Ruby 1.9.3p327(2012-11-10revision37606)
object.c
Go to the documentation of this file.
00001 /**********************************************************************
00002 
00003   object.c -
00004 
00005   $Author: naruse $
00006   created at: Thu Jul 15 12:01:24 JST 1993
00007 
00008   Copyright (C) 1993-2007 Yukihiro Matsumoto
00009   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
00010   Copyright (C) 2000  Information-technology Promotion Agency, Japan
00011 
00012 **********************************************************************/
00013 
00014 #include "ruby/ruby.h"
00015 #include "ruby/st.h"
00016 #include "ruby/util.h"
00017 #include <stdio.h>
00018 #include <errno.h>
00019 #include <ctype.h>
00020 #include <math.h>
00021 #include <float.h>
00022 #include "constant.h"
00023 #include "internal.h"
00024 
00025 VALUE rb_cBasicObject;
00026 VALUE rb_mKernel;
00027 VALUE rb_cObject;
00028 VALUE rb_cModule;
00029 VALUE rb_cClass;
00030 VALUE rb_cData;
00031 
00032 VALUE rb_cNilClass;
00033 VALUE rb_cTrueClass;
00034 VALUE rb_cFalseClass;
00035 
00036 static ID id_eq, id_eql, id_match, id_inspect;
00037 static ID id_init_copy, id_init_clone, id_init_dup;
00038 
00039 /*
00040  *  call-seq:
00041  *     obj === other   -> true or false
00042  *
00043  *  Case Equality---For class <code>Object</code>, effectively the same
00044  *  as calling  <code>#==</code>, but typically overridden by descendants
00045  *  to provide meaningful semantics in <code>case</code> statements.
00046  */
00047 
00048 VALUE
00049 rb_equal(VALUE obj1, VALUE obj2)
00050 {
00051     VALUE result;
00052 
00053     if (obj1 == obj2) return Qtrue;
00054     result = rb_funcall(obj1, id_eq, 1, obj2);
00055     if (RTEST(result)) return Qtrue;
00056     return Qfalse;
00057 }
00058 
00059 int
00060 rb_eql(VALUE obj1, VALUE obj2)
00061 {
00062     return RTEST(rb_funcall(obj1, id_eql, 1, obj2));
00063 }
00064 
00065 /*
00066  *  call-seq:
00067  *     obj == other        -> true or false
00068  *     obj.equal?(other)   -> true or false
00069  *     obj.eql?(other)     -> true or false
00070  *
00071  *  Equality---At the <code>Object</code> level, <code>==</code> returns
00072  *  <code>true</code> only if <i>obj</i> and <i>other</i> are the
00073  *  same object. Typically, this method is overridden in descendant
00074  *  classes to provide class-specific meaning.
00075  *
00076  *  Unlike <code>==</code>, the <code>equal?</code> method should never be
00077  *  overridden by subclasses: it is used to determine object identity
00078  *  (that is, <code>a.equal?(b)</code> iff <code>a</code> is the same
00079  *  object as <code>b</code>).
00080  *
00081  *  The <code>eql?</code> method returns <code>true</code> if
00082  *  <i>obj</i> and <i>anObject</i> have the same value. Used by
00083  *  <code>Hash</code> to test members for equality.  For objects of
00084  *  class <code>Object</code>, <code>eql?</code> is synonymous with
00085  *  <code>==</code>. Subclasses normally continue this tradition, but
00086  *  there are exceptions. <code>Numeric</code> types, for example,
00087  *  perform type conversion across <code>==</code>, but not across
00088  *  <code>eql?</code>, so:
00089  *
00090  *     1 == 1.0     #=> true
00091  *     1.eql? 1.0   #=> false
00092  */
00093 
00094 VALUE
00095 rb_obj_equal(VALUE obj1, VALUE obj2)
00096 {
00097     if (obj1 == obj2) return Qtrue;
00098     return Qfalse;
00099 }
00100 
00101 /*
00102  * Generates a <code>Fixnum</code> hash value for this object.
00103  * This function must have the property that a.eql?(b) implies
00104  * a.hash <code>==</code> b.hash.
00105  * The hash value is used by class <code>Hash</code>.
00106  * Any hash value that exceeds the capacity of a <code>Fixnum</code> will be
00107  * truncated before being used.
00108  *
00109  *      "waffle".hash #=> -910576647
00110  */
00111 VALUE
00112 rb_obj_hash(VALUE obj)
00113 {
00114     VALUE oid = rb_obj_id(obj);
00115     st_index_t h = rb_hash_end(rb_hash_start(NUM2LONG(oid)));
00116     return LONG2FIX(h);
00117 }
00118 
00119 /*
00120  *  call-seq:
00121  *     !obj    -> true or false
00122  *
00123  *  Boolean negate.
