Ruby 1.9.3p327(2012-11-10revision37606)
|
00001 /* 00002 * $Id: ossl_pkey_rsa.c 32199 2011-06-22 08:41:08Z emboss $ 00003 * 'OpenSSL for Ruby' project 00004 * Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz> 00005 * All rights reserved. 00006 */ 00007 /* 00008 * This program is licenced under the same licence as Ruby. 00009 * (See the file 'LICENCE'.) 00010 */ 00011 #if !defined(OPENSSL_NO_RSA) 00012 00013 #include "ossl.h" 00014 00015 #define GetPKeyRSA(obj, pkey) do { \ 00016 GetPKey((obj), (pkey)); \ 00017 if (EVP_PKEY_type((pkey)->type) != EVP_PKEY_RSA) { /* PARANOIA? */ \ 00018 ossl_raise(rb_eRuntimeError, "THIS IS NOT A RSA!") ; \ 00019 } \ 00020 } while (0) 00021 00022 #define RSA_HAS_PRIVATE(rsa) ((rsa)->p && (rsa)->q) 00023 #define RSA_PRIVATE(obj,rsa) (RSA_HAS_PRIVATE(rsa)||OSSL_PKEY_IS_PRIVATE(obj)) 00024 00025 /* 00026 * Classes 00027 */ 00028 VALUE cRSA; 00029 VALUE eRSAError; 00030 00031 /* 00032 * Public 00033 */ 00034 static VALUE 00035 rsa_instance(VALUE klass, RSA *rsa) 00036 { 00037 EVP_PKEY *pkey; 00038 VALUE obj; 00039 00040 if (!rsa) { 00041 return Qfalse; 00042 } 00043 if (!(pkey = EVP_PKEY_new())) { 00044 return Qfalse; 00045 } 00046 if (!EVP_PKEY_assign_RSA(pkey, rsa)) { 00047 EVP_PKEY_free(pkey); 00048 return Qfalse; 00049 } 00050 WrapPKey(klass, obj, pkey); 00051 00052 return obj; 00053 } 00054 00055 VALUE 00056 ossl_rsa_new(EVP_PKEY *pkey) 00057 { 00058 VALUE obj; 00059 00060 if (!pkey) { 00061 obj = rsa_instance(cRSA, RSA_new()); 00062 } 00063 else { 00064 if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { 00065 ossl_raise(rb_eTypeError, "Not a RSA key!"); 00066 } 00067 WrapPKey(cRSA, obj, pkey); 00068 } 00069 if (obj == Qfalse) { 00070 ossl_raise(eRSAError, NULL); 00071 } 00072 00073 return obj; 00074 } 00075 00076 /* 00077 * Private 00078 */ 00079 static RSA * 00080 rsa_generate(int size, int exp) 00081 { 00082 return RSA_generate_key(size, exp, 00083 rb_block_given_p() ? ossl_generate_cb : NULL, 00084 NULL); 00085 } 00086 00087 /* 00088 * call-seq: 00089 * RSA.generate(size) => RSA instance 00090 * RSA.generate(size, exponent) => RSA instance 00091 * 00092 * Generates an RSA keypair. +size+ is an integer representing the desired key 00093 * size. Keys smaller than 1024 should be considered insecure. +exponent+ is 00094 * an odd number normally 3, 17, or 65537. 00095 */ 00096 static VALUE 00097 ossl_rsa_s_generate(int argc, VALUE *argv, VALUE klass) 00098 { 00099 /* why does this method exist? why can't initialize take an optional exponent? */ 00100 RSA *rsa; 00101 VALUE size, exp; 00102 VALUE obj; 00103 00104 rb_scan_args(argc, argv, "11", &size, &exp); 00105 00106 rsa = rsa_generate(NUM2INT(size), NIL_P(exp) ? RSA_F4 : NUM2INT(exp)); /* err handled by rsa_instance */ 00107 obj = rsa_instance(klass, rsa); 00108 00109 if (obj == Qfalse) { 00110 RSA_free(rsa); 00111 ossl_raise(eRSAError, NULL); 00112 } 00113 00114 return obj; 00115 } 00116 00117 /* 00118 * call-seq: 00119 * RSA.new(key_size) => RSA instance 00120 * RSA.new(encoded_key) => RSA instance 00121 * RSA.new(encoded_key, pass_phrase) => RSA instance 00122 * 00123 * Generates or loads an RSA keypair. If an integer +key_size+ is given it 00124 * represents the desired key size. Keys less than 1024 bits should be 00125 * considered insecure. 