is provided,
open the file using that mode.

Outputs
file - opened file identifier.

Examples

import_fits;
filename = file_in_loadpath("demos/tst0012.fits")

fd = fits.openDiskFile(filename, 'READONLY');
fits.closeFile(fd);

See also: openFile, createFile.
3.2.7 matlab.io.fits.openFile

file = openFile(filename)
file = openFile(filename, mode)
Attempt to open a file of the given input name.

This is the equivalent of the cfitsio fits_open_file function.

Inputs
filename - filename to open.

mode - If the option mode string '/READONLY”’ (default) or '/READWRITE’ is provided,
open the file using that mode.

Outputs
file - opened file identifier.

Examples

import_fits;
filename = file_in_loadpath("demos/tst0012.fits")

fd = fits.openFile(filename, 'READONLY');
fits.closeFile(fd);

See also: matlab.io.fits.openDiskFile, matlab.io.fits.createFile.

3.3 Low Level HDU Functions

Chapter 3: Function Reference

3.3.1 matlab.io.fits.copyHDU

copyHDU(infile, outfile)
Copy current HDU from one infile to another.

This is the equivalent of the cfitsio fits_copy_hdu function.

Inputs

filename - filename to open.

Outputs

infile - opened input file identifier.
outfile - opened output file identifier.

Examples

import_fits;

open input and output files
infilename = file_in_loadpath("demos/tst0012.fits");
infile = fits.openFile(infilename);

outfile = fits.createFile("myfitsfile.fits");
copy first hdu

fits.copyHDU(infile, outfile);

move to and then copy 2nd hdu
fits.movAbsHDU(infile,2);
fits.copyHDU(infile, outfile);

close files
fits.closeFile(infile);
fits.closeFile(outfile);

3.3.2 matlab.io.fits.deleteHDU

type = deleteHDU(file)
Delete the current HDU and go to next HDU.

Returns the newly current HDU type as a string.
This is the equivalent of the cfitsio fits_delete_hdu function.

Inputs
file - opened fits file.

Outputs
type - string value for type of the next HDU.

3.3.3 matlab.io.fits.get HDUnum

num = getHDUnum(file)
Return the index of the current HDU.

This is the equivalent of the cfitsio fits_get_hdu_num function.

Inputs
file - opened fits file.

Chapter 3: Function Reference

Outputs

num - current hdu number.

3.3.4 matlab.io.fits.get HDUoff

[headtstart, datastart, dataend] = getHDUoff(file)
Return offsets of the current HDU.

This is the equivalent of the cfitsio fits_get_hduoff function.

Inputs
file - opened fits file.

Outputs

headtstart, datastart, dataend - offset information for the current HDU.
3.3.5 matlab.io.fits.get HDUtype

type = getHDUtype(file)
Return the current HDUs type as a string.
This is the equivalent of the cfitsio fits_get_hdu_type function.

Inputs
file - opened fits file.

Outputs
type - current hdu type

3.3.6 matlab.io.fits.getNumHDUs

num = getNumHDUs(file)
Return the count of HDUs in the file.

This is the equivalent of the cfitsio fits_get_num_hdus function.

Inputs
file - opened fits file.

Outputs

num - return the number of HDUs in the file.

Examples

import_fits;

testname = file_in_loadpath("demos/tst0012.fits");
fd = fits.openFile(testname);

hducount = getNumHDUs(fd), 5);

fits.closeFile(£fd);

3.3.7 matlab.io.fits.movAbsHDU

type = movAbsHDU(file, hdunum)
Go to absolute HDU index hdunum

Returns the newly current HDU type as a string.

This is the equivalent of the cfitsio fits_movabs_hdu function.

Chapter 3: Function Reference 10

Inputs
file - opened fits file.

hdunum - HDU number to move to.

Outputs
type - hdu type of the now current HDU.

3.3.8 matlab.io.fits.movNamHDU

hdutype = movNamHDU(file, hdutype, extname, extver)
Go to HDU matching hdutype, extname, extver.

This is the equivalent of the cfitsio fits_movnam_hdu function.