00124  */
00125 
00126 VALUE
00127 rb_obj_not(VALUE obj)
00128 {
00129     return RTEST(obj) ? Qfalse : Qtrue;
00130 }
00131 
00132 /*
00133  *  call-seq:
00134  *     obj != other        -> true or false
00135  *
00136  *  Returns true if two objects are not-equal, otherwise false.
00137  */
00138 
00139 VALUE
00140 rb_obj_not_equal(VALUE obj1, VALUE obj2)
00141 {
00142     VALUE result = rb_funcall(obj1, id_eq, 1, obj2);
00143     return RTEST(result) ? Qfalse : Qtrue;
00144 }
00145 
00146 VALUE
00147 rb_class_real(VALUE cl)
00148 {
00149     if (cl == 0)
00150         return 0;
00151     while ((RBASIC(cl)->flags & FL_SINGLETON) || BUILTIN_TYPE(cl) == T_ICLASS) {
00152         cl = RCLASS_SUPER(cl);
00153     }
00154     return cl;
00155 }
00156 
00157 /*
00158  *  call-seq:
00159  *     obj.class    -> class
00160  *
00161  *  Returns the class of <i>obj</i>. This method must always be
00162  *  called with an explicit receiver, as <code>class</code> is also a
00163  *  reserved word in Ruby.
00164  *
00165  *     1.class      #=> Fixnum
00166  *     self.class   #=> Object
00167  */
00168 
00169 VALUE
00170 rb_obj_class(VALUE obj)
00171 {
00172     return rb_class_real(CLASS_OF(obj));
00173 }
00174 
00175 /*
00176  *  call-seq:
00177  *     obj.singleton_class    -> class
00178  *
00179  *  Returns the singleton class of <i>obj</i>.  This method creates
00180  *  a new singleton class if <i>obj</i> does not have it.
00181  *
00182  *  If <i>obj</i> is <code>nil</code>, <code>true</code>, or
00183  *  <code>false</code>, it returns NilClass, TrueClass, or FalseClass,
00184  *  respectively.
00185  *  If <i>obj</i> is a Fixnum or a Symbol, it raises a TypeError.
00186  *
00187  *     Object.new.singleton_class  #=> #<Class:#<Object:0xb7ce1e24>>
00188  *     String.singleton_class      #=> #<Class:String>
00189  *     nil.singleton_class         #=> NilClass
00190  */
00191 
00192 static VALUE
00193 rb_obj_singleton_class(VALUE obj)
00194 {
00195     return rb_singleton_class(obj);
00196 }
00197 
00198 static void
00199 init_copy(VALUE dest, VALUE obj)
00200 {
00201     if (OBJ_FROZEN(dest)) {
00202         rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest));
00203     }
00204     RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR);
00205     RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT|FL_UNTRUSTED);
00206     rb_copy_generic_ivar(dest, obj);
00207     rb_gc_copy_finalizer(dest, obj);
00208     switch (TYPE(obj)) {
00209       case T_OBJECT:
00210         if (!(RBASIC(dest)->flags & ROBJECT_EMBED) && ROBJECT_IVPTR(dest)) {
00211             xfree(ROBJECT_IVPTR(dest));
00212             ROBJECT(dest)->as.heap.ivptr = 0;
00213             ROBJECT(dest)->as.heap.numiv = 0;
00214             ROBJECT(dest)->as.heap.iv_index_tbl = 0;
00215         }
00216         if (RBASIC(obj)->flags & ROBJECT_EMBED) {
00217             MEMCPY(ROBJECT(dest)->as.ary, ROBJECT(obj)->as.ary, VALUE, ROBJECT_EMBED_LEN_MAX);
00218             RBASIC(dest)->flags |= ROBJECT_EMBED;
00219         }
00220         else {
00221             long len = ROBJECT(obj)->as.heap.numiv;
00222             VALUE *ptr = ALLOC_N(VALUE, len);
00223             MEMCPY(ptr, ROBJECT(obj)->as.heap.ivptr, VALUE, len);
00224             ROBJECT(dest)->as.heap.ivptr = ptr;
00225             ROBJECT(dest)->as.heap.numiv = len;
00226             ROBJECT(dest)->as.heap.iv_index_tbl = ROBJECT(obj)->as.heap.iv_index_tbl;
00227             RBASIC(dest)->flags &= ~ROBJECT_EMBED;
00228         }
00229         break;
00230       case T_CLASS:
00231       case T_MODULE:
00232         if (RCLASS_IV_TBL(dest)) {
00233             st_free_table(RCLASS_IV_TBL(dest));
00234             RCLASS_IV_TBL(dest) = 0;
00235         }
00236         if (RCLASS_CONST_TBL(dest)) {
00237             rb_free_const_table(RCLASS_CONST_TBL(dest));
00238             RCLASS_CONST_TBL(dest) = 0;
00239         }
00240         if (RCLASS_IV_TBL(obj)) {
00241             RCLASS_IV_TBL(dest) = st_copy(RCLASS_IV_TBL(obj));
00242         }
00243         break;
00244     }
00245 }
00246 
00247 /*
00248  *  call-seq:
00249  *     obj.clone -> an_object
00250  *
00251  *  Produces a shallow copy of <i>obj</i>---the instance variables of
00252  *  <i>obj</i> are copied, but not the objects they reference. Copies
00253  *  the frozen and tainted state of <i>obj</i>. See also the discussion
00254  *  under <code>Object#dup</code>.