00126 * 00127 * A key can instead be loaded from an +encoded_key+ which must be PEM or DER 00128 * encoded. A +pass_phrase+ can be used to decrypt the key. If none is given 00129 * OpenSSL will prompt for the pass phrase. 00130 * 00131 * = Examples 00132 * 00133 * OpenSSL::PKey::RSA.new 2048 00134 * OpenSSL::PKey::RSA.new File.read 'rsa.pem' 00135 * OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase' 00136 */ 00137 static VALUE 00138 ossl_rsa_initialize(int argc, VALUE *argv, VALUE self) 00139 { 00140 EVP_PKEY *pkey; 00141 RSA *rsa; 00142 BIO *in; 00143 char *passwd = NULL; 00144 VALUE arg, pass; 00145 00146 GetPKey(self, pkey); 00147 if(rb_scan_args(argc, argv, "02", &arg, &pass) == 0) { 00148 rsa = RSA_new(); 00149 } 00150 else if (FIXNUM_P(arg)) { 00151 rsa = rsa_generate(FIX2INT(arg), NIL_P(pass) ? RSA_F4 : NUM2INT(pass)); 00152 if (!rsa) ossl_raise(eRSAError, NULL); 00153 } 00154 else { 00155 if (!NIL_P(pass)) passwd = StringValuePtr(pass); 00156 arg = ossl_to_der_if_possible(arg); 00157 in = ossl_obj2bio(arg); 00158 rsa = PEM_read_bio_RSAPrivateKey(in, NULL, ossl_pem_passwd_cb, passwd); 00159 if (!rsa) { 00160 OSSL_BIO_reset(in); 00161 rsa = PEM_read_bio_RSA_PUBKEY(in, NULL, NULL, NULL); 00162 } 00163 if (!rsa) { 00164 OSSL_BIO_reset(in); 00165 rsa = d2i_RSAPrivateKey_bio(in, NULL); 00166 } 00167 if (!rsa) { 00168 OSSL_BIO_reset(in); 00169 rsa = d2i_RSA_PUBKEY_bio(in, NULL); 00170 } 00171 if (!rsa) { 00172 OSSL_BIO_reset(in); 00173 rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL); 00174 } 00175 if (!rsa) { 00176 OSSL_BIO_reset(in); 00177 rsa = d2i_RSAPublicKey_bio(in, NULL); 00178 } 00179 BIO_free(in); 00180 if (!rsa) { 00181 ossl_raise(eRSAError, "Neither PUB key nor PRIV key:"); 00182 } 00183 } 00184 if (!EVP_PKEY_assign_RSA(pkey, rsa)) { 00185 RSA_free(rsa); 00186 ossl_raise(eRSAError, NULL); 00187 } 00188 00189 return self; 00190 } 00191 00192 /* 00193 * call-seq: 00194 * rsa.public? => true 00195 * 00196 * The return value is always true since every private key is also a public 00197 * key. 00198 */ 00199 static VALUE 00200 ossl_rsa_is_public(VALUE self) 00201 { 00202 EVP_PKEY *pkey; 00203 00204 GetPKeyRSA(self, pkey); 00205 /* 00206 * This method should check for n and e. BUG. 00207 */ 00208 return Qtrue; 00209 } 00210 00211 /* 00212 * call-seq: 00213 * rsa.private? => true | false 00214 * 00215 * Does this keypair contain a private key? 00216 */ 00217 static VALUE 00218 ossl_rsa_is_private(VALUE self) 00219 { 00220 EVP_PKEY *pkey; 00221 00222 GetPKeyRSA(self, pkey); 00223 00224 return (RSA_PRIVATE(self, pkey->pkey.rsa)) ? Qtrue : Qfalse; 00225 } 00226 00227 /* 00228 * call-seq: 00229 * rsa.to_pem => PEM-format String 00230 * rsa.to_pem(cipher, pass_phrase) => PEM-format String 00231 * 00232 * Outputs this keypair in PEM encoding. If +cipher+ and +pass_phrase+ are 00233 * given they will be used to encrypt the key. +cipher+ must be an 00234 * OpenSSL::Cipher::Cipher instance. 