Inputs
file - opened fits file.

hdutype - HDU number to move to. Valid hdutype values are 'IMAGE_HDU’, "ASCII_TBL’,
'BINARY_TBL’, ’ANY_HDU".

extname, extver - EXTNAME and EXTVER keywords to match.

Outputs
hdutype - hdu type of the now current HDU.

3.3.9 matlab.io.fits.movRelHDU

type = movRelHDU(file, hdunum)
Go to relative HDU index hdunum.
Returns the newly current HDU type as a string.

This is the equivalent of the cfitsio fits_movrel_hdu function.

Inputs
file - opened fits file.

hdunum - relative HDU number to move to.

Outputs
type - hdu type of the now current HDU.

3.3.10 matlab.io.fits.writeChecksum

writeChecksum(file)
Recalculate the HDU checksum and if required, write the new value.

This is the equivalent of the cfitsio fits_write_chksum function.

Inputs
file - opened fits file.

Outputs

None

Chapter 3: Function Reference

3.4 Low Level Keyword Functions

3.4.1 matlab.io.fits.deleteKey

deleteKey(file, key)
Delete a key in the fits file.

This is the equivalent of the cfitsio fits_delete_key function.

Inputs
file - opened fits file.

key - Key name to remove.

Outputs

None
3.4.2 matlab.io.fits.deleteRecord

deleteRecord(file, keynum)
Delete a key in the fits file.

This is the equivalent of the cfitsio fits_delete_record function.

Inputs
file - opened fits file.

keynum - Record number to remove.

Outputs

None
3.4.3 matlab.io.fits.getHdrSpace

[numkeys, freekeys] = getHdrSpace(file)
Get the number of keyword records used and available.

This is the equivalent of the cfitsio fits_get_hdrspace function.

Inputs
file - opened fits file.

Outputs
numkeys - number of existing keys.

freekeys - number of free key space.
3.4.4 matlab.io.fits.readCard

card = readCard(file, recname)
Read the keyword card for name recname

This is the equivalent of the cfitsio fits_read_card function.

Inputs
file - opened fits file.

recname - record name to read

11

Chapter 3: Function Reference 12

Outputs

card - unparsed record value string
3.4.5 matlab.io.fits.readKey

[keyvalue, keycomment] = readKey(file, recname)
Read the keyword value and comment for name recname.

This is the equivalent of the cfitsio fits_read_key_str function.

Inputs
file - opened fits file.

recname - keyword name.

Outputs
keyvalue - string value of record.

keycomment - comment string
3.4.6 matlab.io.fits.readKeyCmplx

[value, comment] = readKeyCmplx(file, recname)
Read the key value recname as a complex double.

This is the equivalent of the cfitsio fits_read_key_dblcmp function.

Inputs
file - opened fits file.

recname - keyword name.

Outputs

value - complex value of record.

comment - comment string
3.4.7 matlab.io.fits.readKeyDbl

[value, comment] = readKeyDbl(file, recname) [Function File]
Read the key value recname as a double.

This is the equivalent of the cfitsio fits_read_key_dbl function.\n \

Inputs
file - opened fits file.

recname - keyword name.

Outputs

value - double value of record.

comment - comment string
3.4.8 matlab.io.fits.readKeyLonglLong

[value, comment] = readKeyLonglong(file, recname)
Read the key value recname as a long long.

This is the equivalent of the cfitsio fits_read_key_Inglng function.

Chapter 3: Function Reference 13

Inputs
file - opened fits file.

recname - keyword name.

Outputs
value - int64 value of record.

comment - comment string
3.4.9 matlab.io.fits.readKeyLongStr

[value, comment] = readKeyLongStr(file, recname)
Read the key value recname as a string.

This is the equivalent of the cfitsio fits_read_key_longstr function.

Inputs
file - opened fits file.

recname - keyword name.

Outputs
value - string value of record.

comment - comment string
3.4.10 matlab.io.fits.readKeyUnit

keyunit = readKeyUnit(file, recname)
Read the physical key units value recname.

This is the equivalent of the cfitsio fits_read_key_unit function.

Inputs
file - opened fits file.

recname - keyword name.

Outputs

keyunit - units value of record.
3.4.11 matlab.io.fits.readRecord

rec = readRecord(file, recidx)
Read the keyword record at recidx.

This is the equivalent of the cfitsio fits_read_record function.