00255  *
00256  *     class Klass
00257  *        attr_accessor :str
00258  *     end
00259  *     s1 = Klass.new      #=> #<Klass:0x401b3a38>
00260  *     s1.str = "Hello"    #=> "Hello"
00261  *     s2 = s1.clone       #=> #<Klass:0x401b3998 @str="Hello">
00262  *     s2.str[1,4] = "i"   #=> "i"
00263  *     s1.inspect          #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
00264  *     s2.inspect          #=> "#<Klass:0x401b3998 @str=\"Hi\">"
00265  *
00266  *  This method may have class-specific behavior.  If so, that
00267  *  behavior will be documented under the #+initialize_copy+ method of
00268  *  the class.
00269  */
00270 
00271 VALUE
00272 rb_obj_clone(VALUE obj)
00273 {
00274     VALUE clone;
00275 
00276     if (rb_special_const_p(obj)) {
00277         rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj));
00278     }
00279     clone = rb_obj_alloc(rb_obj_class(obj));
00280     RBASIC(clone)->klass = rb_singleton_class_clone(obj);
00281     RBASIC(clone)->flags = (RBASIC(obj)->flags | FL_TEST(clone, FL_TAINT) | FL_TEST(clone, FL_UNTRUSTED)) & ~(FL_FREEZE|FL_FINALIZE|FL_MARK);
00282     init_copy(clone, obj);
00283     rb_funcall(clone, id_init_clone, 1, obj);
00284     RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;
00285 
00286     return clone;
00287 }
00288 
00289 /*
00290  *  call-seq:
00291  *     obj.dup -> an_object
00292  *
00293  *  Produces a shallow copy of <i>obj</i>---the instance variables of
00294  *  <i>obj</i> are copied, but not the objects they reference.
00295  *  <code>dup</code> copies the tainted state of <i>obj</i>. See also
00296  *  the discussion under <code>Object#clone</code>. In general,
00297  *  <code>clone</code> and <code>dup</code> may have different semantics
00298  *  in descendant classes. While <code>clone</code> is used to duplicate
00299  *  an object, including its internal state, <code>dup</code> typically
00300  *  uses the class of the descendant object to create the new instance.
00301  *
00302  *  This method may have class-specific behavior.  If so, that
00303  *  behavior will be documented under the #+initialize_copy+ method of
00304  *  the class.
00305  */
00306 
00307 VALUE
00308 rb_obj_dup(VALUE obj)
00309 {
00310     VALUE dup;
00311 
00312     if (rb_special_const_p(obj)) {
00313         rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj));
00314     }
00315     dup = rb_obj_alloc(rb_obj_class(obj));
00316     init_copy(dup, obj);
00317     rb_funcall(dup, id_init_dup, 1, obj);
00318 
00319     return dup;
00320 }
00321 
00322 /* :nodoc: */
00323 VALUE
00324 rb_obj_init_copy(VALUE obj, VALUE orig)
00325 {
00326     if (obj == orig) return obj;
00327     rb_check_frozen(obj);
00328     if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
00329         rb_raise(rb_eTypeError, "initialize_copy should take same class object");
00330     }
00331     return obj;
00332 }
00333 
00334 /* :nodoc: */
00335 VALUE
00336 rb_obj_init_dup_clone(VALUE obj, VALUE orig)
00337 {
00338     rb_funcall(obj, id_init_copy, 1, orig);
00339     return obj;
00340 }
00341 
00342 /*
00343  *  call-seq:
00344  *     obj.to_s    -> string
00345  *
00346  *  Returns a string representing <i>obj</i>. The default
00347  *  <code>to_s</code> prints the object's class and an encoding of the
00348  *  object id. As a special case, the top-level object that is the
00349  *  initial execution context of Ruby programs returns ``main.''