00235 */ 00236 static VALUE 00237 ossl_rsa_export(int argc, VALUE *argv, VALUE self) 00238 { 00239 EVP_PKEY *pkey; 00240 BIO *out; 00241 const EVP_CIPHER *ciph = NULL; 00242 char *passwd = NULL; 00243 VALUE cipher, pass, str; 00244 00245 GetPKeyRSA(self, pkey); 00246 00247 rb_scan_args(argc, argv, "02", &cipher, &pass); 00248 00249 if (!NIL_P(cipher)) { 00250 ciph = GetCipherPtr(cipher); 00251 if (!NIL_P(pass)) { 00252 passwd = StringValuePtr(pass); 00253 } 00254 } 00255 if (!(out = BIO_new(BIO_s_mem()))) { 00256 ossl_raise(eRSAError, NULL); 00257 } 00258 if (RSA_HAS_PRIVATE(pkey->pkey.rsa)) { 00259 if (!PEM_write_bio_RSAPrivateKey(out, pkey->pkey.rsa, ciph, 00260 NULL, 0, ossl_pem_passwd_cb, passwd)) { 00261 BIO_free(out); 00262 ossl_raise(eRSAError, NULL); 00263 } 00264 } else { 00265 if (!PEM_write_bio_RSA_PUBKEY(out, pkey->pkey.rsa)) { 00266 BIO_free(out); 00267 ossl_raise(eRSAError, NULL); 00268 } 00269 } 00270 str = ossl_membio2str(out); 00271 00272 return str; 00273 } 00274 00275 /* 00276 * call-seq: 00277 * rsa.to_der => DER-format String 00278 * 00279 * Outputs this keypair in DER encoding. 00280 */ 00281 static VALUE 00282 ossl_rsa_to_der(VALUE self) 00283 { 00284 EVP_PKEY *pkey; 00285 int (*i2d_func)_((const RSA*, unsigned char**)); 00286 unsigned char *p; 00287 long len; 00288 VALUE str; 00289 00290 GetPKeyRSA(self, pkey); 00291 if(RSA_HAS_PRIVATE(pkey->pkey.rsa)) 00292 i2d_func = i2d_RSAPrivateKey; 00293 else 00294 i2d_func = (int (*)(const RSA*, unsigned char**))i2d_RSA_PUBKEY; 00295 if((len = i2d_func(pkey->pkey.rsa, NULL)) <= 0) 00296 ossl_raise(eRSAError, NULL); 00297 str = rb_str_new(0, len); 00298 p = (unsigned char *)RSTRING_PTR(str); 00299 if(i2d_func(pkey->pkey.rsa, &p) < 0) 00300 ossl_raise(eRSAError, NULL); 00301 ossl_str_adjust(str, p); 00302 00303 return str; 00304 } 00305 00306 #define ossl_rsa_buf_size(pkey) (RSA_size((pkey)->pkey.rsa)+16) 00307 00308 /* 00309 * call-seq: 00310 * rsa.public_encrypt(string) => String 00311 * rsa.public_encrypt(string, padding) => String 00312 * 00313 * Encrypt +string+ with the public key. +padding+ defaults to PKCS1_PADDING. 00314 * The encrypted string output can be decrypted using #private_decrypt. 00315 */ 00316 static VALUE 00317 ossl_rsa_public_encrypt(int argc, VALUE *argv, VALUE self) 00318 { 00319 EVP_PKEY *pkey; 00320 int buf_len, pad; 00321 VALUE str, buffer, padding; 00322 00323 GetPKeyRSA(self, pkey); 00324 rb_scan_args(argc, argv, "11", &buffer, &padding); 00325 pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); 00326 StringValue(buffer); 00327 str = rb_str_new(0, ossl_rsa_buf_size(pkey)); 00328 buf_len = RSA_public_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), 00329 (unsigned char *)RSTRING_PTR(str), pkey->pkey.rsa, 00330 pad); 00331 if (buf_len < 0) ossl_raise(eRSAError, NULL); 00332 rb_str_set_len(str, buf_len); 00333 00334 return str; 00335 } 00336 00337 /* 00338 * call-seq: 00339 * rsa.public_decrypt(string) => String 00340 * rsa.public_decrypt(string, padding) => String 00341 * 00342 * Decrypt +string+, which has been encrypted with the private key, with the 00343 * public key. +padding+ defaults to PKCS1_PADDING. 