Inputs
file - opened fits file.

recidx - record number.

Outputs

rec - full keyword record

Chapter 3: Function Reference

3.4.12 matlab.io.fits.writeComment

writeComment (file, comment)
Append a comment to to the fits file.

This is the equivalent of the cfitsio fits_write_comment function.

Inputs

file - opened fits file.
comment - comment to append

Outputs

None

3.4.13 matlab.io.fits.writeDate

writeDate(file)
Write the date keyword.

This is the equivalent of the cfitsio fits_write_date function.

Inputs
file - opened fits file.

Outputs

None

3.4.14 matlab.io.fits.writeHistory
writeHistory(file, history)
Append a history to to the fits file.

This is the equivalent of the cfitsio fits_write_history function.

Inputs

file - opened fits file.
history - history string.
Outputs

None
3.4.15 matlab.io.fits.writeKey

writeKey(file, key, value)

writeKey(file, key, value, comment)

writeKey(file, key, value, comment, decimals)
Append or replace a key in the fits file.

This is the equivalent of the cfitsio fits_write_key and fits_update_key function.

Inputs

file - opened fits file.

key - keyword name.

value - keyword value.
comment - keyword comment.

decimals - number of decimals.

14

Chapter 3: Function Reference 15

Outputs

None
3.4.16 matlab.io.fits.writeKeyUnit
writeKeyUnit(file, key, unit)

Write a key unit to the fits file.

This is the equivalent of the cfitsio fits_write_key_unit function.

Inputs
file - opened fits file.

key - keyword name.

unit - keyword units as string.

Outputs

None

3.5 Low Level Image Manipulation

3.5.1 matlab.io.fits.createImg

createImg(file, bitpix, naxis)
create a new primary image or image extension.

This is the equivalent of the cfitsio fits_create_imgll function.

Inputs

file - file previously opened with openFile, openDiskFile or createFile.
bitpix - type for the data as a string in either matlab or cfitsio naming.

naxis - axis values for the image.

Outputs

None

Examples

import_fits;

fd = fits.createFile("test.fits");
fits.createImg(fd, 'int16',[10 20]);
fits.close(£fd);

3.5.2 matlab.io.fits.getImgSize

size = getImgSize(file)
Return size of a Image HDU.

This is the equivalent of the cfitsio fits_get_img_size function.

Inputs
file - opened fits file.

Outputs

size - vector containing the image dimensions.

Chapter 3: Function Reference 16

3.5.3 matlab.io.fits.getImgType

type = getImgType(file)
Return datatype of a Image HDU
This is the equivalent of the cfitsio fits_get_img_type function.
Inputs
file - opened fits file.

Outputs
type - datatype as a string for the image type.

3.5.4 matlab.io.fits.insertImg

insertImg(file, bitpix, naxis)
Insert a new primary image or image extension at current HDU position.
This is the equivalent of the cfitsio fits_insert_imgll function.
Inputs

file - file previously opened with openkFile, openDiskFile or createFile.
bitpix - type for the data as a string in either matlab or cfitsio naming.
naxis - axis values for the image.

Outputs

None

3.5.5 matlab.io.fits.readImg

data = readImg(file)
data = readImg(file, firstpix, lastpix)
data = readImg(file, firstpix, lastpix, inc)

Read Image data.
This is the equivalent of the cfitsio fits_read_subset function.

Inputs

file - opened fits file.
firstpix - first pile coordinate
lastpix - last pixel coordinate

inc - pixel increment

Outputs

data - image data read

Examples

import_fits;

filename = file_in_loadpath("demos/tst0012.fits");
fd = fits.openFile(filename);

read the image

imagedata = fits.readImg(fd);

read a 70x80 part of the image

imagedata = fits.readImg(fd, [11 11],[80 90]);
fits.closeFile(£fd);

Chapter 3: Function Reference 17

3.5.6 matlab.io.fits.setBscale

setBscale(file, bscale, bzero)
Reset bscale and bzero to be used with reading and writing Images.

This is the equivalent of the cfitsio fits_set_bscale function.

Inputs
file - opened fits file.

bscale - bscale value

bzero - bzero value

Outputs

None
3.5.7 matlab.io.fits.setTscale

setTscale(file, col, scale, zero)
Reset scale and zero to be used with reading and writing table data.