00350  */
00351 
00352 VALUE
00353 rb_any_to_s(VALUE obj)
00354 {
00355     const char *cname = rb_obj_classname(obj);
00356     VALUE str;
00357 
00358     str = rb_sprintf("#<%s:%p>", cname, (void*)obj);
00359     OBJ_INFECT(str, obj);
00360 
00361     return str;
00362 }
00363 
00364 VALUE
00365 rb_inspect(VALUE obj)
00366 {
00367     return rb_obj_as_string(rb_funcall(obj, id_inspect, 0, 0));
00368 }
00369 
00370 static int
00371 inspect_i(ID id, VALUE value, VALUE str)
00372 {
00373     VALUE str2;
00374     const char *ivname;
00375 
00376     /* need not to show internal data */
00377     if (CLASS_OF(value) == 0) return ST_CONTINUE;
00378     if (!rb_is_instance_id(id)) return ST_CONTINUE;
00379     if (RSTRING_PTR(str)[0] == '-') { /* first element */
00380         RSTRING_PTR(str)[0] = '#';
00381         rb_str_cat2(str, " ");
00382     }
00383     else {
00384         rb_str_cat2(str, ", ");
00385     }
00386     ivname = rb_id2name(id);
00387     rb_str_cat2(str, ivname);
00388     rb_str_cat2(str, "=");
00389     str2 = rb_inspect(value);
00390     rb_str_append(str, str2);
00391     OBJ_INFECT(str, str2);
00392 
00393     return ST_CONTINUE;
00394 }
00395 
00396 static VALUE
00397 inspect_obj(VALUE obj, VALUE str, int recur)
00398 {
00399     if (recur) {
00400         rb_str_cat2(str, " ...");
00401     }
00402     else {
00403         rb_ivar_foreach(obj, inspect_i, str);
00404     }
00405     rb_str_cat2(str, ">");
00406     RSTRING_PTR(str)[0] = '#';
00407     OBJ_INFECT(str, obj);
00408 
00409     return str;
00410 }
00411 
00412 /*
00413  *  call-seq:
00414  *     obj.inspect   -> string
00415  *
00416  *  Returns a string containing a human-readable representation of
00417  *  <i>obj</i>. If not overridden and no instance variables, uses the
00418  *  <code>to_s</code> method to generate the string.
00419  *  <i>obj</i>.  If not overridden, uses the <code>to_s</code> method to
00420  *  generate the string.
00421  *
00422  *     [ 1, 2, 3..4, 'five' ].inspect   #=> "[1, 2, 3..4, \"five\"]"
00423  *     Time.new.inspect                 #=> "2008-03-08 19:43:39 +0900"
00424  */
00425 
00426 static VALUE
00427 rb_obj_inspect(VALUE obj)
00428 {
00429     if (TYPE(obj) == T_OBJECT && rb_obj_basic_to_s_p(obj)) {
00430         int has_ivar = 0;
00431         VALUE *ptr = ROBJECT_IVPTR(obj);
00432         long len = ROBJECT_NUMIV(obj);
00433         long i;
00434 
00435         for (i = 0; i < len; i++) {
00436             if (ptr[i] != Qundef) {
00437                 has_ivar = 1;
00438                 break;
00439             }
00440         }
00441 
00442         if (has_ivar) {
00443             VALUE str;
00444             const char *c = rb_obj_classname(obj);
00445 
00446             str = rb_sprintf("-<%s:%p", c, (void*)obj);
00447             return rb_exec_recursive(inspect_obj, obj, str);
00448         }
00449         return rb_any_to_s(obj);
00450     }
00451     return rb_funcall(obj, rb_intern("to_s"), 0, 0);
00452 }
00453 
00454 
00455 /*
00456  *  call-seq:
00457  *     obj.instance_of?(class)    -> true or false
00458  *
00459  *  Returns <code>true</code> if <i>obj</i> is an instance of the given
00460  *  class. See also <code>Object#kind_of?</code>.