00344 */ 00345 static VALUE 00346 ossl_rsa_public_decrypt(int argc, VALUE *argv, VALUE self) 00347 { 00348 EVP_PKEY *pkey; 00349 int buf_len, pad; 00350 VALUE str, buffer, padding; 00351 00352 GetPKeyRSA(self, pkey); 00353 rb_scan_args(argc, argv, "11", &buffer, &padding); 00354 pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); 00355 StringValue(buffer); 00356 str = rb_str_new(0, ossl_rsa_buf_size(pkey)); 00357 buf_len = RSA_public_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), 00358 (unsigned char *)RSTRING_PTR(str), pkey->pkey.rsa, 00359 pad); 00360 if (buf_len < 0) ossl_raise(eRSAError, NULL); 00361 rb_str_set_len(str, buf_len); 00362 00363 return str; 00364 } 00365 00366 /* 00367 * call-seq: 00368 * rsa.private_encrypt(string) => String 00369 * rsa.private_encrypt(string, padding) => String 00370 * 00371 * Encrypt +string+ with the private key. +padding+ defaults to PKCS1_PADDING. 00372 * The encrypted string output can be decrypted using #public_decrypt. 00373 */ 00374 static VALUE 00375 ossl_rsa_private_encrypt(int argc, VALUE *argv, VALUE self) 00376 { 00377 EVP_PKEY *pkey; 00378 int buf_len, pad; 00379 VALUE str, buffer, padding; 00380 00381 GetPKeyRSA(self, pkey); 00382 if (!RSA_PRIVATE(self, pkey->pkey.rsa)) { 00383 ossl_raise(eRSAError, "private key needed."); 00384 } 00385 rb_scan_args(argc, argv, "11", &buffer, &padding); 00386 pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); 00387 StringValue(buffer); 00388 str = rb_str_new(0, ossl_rsa_buf_size(pkey)); 00389 buf_len = RSA_private_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), 00390 (unsigned char *)RSTRING_PTR(str), pkey->pkey.rsa, 00391 pad); 00392 if (buf_len < 0) ossl_raise(eRSAError, NULL); 00393 rb_str_set_len(str, buf_len); 00394 00395 return str; 00396 } 00397 00398 /* 00399 * call-seq: 00400 * rsa.private_decrypt(string) => String 00401 * rsa.private_decrypt(string, padding) => String 00402 * 00403 * Decrypt +string+, which has been encrypted with the public key, with the 00404 * private key. +padding+ defaults to PKCS1_PADDING. 00405 */ 00406 static VALUE 00407 ossl_rsa_private_decrypt(int argc, VALUE *argv, VALUE self) 00408 { 00409 EVP_PKEY *pkey; 00410 int buf_len, pad; 00411 VALUE str, buffer, padding; 00412 00413 GetPKeyRSA(self, pkey); 00414 if (!RSA_PRIVATE(self, pkey->pkey.rsa)) { 00415 ossl_raise(eRSAError, "private key needed."); 00416 } 00417 rb_scan_args(argc, argv, "11", &buffer, &padding); 00418 pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); 00419 StringValue(buffer); 00420 str = rb_str_new(0, ossl_rsa_buf_size(pkey)); 00421 buf_len = RSA_private_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), 00422 (unsigned char *)RSTRING_PTR(str), pkey->pkey.rsa, 00423 pad); 00424 if (buf_len < 0) ossl_raise(eRSAError, NULL); 00425 rb_str_set_len(str, buf_len); 00426 00427 return str; 00428 } 00429 00430 /* 00431 * call-seq: 00432 * rsa.params => hash 00433 * 00434 * THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!! 