This is the equivalent of the cfitsio fits_set_tscale function.

Inputs
file - opened fits file.

col - column number
scale - scale value

zero - zero value

Outputs

None
3.5.8 matlab.io.fits.writelmg

writeImg(file, imagedata)

writeImg(file, imagedata, fpixel)
write imagedata to a FITS file. The rows and column size must match the size of NAXIS,
NAXIS etc

This is the equivalent of the cfitsio fits_write_subset function.

Inputs
file - opened fits file.
imagedata - Image data.

fpixel - start pixel to write from.

Outputs

None

Examples

Create a fits file and write a 10x10 image in the primary and image ext:
import_fits;
fd = fits.createFile("myfitsfile.fits");

Chapter 3: Function Reference

data = int16(zeros(10,10));

primary

fits.createImg(fd,class(data), size(data));
fits.writeImg(fd,data);

image ext

fits.createImg(fd,class(data), size(data));
fits.writeImg(fd,data);

close file

fits.closeFile(£fd);

3.6 Low Level Utility Functions

3.6.1 matlab.io.fits.getConstantNames

namelist = getConstantNames|()
Return the names of all known fits constants.

Inputs

None

Outputs
namelist - cell array of all known fits constant names

See also: getConstantValue.
3.6.2 matlab.io.fits.get Constant Value

value = getConstantValue(name)
Return the value of a known fits constant.

Inputs

name - name of the constant to retrieve value of.
Outputs

value - value of the constant

See also: getConstantNames.
3.6.3 matlab.io.fits.getOpenFiles

files = getOpenFiles()
Get the file handles of all open fits files.

Inputs

None

Outputs
files list of opened fits file handles.

See also: openFile.
3.6.4 matlab.io.fits.get Version

ver = getVersion()
Return the version number of the cfitsio library used.

This is the equivalent of the cfitsio fits_get_version function.

Chapter 3: Function Reference 19

Inputs
file - opened fits file.

Outputs

ver - version

3.7 Low Level Compression Functions

3.7.1 matlab.io.fits.imgCompress

imgCompress(infile, outfile)
Copy HDU and image data from one infile to another, using the outfiles compression type.
This is the equivalent of the cfitsio fits_img_compress function.
Inputs

infile - opened input fits file.
outfile - opened writable output fits file.

Outputs

None
3.7.2 matlab.io.fits.isCompressedImg

comp = isCompressedImg(file)
Return true if image is compressed.

This is the equivalent of the cfitsio fits_is_compressed_image function.

Inputs
file - opened fits file.

Outputs

comp - boolean for whether image is compressed or not.
3.7.3 matlab.io.fits.setCompressionType

setCompressionType(file, comptype)
Set compression type for writing FITS images.

This is the equivalent of the cfitsio fits_set_compression_type function.

Inputs

file - opened fits file.

comptype - compression type. Valid comptype values are: 'GZIP’, 'GZIP2’, 'RICE’, "PLIO’,
"HCOMPRESS’ or 'NOCOMPRESS’.

Outputs

None
3.7.4 matlab.io.fits.setHCompScale

setHCompScale(file, scale)
Set scale to be used with HCOMPRESS compression.

This is the equivalent of the cfitsio fits_set_hcomp_scale function.

Chapter 3: Function Reference

Inputs
file - opened fits file.

scale - scale value

Outputs

None

3.7.5 matlab.io.fits.set HCompSmooth

setHCompSmooth(file, smooth)
Set smooth value to be used with HCOMPRESS compression.

This is the equivalent of the cfitsio fits_set_hcomp_smooth function.

Inputs
file - opened fits file.

smooth - smooth value

Outputs

None

3.7.6 matlab.io.fits.setTileDim

setTileDim(file, tiledims)
Set compression tile dims for writing FITS images.

This is the equivalent of the cfitsio fits_set_tile_dim function.

Inputs
file - opened fits file.

tiledims - tile dimensions

Outputs

None

3.8 Low Level Binary and ASCII Tables

3.8.1 matlab.io.fits.createTbl

createTbl(file, tbltype, nrows, ttype, tform)

createTbl(file, tbltype, nrows, ttype, tform, tunit)

createTbl(file, tbltype, nrows, ttype, tform, tunit, extname)
Create a new ASCII or bintable extension.