00461  *
00462  *     class A;     end
00463  *     class B < A; end
00464  *     class C < B; end
00465  *
00466  *     b = B.new
00467  *     b.instance_of? A   #=> false
00468  *     b.instance_of? B   #=> true
00469  *     b.instance_of? C   #=> false
00470  */
00471 
00472 VALUE
00473 rb_obj_is_instance_of(VALUE obj, VALUE c)
00474 {
00475     switch (TYPE(c)) {
00476       case T_MODULE:
00477       case T_CLASS:
00478       case T_ICLASS:
00479         break;
00480       default:
00481         rb_raise(rb_eTypeError, "class or module required");
00482     }
00483 
00484     if (rb_obj_class(obj) == c) return Qtrue;
00485     return Qfalse;
00486 }
00487 
00488 
00489 /*
00490  *  call-seq:
00491  *     obj.is_a?(class)       -> true or false
00492  *     obj.kind_of?(class)    -> true or false
00493  *
00494  *  Returns <code>true</code> if <i>class</i> is the class of
00495  *  <i>obj</i>, or if <i>class</i> is one of the superclasses of
00496  *  <i>obj</i> or modules included in <i>obj</i>.
00497  *
00498  *     module M;    end
00499  *     class A
00500  *       include M
00501  *     end
00502  *     class B < A; end
00503  *     class C < B; end
00504  *
00505  *     b = B.new
00506  *     b.is_a? A          #=> true
00507  *     b.is_a? B          #=> true
00508  *     b.is_a? C          #=> false
00509  *     b.is_a? M          #=> true
00510  *
00511  *     b.kind_of? A       #=> true
00512  *     b.kind_of? B       #=> true
00513  *     b.kind_of? C       #=> false
00514  *     b.kind_of? M       #=> true
00515  */
00516 
00517 VALUE
00518 rb_obj_is_kind_of(VALUE obj, VALUE c)
00519 {
00520     VALUE cl = CLASS_OF(obj);
00521 
00522     switch (TYPE(c)) {
00523       case T_MODULE:
00524       case T_CLASS:
00525       case T_ICLASS:
00526         break;
00527 
00528       default:
00529         rb_raise(rb_eTypeError, "class or module required");
00530     }
00531 
00532     while (cl) {
00533         if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c))
00534             return Qtrue;
00535         cl = RCLASS_SUPER(cl);
00536     }
00537     return Qfalse;
00538 }
00539 
00540 
00541 /*
00542  *  call-seq:
00543  *     obj.tap{|x|...}    -> obj
00544  *
00545  *  Yields <code>x</code> to the block, and then returns <code>x</code>.
00546  *  The primary purpose of this method is to "tap into" a method chain,
00547  *  in order to perform operations on intermediate results within the chain.
00548  *
00549  *      (1..10)                .tap {|x| puts "original: #{x.inspect}"}
00550  *        .to_a                .tap {|x| puts "array: #{x.inspect}"}
00551  *        .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
00552  *        .map { |x| x*x }     .tap {|x| puts "squares: #{x.inspect}"}
00553  *
00554  */
00555 
00556 VALUE
00557 rb_obj_tap(VALUE obj)
00558 {
00559     rb_yield(obj);
00560     return obj;
00561 }
00562 
00563 
00564 /*
00565  * Document-method: inherited
00566  *
00567  * call-seq:
00568  *    inherited(subclass)
00569  *
00570  * Callback invoked whenever a subclass of the current class is created.
00571  *
00572  * Example:
00573  *
00574  *    class Foo
00575  *       def self.inherited(subclass)
00576  *          puts "New subclass: #{subclass}"
00577  *       end
00578  *    end
00579  *
00580  *    class Bar < Foo
00581  *    end
00582  *
00583  *    class Baz < Bar
00584  *    end
00585  *
00586  * produces:
00587  *
00588  *    New subclass: Bar
00589  *    New subclass: Baz
00590  */
00591 
00592 /* Document-method: method_added
00593  *
00594  * call-seq:
00595  *   method_added(method_name)
00596  *
00597  * Invoked as a callback whenever an instance method is added to the
00598  * receiver.
00599  *
00600  *   module Chatty
00601  *     def self.method_added(method_name)
00602  *       puts "Adding #{method_name.inspect}"
00603  *     end
00604  *     def self.some_class_method() end
00605  *     def some_instance_method() end
00606  *   end
00607  *
00608  * produces:
00609  *
00610  *   Adding :some_instance_method
00611  *
00612  */
00613 
00614 /* Document-method: method_removed
00615  *
00616  * call-seq:
00617  *   method_removed(method_name)
00618  *
00619  * Invoked as a callback whenever an instance method is removed from the
00620  * receiver.