00435 * 00436 * Stores all parameters of key to the hash. The hash has keys 'n', 'e', 'd', 00437 * 'p', 'q', 'dmp1', 'dmq1', 'iqmp'. 00438 * 00439 * Don't use :-)) (It's up to you) 00440 */ 00441 static VALUE 00442 ossl_rsa_get_params(VALUE self) 00443 { 00444 EVP_PKEY *pkey; 00445 VALUE hash; 00446 00447 GetPKeyRSA(self, pkey); 00448 00449 hash = rb_hash_new(); 00450 00451 rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(pkey->pkey.rsa->n)); 00452 rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(pkey->pkey.rsa->e)); 00453 rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(pkey->pkey.rsa->d)); 00454 rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(pkey->pkey.rsa->p)); 00455 rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(pkey->pkey.rsa->q)); 00456 rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(pkey->pkey.rsa->dmp1)); 00457 rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(pkey->pkey.rsa->dmq1)); 00458 rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(pkey->pkey.rsa->iqmp)); 00459 00460 return hash; 00461 } 00462 00463 /* 00464 * call-seq: 00465 * rsa.to_text => String 00466 * 00467 * THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!! 00468 * 00469 * Dumps all parameters of a keypair to a String 00470 * 00471 * Don't use :-)) (It's up to you) 00472 */ 00473 static VALUE 00474 ossl_rsa_to_text(VALUE self) 00475 { 00476 EVP_PKEY *pkey; 00477 BIO *out; 00478 VALUE str; 00479 00480 GetPKeyRSA(self, pkey); 00481 if (!(out = BIO_new(BIO_s_mem()))) { 00482 ossl_raise(eRSAError, NULL); 00483 } 00484 if (!RSA_print(out, pkey->pkey.rsa, 0)) { /* offset = 0 */ 00485 BIO_free(out); 00486 ossl_raise(eRSAError, NULL); 00487 } 00488 str = ossl_membio2str(out); 00489 00490 return str; 00491 } 00492 00493 /* 00494 * call-seq: 00495 * rsa.public_key -> RSA 00496 * 00497 * Makes new RSA instance containing the public key from the private key. 00498 */ 00499 static VALUE 00500 ossl_rsa_to_public_key(VALUE self) 00501 { 00502 EVP_PKEY *pkey; 00503 RSA *rsa; 00504 VALUE obj; 00505 00506 GetPKeyRSA(self, pkey); 00507 /* err check performed by rsa_instance */ 00508 rsa = RSAPublicKey_dup(pkey->pkey.rsa); 00509 obj = rsa_instance(CLASS_OF(self), rsa); 00510 if (obj == Qfalse) { 00511 RSA_free(rsa); 00512 ossl_raise(eRSAError, NULL); 00513 } 00514 return obj; 00515 } 00516 00517 /* 00518 * TODO: Test me 00519 00520 static VALUE 00521 ossl_rsa_blinding_on(VALUE self) 00522 { 00523 EVP_PKEY *pkey; 00524 00525 GetPKeyRSA(self, pkey); 00526 00527 if (RSA_blinding_on(pkey->pkey.rsa, ossl_bn_ctx) != 1) { 00528 ossl_raise(eRSAError, NULL); 00529 } 00530 return self; 00531 } 00532 00533 static VALUE 00534 ossl_rsa_blinding_off(VALUE self) 00535 { 00536 EVP_PKEY *pkey; 00537 00538 GetPKeyRSA(self, pkey); 00539 RSA_blinding_off(pkey->pkey.rsa); 00540 00541 return self; 00542 } 00543 */ 00544 00545 OSSL_PKEY_BN(rsa, n) 00546 OSSL_PKEY_BN(rsa, e) 00547 OSSL_PKEY_BN(rsa, d) 00548 OSSL_PKEY_BN(rsa, p) 00549 OSSL_PKEY_BN(rsa, q) 00550 OSSL_PKEY_BN(rsa, dmp1) 00551 OSSL_PKEY_BN(rsa, dmq1) 00552 