This is the equivalent of the cfitsio fits_create_tbl function.

Inputs

file - opened fits file.

tbltype - table type ’binary’ or ’ascii’.
nrows - initial number of rows (normally 0)
ttype - cell array of column type

tform - cell array of column format

20

Chapter 3: Function Reference

tunit - cell array of column units
extname - optional extension name

ttype, tform, tunit are expected to be the same size.

Outputs

None

Examples

import_fits;

fd = fits.createFile("test.fits");

ttype = {'Col1l','Col2','Co0l3"','Cold'};

tform {'A9','A4"',"'A3"' , 'A8"'};

tunit {'m','s','kg', 'km'};

fits.createTbl(fd, 'binary',0,ttype,tform,tunit, 'table-name');
fits.closeFile(fd);

3.8.2 matlab.io.fits.deleteCol

deleteCol(file, colnum)
Delete a column from a table.

This is the equivalent of the cfitsio fits_delete_col function.

Inputs
file - opened fits file.

colnum - Column to delete from current table.

Outputs

None
3.8.3 matlab.io.fits.deleteRows

deleteRows(file, firstrow, numrows)
Insert a rows into a table.

This is the equivalent of the cfitsio fits_delete_rows function.

Inputs
file - opened fits file.
firstrow - Start row to delete.

numrows - Number of rows to delete.

Outputs

None
3.8.4 matlab.io.fits.get AColParms

[ttype,tbcol,tunit,tform,scale,zero,nulstr,tdisp] =
getAColParms(file, colnum)
Get ASCII table parameters.

This is the equivalent of the cfitsio fits_get_acolparms function.

21

Chapter 3: Function Reference 22

Inputs
file - opened fits file.

colnum - Column to retrieve.

Outputs

ttype,tbcol tunit,tform,scale,zero,nulstr,tdisp column information in same format as provided
by fits_get_acolparms.

3.8.5 matlab.io.fits.getBColParms

[ttype,tunit,typechar,repeat,scale,zero,nulval,tdisp] =
getBColParms(file, colnum)
Get binary table parameters.

This is the equivalent of the cfitsio fits_get_bcolparms function.

Inputs
file - opened fits file.

colnum - Column to retrieve.

Outputs

ttype,tunit,typechar,repeat,scale,zero,nulval,tdisp column information in same format as
provided by fits_get_bcolparms.

3.8.6 matlab.io.fits.getColName

[colnum, colname] = getColName(file, template)
[colnum, colname] = getColName(file, template, casesens)
Get column name.

This is the equivalent of the cfitsio fits_get_colname function.

Inputs
file - opened fits file.
template - template string for matching column name.

casesens - boolean whether to be case sensitive in match.

Outputs
colnum - column number of match.

colname - column name of match.

Examples

import_fits;

filename = file_in_loadpath("demos/tst0012.fits");
fd = fits.openFile(filename);
fits.movAbsHDU(fd,2);

[colnum, colname] = fits.getColName(fd,"Cx");

returned 3, "COUNTS"

fits.closeFile(£fd);

Chapter 3: Function Reference

3.8.7 matlab.io.fits.getColType

[dtype,repeat,width] = getColType(file, colnum)
Get column type.

This is the equivalent of the cfitsio fits_get_coltypell function.

Inputs
file - opened fits file.

colnum - Column to delete from current table.

Outputs

dtype,repeat,width - column information.
3.8.8 matlab.io.fits.get EqColType

[dtype,repeat,width] = getEqColType(file, colnum)
Get column type.

This is the equivalent of the cfitsio fits_get_eqcoltypell function.

Inputs
file - opened fits file.

colnum - Column number.

Outputs
dtype,repeat,width - column type

3.8.9 matlab.io.fits.getNumCols

ncols = getNumCols(file)
Get number of columns.

This is the equivalent of the cfitsio fits_get_num_cols function.

Inputs
file - opened fits file.

Outputs

ncols - the number of columns in the table.
3.8.10 matlab.io.fits.getNumRows

nrows = getNumRows(file)
Get number of rows.