00621  *
00622  *   module Chatty
00623  *     def self.method_removed(method_name)
00624  *       puts "Removing #{method_name.inspect}"
00625  *     end
00626  *     def self.some_class_method() end
00627  *     def some_instance_method() end
00628  *     class << self
00629  *       remove_method :some_class_method
00630  *     end
00631  *     remove_method :some_instance_method
00632  *   end
00633  *
00634  * produces:
00635  *
00636  *   Removing :some_instance_method
00637  *
00638  */
00639 
00640 /*
00641  * Document-method: singleton_method_added
00642  *
00643  *  call-seq:
00644  *     singleton_method_added(symbol)
00645  *
00646  *  Invoked as a callback whenever a singleton method is added to the
00647  *  receiver.
00648  *
00649  *     module Chatty
00650  *       def Chatty.singleton_method_added(id)
00651  *         puts "Adding #{id.id2name}"
00652  *       end
00653  *       def self.one()     end
00654  *       def two()          end
00655  *       def Chatty.three() end
00656  *     end
00657  *
00658  *  <em>produces:</em>
00659  *
00660  *     Adding singleton_method_added
00661  *     Adding one
00662  *     Adding three
00663  *
00664  */
00665 
00666 /*
00667  * Document-method: singleton_method_removed
00668  *
00669  *  call-seq:
00670  *     singleton_method_removed(symbol)
00671  *
00672  *  Invoked as a callback whenever a singleton method is removed from
00673  *  the receiver.
00674  *
00675  *     module Chatty
00676  *       def Chatty.singleton_method_removed(id)
00677  *         puts "Removing #{id.id2name}"
00678  *       end
00679  *       def self.one()     end
00680  *       def two()          end
00681  *       def Chatty.three() end
00682  *       class << self
00683  *         remove_method :three
00684  *         remove_method :one
00685  *       end
00686  *     end
00687  *
00688  *  <em>produces:</em>
00689  *
00690  *     Removing three
00691  *     Removing one
00692  */
00693 
00694 /*
00695  * Document-method: singleton_method_undefined
00696  *
00697  *  call-seq:
00698  *     singleton_method_undefined(symbol)
00699  *
00700  *  Invoked as a callback whenever a singleton method is undefined in
00701  *  the receiver.
00702  *
00703  *     module Chatty
00704  *       def Chatty.singleton_method_undefined(id)
00705  *         puts "Undefining #{id.id2name}"
00706  *       end
00707  *       def Chatty.one()   end
00708  *       class << self
00709  *          undef_method(:one)
00710  *       end
00711  *     end
00712  *
00713  *  <em>produces:</em>
00714  *
00715  *     Undefining one
00716  */
00717 
00718 
00719 /*
00720  * Document-method: included
00721  *
00722  * call-seq:
00723  *    included( othermod )
00724  *
00725  * Callback invoked whenever the receiver is included in another
00726  * module or class. This should be used in preference to
00727  * <tt>Module.append_features</tt> if your code wants to perform some
00728  * action when a module is included in another.
00729  *
00730  *        module A
00731  *          def A.included(mod)
00732  *            puts "#{self} included in #{mod}"
00733  *          end
00734  *        end
00735  *        module Enumerable
00736  *          include A
00737  *        end
00738  */
00739 
00740 /*
00741  * Document-method: initialize
00742  *
00743  * call-seq:
00744  *    BasicObject.new
00745  *
00746  * Returns a new BasicObject.
00747  */
00748 
00749 /*
00750  * Not documented
00751  */
00752 
00753 static VALUE
00754 rb_obj_dummy(void)
00755 {
00756     return Qnil;
00757 }
00758 
00759 /*
00760  *  call-seq:
00761  *     obj.tainted?    -> true or false
00762  *
00763  *  Returns <code>true</code> if the object is tainted.
00764  */
00765 
00766 VALUE
00767 rb_obj_tainted(VALUE obj)
00768 {
00769     if (OBJ_TAINTED(obj))
00770         return Qtrue;
00771     return Qfalse;
00772 }
00773 
00774 /*
00775  *  call-seq:
00776  *     obj.taint -> obj
00777  *
00778  *  Marks <i>obj</i> as tainted---if the <code>$SAFE</code> level is
00779  *  set appropriately, many method calls which might alter the running
00780  *  programs environment will refuse to accept tainted strings.
00781  */
00782 
00783 VALUE
00784 rb_obj_taint(VALUE obj)
00785 {
00786     rb_secure(4);
00787     if (!OBJ_TAINTED(obj)) {
00788         rb_check_frozen(obj);
00789         OBJ_TAINT(obj);
00790     }
00791     return obj;
00792 }
00793 
00794 
00795 /*
00796  *  call-seq:
00797  *     obj.untaint    -> obj
00798  *
00799  *  Removes the taint from <i>obj</i>.