OSSL_PKEY_BN(rsa, iqmp) 00553 00554 /* 00555 * INIT 00556 */ 00557 #define DefRSAConst(x) rb_define_const(cRSA, #x,INT2FIX(RSA_##x)) 00558 00559 void 00560 Init_ossl_rsa() 00561 { 00562 #if 0 00563 mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL and mPKey */ 00564 mPKey = rb_define_module_under(mOSSL, "PKey"); 00565 #endif 00566 00567 /* Document-class: OpenSSL::PKey::RSAError 00568 * 00569 * Generic exception that is raised if an operation on an RSA PKey 00570 * fails unexpectedly or in case an instantiation of an instance of RSA 00571 * fails due to non-conformant input data. 00572 */ 00573 eRSAError = rb_define_class_under(mPKey, "RSAError", ePKeyError); 00574 00575 /* Document-class: OpenSSL::PKey::RSA 00576 * 00577 * RSA is an asymmetric public key algorithm that has been formalized in 00578 * RFC 3447. It is in widespread use in public key infrastuctures (PKI) 00579 * where certificates (cf. OpenSSL::X509::Certificate) often are issued 00580 * on the basis of a public/private RSA key pair. RSA is used in a wide 00581 * field of applications such as secure (symmetric) key exchange, e.g. 00582 * when establishing a secure TLS/SSL connection. It is also used in 00583 * various digital signature schemes. 00584 */ 00585 cRSA = rb_define_class_under(mPKey, "RSA", cPKey); 00586 00587 rb_define_singleton_method(cRSA, "generate", ossl_rsa_s_generate, -1); 00588 rb_define_method(cRSA, "initialize", ossl_rsa_initialize, -1); 00589 00590 rb_define_method(cRSA, "public?", ossl_rsa_is_public, 0); 00591 rb_define_method(cRSA, "private?", ossl_rsa_is_private, 0); 00592 rb_define_method(cRSA, "to_text", ossl_rsa_to_text, 0); 00593 rb_define_method(cRSA, "export", ossl_rsa_export, -1); 00594 rb_define_alias(cRSA, "to_pem", "export"); 00595 rb_define_alias(cRSA, "to_s", "export"); 00596 rb_define_method(cRSA, "to_der", ossl_rsa_to_der, 0); 00597 rb_define_method(cRSA, "public_key", ossl_rsa_to_public_key, 0); 00598 rb_define_method(cRSA, "public_encrypt", ossl_rsa_public_encrypt, -1); 00599 rb_define_method(cRSA, "public_decrypt", ossl_rsa_public_decrypt, -1); 00600 rb_define_method(cRSA, "private_encrypt", ossl_rsa_private_encrypt, -1); 00601 rb_define_method(cRSA, "private_decrypt", ossl_rsa_private_decrypt, -1); 00602 00603 DEF_OSSL_PKEY_BN(cRSA, rsa, n); 00604 DEF_OSSL_PKEY_BN(cRSA, rsa, e); 00605 DEF_OSSL_PKEY_BN(cRSA, rsa, d); 00606 DEF_OSSL_PKEY_BN(cRSA, rsa, p); 00607 DEF_OSSL_PKEY_BN(cRSA, rsa, q); 00608 DEF_OSSL_PKEY_BN(cRSA, rsa, dmp1); 00609 DEF_OSSL_PKEY_BN(cRSA, rsa, dmq1); 00610 DEF_OSSL_PKEY_BN(cRSA, rsa, iqmp); 00611 00612 rb_define_method(cRSA, "params", ossl_rsa_get_params, 0); 00613 00614 DefRSAConst(PKCS1_PADDING); 00615 DefRSAConst(SSLV23_PADDING); 00616 DefRSAConst(NO_PADDING); 00617 DefRSAConst(PKCS1_OAEP_PADDING); 00618 00619 /* 00620 * TODO: Test it 00621 rb_define_method(cRSA, "blinding_on!", ossl_rsa_blinding_on, 0); 00622 rb_define_method(cRSA, "blinding_off!", ossl_rsa_blinding_off, 0); 00623 */ 00624 } 00625 00626 #else /* defined NO_RSA */ 00627 void 00628 Init_ossl_rsa() 00629 { 00630 } 00631 #endif /* NO_RSA */ 00632 00633