This is the equivalent of the cfitsio fits_get_numrowsll function.

Inputs
file - opened fits file.

Outputs

nrows - the number of rows in in the current table.

23

Chapter 3: Function Reference 24

3.8.11 matlab.io.fits.getRowSize

nrows = getRowSize(file)
Get optimum number of rows to read/write at one time.

This is the equivalent of the cfitsio fits_get_rowsize function.

Inputs
file - opened fits file.

Outputs

nrows - number of rows.
3.8.12 matlab.io.fits.insert ATbl

insertATbl(file, rowlen, nrows, ttype, tbcol, tform)

insertATbl(file, rowlen, nrows, ttype, tbcol, tform, tunit)

insertATbl(file, tbltype, nrows, ttype, tbcol, tform, tunit, extname)
Insert a new ASCII table after current HDU.

This is the equivalent of the cfitsio fits_insert_atbl function.

Inputs

file - opened fits file.

rowlen - row length. If set to 0, the function will calculate size based on tbcol and ttype.
nrows - initial number of rows (normally 0)

ttype - cell array of column type

tbcol - array containing the start indices for each column.

tform - cell array of column format

tunit - cell array of column units

extname - optional extension name

Outputs

None
3.8.13 matlab.io.fits.insertBTbl

insertBTbl(file, nrows, ttype, tform, tunit, extname, pcount)
Insert a new bintable extension.

This is the equivalent of the cfitsio fits_insert_btbl function.

Inputs

file - opened fits file.

nrows - initial number of rows (normally 0)
ttype - cell array of column type

tform - cell array of column format

tunit - cell array of column units

extname - optional extension name

pcount - heap size.

ttype, tform, tunit are expected to be the same size.

Chapter 3: Function Reference 25

Outputs

None
3.8.14 matlab.io.fits.insertCol

insertCol(file, colnum, ttype, tform)
Insert a column into a table.

This is the equivalent of the cfitsio fits_insert_col function.

Inputs
file - opened fits file.

colnum - Column to delete from current table.

ttype, tform - column type to insert

Outputs

None
3.8.15 matlab.io.fits.insert Rows

insertRows(file, firstrow, numrows)
Insert rows into a table.

This is the equivalent of the cfitsio fits_insert_rows function.

Inputs
file - opened fits file.

firstrow - Start row to insert from.

numrows - Number of rows to add.

Outputs

None
3.8.16 matlab.io.fits.read ATblHdr

[rowlen,nrows, ttype,tbcol,tform,tunit,extname] = readATblHdr(file)
Get ASCII table parameters.

This is the equivalent of the cfitsio fits_read_atablhdrll function.

Inputs
file - opened fits file.

Outputs

rowlen,nrows, ttype,tbcol, tform,tunit,extname - table properties
3.8.17 matlab.io.fits.readBTblHdr

[nrows, ttype, tform, tunit,extname,pcount] = readBTblHdr(file)
Get Binary table parameters.

This is the equivalent of the cfitsio fits_read_btablhdrll function.

Inputs
file - opened fits file.

Chapter 3: Function Reference

Outputs

nrows, ttype,tform,tunit,extname,pcount] - table properties

3.8.18 matlab.io.fits.readCol

[coldata, nullval] = readCol(file, colnum)
[coldata, nullvall readCol(file, colnum, firstrow, numrows)
Get table row data.

This is the equivalent of the cfitsio fits_read_col function.

Inputs
file - opened fits file.
firstrow - Start row

numrows - Number of rows to read

Outputs
coldata - the column data rows

nulldata - the null value flags

Examples

import_fits;

open file
filename = file_in_loadpath("demos/tst0012.fits");
fd = fits.openFile(filename);

move to binary table and get column for flux
fits.movAbsHDU(fd, 2);
colnum = fits.getColName(fd, 'flux');

read all rows in column

fluxdata = fits.readCol(fd, colnum);

read data starting at 2nd value
fluxdata = fits.readCol(fd, colnum, 2);

read rows 3 rows starting at row 2
fluxdata = fits.readCol(fd, colnum, 2, 3);
fits.closeFile(fd);

3.8.19 matlab.io.fits.writeCol

writeCol(file, colnum, firstrow, data)
Write elements to a table.