00800  */
00801 
00802 VALUE
00803 rb_obj_untaint(VALUE obj)
00804 {
00805     rb_secure(3);
00806     if (OBJ_TAINTED(obj)) {
00807         rb_check_frozen(obj);
00808         FL_UNSET(obj, FL_TAINT);
00809     }
00810     return obj;
00811 }
00812 
00813 /*
00814  *  call-seq:
00815  *     obj.untrusted?    -> true or false
00816  *
00817  *  Returns <code>true</code> if the object is untrusted.
00818  */
00819 
00820 VALUE
00821 rb_obj_untrusted(VALUE obj)
00822 {
00823     if (OBJ_UNTRUSTED(obj))
00824         return Qtrue;
00825     return Qfalse;
00826 }
00827 
00828 /*
00829  *  call-seq:
00830  *     obj.untrust -> obj
00831  *
00832  *  Marks <i>obj</i> as untrusted.
00833  */
00834 
00835 VALUE
00836 rb_obj_untrust(VALUE obj)
00837 {
00838     rb_secure(4);
00839     if (!OBJ_UNTRUSTED(obj)) {
00840         rb_check_frozen(obj);
00841         OBJ_UNTRUST(obj);
00842     }
00843     return obj;
00844 }
00845 
00846 
00847 /*
00848  *  call-seq:
00849  *     obj.trust    -> obj
00850  *
00851  *  Removes the untrusted mark from <i>obj</i>.
00852  */
00853 
00854 VALUE
00855 rb_obj_trust(VALUE obj)
00856 {
00857     rb_secure(3);
00858     if (OBJ_UNTRUSTED(obj)) {
00859         rb_check_frozen(obj);
00860         FL_UNSET(obj, FL_UNTRUSTED);
00861     }
00862     return obj;
00863 }
00864 
00865 void
00866 rb_obj_infect(VALUE obj1, VALUE obj2)
00867 {
00868     OBJ_INFECT(obj1, obj2);
00869 }
00870 
00871 static st_table *immediate_frozen_tbl = 0;
00872 
00873 /*
00874  *  call-seq:
00875  *     obj.freeze    -> obj
00876  *
00877  *  Prevents further modifications to <i>obj</i>. A
00878  *  <code>RuntimeError</code> will be raised if modification is attempted.
00879  *  There is no way to unfreeze a frozen object. See also
00880  *  <code>Object#frozen?</code>.
00881  *
00882  *  This method returns self.
00883  *
00884  *     a = [ "a", "b", "c" ]
00885  *     a.freeze
00886  *     a << "z"
00887  *
00888  *  <em>produces:</em>
00889  *
00890  *     prog.rb:3:in `<<': can't modify frozen array (RuntimeError)
00891  *      from prog.rb:3
00892  */
00893 
00894 VALUE
00895 rb_obj_freeze(VALUE obj)
00896 {
00897     if (!OBJ_FROZEN(obj)) {
00898         if (rb_safe_level() >= 4 && !OBJ_UNTRUSTED(obj)) {
00899             rb_raise(rb_eSecurityError, "Insecure: can't freeze object");
00900         }
00901         OBJ_FREEZE(obj);
00902         if (SPECIAL_CONST_P(obj)) {
00903             if (!immediate_frozen_tbl) {
00904                 immediate_frozen_tbl = st_init_numtable();
00905             }
00906             st_insert(immediate_frozen_tbl, obj, (st_data_t)Qtrue);
00907         }
00908     }
00909     return obj;
00910 }
00911 
00912 /*
00913  *  call-seq:
00914  *     obj.frozen?    -> true or false
00915  *
00916  *  Returns the freeze status of <i>obj</i>.
00917  *
00918  *     a = [ "a", "b", "c" ]
00919  *     a.freeze    #=> ["a", "b", "c"]
00920  *     a.frozen?   #=> true
00921  */
00922 
00923 VALUE
00924 rb_obj_frozen_p(VALUE obj)
00925 {
00926     if (OBJ_FROZEN(obj)) return Qtrue;
00927     if (SPECIAL_CONST_P(obj)) {
00928         if (!immediate_frozen_tbl) return Qfalse;
00929         if (st_lookup(immediate_frozen_tbl, obj, 0)) return Qtrue;
00930     }
00931     return Qfalse;
00932 }
00933 
00934 
00935 /*
00936  * Document-class: NilClass
00937  *
00938  *  The class of the singleton object <code>nil</code>.