This is the equivalent of the cfitsio fits_write_col function.

Inputs

file - opened fits file.
colnum - column number.
firstrow - first row number.

data - data to write to column

26

Chapter 3: Function Reference 27

Outputs

None

3.9 Import functions

3.9.1 import_fits

import_fits
Import the fits functions into a fits.xxxxx variable, to emulate importing the fits namespace.

28

Appendix A GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program—to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its authors.
You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you can
do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to
surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know their
rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

http://fsf.org/

Appendix A: GNU General Public License 29

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with
that Major Component, or to implement a Standard Interface for which an implementation
is available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or
control flow between those subprograms and other parts of the work.

Appendix A: GNU General Public License 30

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users, your
or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices of
the absence of any warranty; and give all recipients a copy of this License along with the
Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable

Appendix A: GNU General Public License 31

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts of
the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection
6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered to
the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a

Appendix A: GNU General Public License 32

consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use, the product. A product is
a consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no
case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But
this requirement does not apply if neither you nor any third party retains the ability to
install modified object code on the User Product (for example, the work has been installed
in ROM).

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been modified
or installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

Appendix A: GNU General Public License 33

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a notice
indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

Appendix A: GNU General Public License 34

10. Automatic Licensing of Downstream Recipients.

11.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that transac-
tion who receives a copy of the work also receives whatever licenses to the work the party’s
predecessor in interest had or could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (including
a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to
a party means to make such an agreement or commitment not to enforce a patent against
the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange
to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.

Appendix A: GNU General Public License 35

12.

13.

14.

15.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version
or of any later version published by the Free Software Foundation. If the Program does not
specify a version number of the GNU General Public License, you may choose any version
ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to
follow a later version.

Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”

Appendix A: GNU General Public License 36

16.

17.

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODI-
FIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in
an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

http://www.gnu.org/licenses/

Appendix A: GNU General Public License 37

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read http://www.gnu.
org/philosophy/why-not-1gpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

Index

B

Basic Usage Overviewc.oovviiiiineann... 2

C

closeFile. 5
copyHDU ... o 8
copyrighto 28
createFile 5
createlmg oo 15
createThl.. 20

D

deleteCol. ... 21
deleteFile. 6
deleteHDU 8
deleteKey 11
deleteRecord 11
deleteROWS 21

F

fileMode. ... 6
fAleName 6
ESAISP « e 3
fitsinfoo 3
fitsread 4
AtSwWrite 4
Function Reference 3

G

getACoIParms. ..ot 21
getBColParms. ... 22
getColNamet 22
getColType . ..o 23
getConstantNamescooviiiineiinn... 18
getConstantValueooiiii .. 18
getEqColType. ... 23
getHdrSpace ... 11
getHDUnum...... oo 8
getHDUoff. ... o 9
getHDUtype. ..o 9
getlmgSize 15
getImgType.......oo i 16
getNumCols. ... 23
getNumHDUs ... 9
getNumRows........o i 23
getOpenFiles...........oo i 18
getRowSize........ o o 24
getVersion............oo i 18

H

High Level File Functions.......................... 3

38

I

IMECOMPTESS . . oo e et e 19
Import functions i 27
import _fitso 27
insert ATbl 24
insertBTbl ... 24
insertCol 25
insertImg. 16
insertROWSt 25
Installing and loading.............................. 1
isCompressedImg.......... ... il 19

L

Loading ... 1
Low Level Binary and ASCII Tables.............. 20
Low Level Compression Functions 19
Low Level File Functions 5
Low level functionality............. 2
Low Level HDU Functions......................... 7
Low Level Image Manipulation 15
Low Level Keyword Functions 11
Low Level Utility Functions 18

M

movAbsHDU 9
movNamHDU 10
movRelHDU 10

(@)

Off-lineinstall 1
Onlineinstall..........., 1
openDiskFile oo i 7
openFile. 7
OVeIVIEW . . oot 2

R

readATDbIHdr. ... o 25
readBTblHdr.............o o i 25
readCard.o 11
readCol ... 26
readlmg. 16
Reading Data ... 2
Reading Information................ ...t 2
readKey 12
readKeyCmplx 12
readKeyDbl...... .. .o 12
readKeyLonglong............ 12
readKeyLongStr........... ..., 13
readKeyUnit ... i 13
readRecord......... ... i i 13

Index

S

setBscale..........oooiiiiii i 17
setCompressionType.......... ... oot 19
setHCompScale..............oo .. 19
setHCompSmooth 20
setTileDim ... 20
setTscale. ... 17

U

Using the toolkit il 2

39
W
warranty ... 28
Windows install 1
writeChecksum 10
WIIteCOol. .. 26
writeComment 14
writeDate 14
writeHistory....... 14
writelmg ... 17
writeKey ... o 14
writeKeyUnit...... ... oo 15

	1 Installing and loading
	Windows install
	Online Direct install
	Off-line install
	Loading

	2 Basic Usage Overview
	Overview
	Using the toolkit
	Reading Data
	Reading Information
	Low level functionality

	3 Function Reference
	High Level File Functions
	fitsdisp
	fitsinfo
	fitsread
	fitswrite

	Low Level File Functions
	matlab.io.fits.closeFile
	matlab.io.fits.createFile
	matlab.io.fits.deleteFile
	matlab.io.fits.fileMode
	matlab.io.fits.fileName
	matlab.io.fits.openDiskFile
	matlab.io.fits.openFile

	Low Level HDU Functions
	matlab.io.fits.copyHDU
	matlab.io.fits.deleteHDU
	matlab.io.fits.getHDUnum
	matlab.io.fits.getHDUoff
	matlab.io.fits.getHDUtype
	matlab.io.fits.getNumHDUs
	matlab.io.fits.movAbsHDU
	matlab.io.fits.movNamHDU
	matlab.io.fits.movRelHDU
	matlab.io.fits.writeChecksum

	Low Level Keyword Functions
	matlab.io.fits.deleteKey
	matlab.io.fits.deleteRecord
	matlab.io.fits.getHdrSpace
	matlab.io.fits.readCard
	matlab.io.fits.readKey
	matlab.io.fits.readKeyCmplx
	matlab.io.fits.readKeyDbl
	matlab.io.fits.readKeyLongLong
	matlab.io.fits.readKeyLongStr
	matlab.io.fits.readKeyUnit
	matlab.io.fits.readRecord
	matlab.io.fits.writeComment
	matlab.io.fits.writeDate
	matlab.io.fits.writeHistory
	matlab.io.fits.writeKey
	matlab.io.fits.writeKeyUnit

	Low Level Image Manipulation
	matlab.io.fits.createImg
	matlab.io.fits.getImgSize
	matlab.io.fits.getImgType
	matlab.io.fits.insertImg
	matlab.io.fits.readImg
	matlab.io.fits.setBscale
	matlab.io.fits.setTscale
	matlab.io.fits.writeImg

	Low Level Utility Functions
	matlab.io.fits.getConstantNames
	matlab.io.fits.getConstantValue
	matlab.io.fits.getOpenFiles
	matlab.io.fits.getVersion

	Low Level Compression Functions
	matlab.io.fits.imgCompress
	matlab.io.fits.isCompressedImg
	matlab.io.fits.setCompressionType
	matlab.io.fits.setHCompScale
	matlab.io.fits.setHCompSmooth
	matlab.io.fits.setTileDim

	Low Level Binary and ASCII Tables
	matlab.io.fits.createTbl
	matlab.io.fits.deleteCol
	matlab.io.fits.deleteRows
	matlab.io.fits.getAColParms
	matlab.io.fits.getBColParms
	matlab.io.fits.getColName
	matlab.io.fits.getColType
	matlab.io.fits.getEqColType
	matlab.io.fits.getNumCols
	matlab.io.fits.getNumRows
	matlab.io.fits.getRowSize
	matlab.io.fits.insertATbl
	matlab.io.fits.insertBTbl
	matlab.io.fits.insertCol
	matlab.io.fits.insertRows
	matlab.io.fits.readATblHdr
	matlab.io.fits.readBTblHdr
	matlab.io.fits.readCol
	matlab.io.fits.writeCol

	Import functions
	import_fits

	A GNU General Public License
	Index