00939  */
00940 
00941 /*
00942  *  call-seq:
00943  *     nil.to_i -> 0
00944  *
00945  *  Always returns zero.
00946  *
00947  *     nil.to_i   #=> 0
00948  */
00949 
00950 
00951 static VALUE
00952 nil_to_i(VALUE obj)
00953 {
00954     return INT2FIX(0);
00955 }
00956 
00957 /*
00958  *  call-seq:
00959  *     nil.to_f    -> 0.0
00960  *
00961  *  Always returns zero.
00962  *
00963  *     nil.to_f   #=> 0.0
00964  */
00965 
00966 static VALUE
00967 nil_to_f(VALUE obj)
00968 {
00969     return DBL2NUM(0.0);
00970 }
00971 
00972 /*
00973  *  call-seq:
00974  *     nil.to_s    -> ""
00975  *
00976  *  Always returns the empty string.
00977  */
00978 
00979 static VALUE
00980 nil_to_s(VALUE obj)
00981 {
00982     return rb_usascii_str_new(0, 0);
00983 }
00984 
00985 /*
00986  * Document-method: to_a
00987  *
00988  *  call-seq:
00989  *     nil.to_a    -> []
00990  *
00991  *  Always returns an empty array.
00992  *
00993  *     nil.to_a   #=> []
00994  */
00995 
00996 static VALUE
00997 nil_to_a(VALUE obj)
00998 {
00999     return rb_ary_new2(0);
01000 }
01001 
01002 /*
01003  *  call-seq:
01004  *    nil.inspect  -> "nil"
01005  *
01006  *  Always returns the string "nil".
01007  */
01008 
01009 static VALUE
01010 nil_inspect(VALUE obj)
01011 {
01012     return rb_usascii_str_new2("nil");
01013 }
01014 
01015 /***********************************************************************
01016  *  Document-class: TrueClass
01017  *
01018  *  The global value <code>true</code> is the only instance of class
01019  *  <code>TrueClass</code> and represents a logically true value in
01020  *  boolean expressions. The class provides operators allowing
01021  *  <code>true</code> to be used in logical expressions.
01022  */
01023 
01024 
01025 /*
01026  * call-seq:
01027  *   true.to_s   ->  "true"
01028  *
01029  * The string representation of <code>true</code> is "true".
01030  */
01031 
01032 static VALUE
01033 true_to_s(VALUE obj)
01034 {
01035     return rb_usascii_str_new2("true");
01036 }
01037 
01038 
01039 /*
01040  *  call-seq:
01041  *     true & obj    -> true or false
01042  *
01043  *  And---Returns <code>false</code> if <i>obj</i> is
01044  *  <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
01045  */
01046 
01047 static VALUE
01048 true_and(VALUE obj, VALUE obj2)
01049 {
01050     return RTEST(obj2)?Qtrue:Qfalse;
01051 }
01052 
01053 /*
01054  *  call-seq:
01055  *     true | obj   -> true
01056  *
01057  *  Or---Returns <code>true</code>. As <i>anObject</i> is an argument to
01058  *  a method call, it is always evaluated; there is no short-circuit
01059  *  evaluation in this case.
01060  *
01061  *     true |  puts("or")
01062  *     true || puts("logical or")
01063  *
01064  *  <em>produces:</em>
01065  *
01066  *     or
01067  */
01068 
01069 static VALUE
01070 true_or(VALUE obj, VALUE obj2)
01071 {
01072     return Qtrue;
01073 }
01074 
01075 
01076 /*
01077  *  call-seq:
01078  *     true ^ obj   -> !obj
01079  *
01080  *  Exclusive Or---Returns <code>true</code> if <i>obj</i> is
01081  *  <code>nil</code> or <code>false</code>, <code>false</code>
01082  *  otherwise.
01083  */
01084 
01085 static VALUE
01086 true_xor(VALUE obj, VALUE obj2)
01087 {
01088     return RTEST(obj2)?Qfalse:Qtrue;
01089 }
01090 
01091 
01092 /*
01093  *  Document-class: FalseClass
01094  *
01095  *  The global value <code>false</code> is the only instance of class
01096  *  <code>FalseClass</code> and represents a logically false value in
01097  *  boolean expressions. The class provides operators allowing
01098  *  <code>false</code> to participate correctly in logical expressions.
01099  *
01100  */
01101 
01102 /*
01103  * call-seq:
01104  *   false.to_s   ->  "false"
01105  *
01106  * 'nuf said...
01107  */
01108 
01109 static VALUE
01110 false_to_s(VALUE obj)
01111 {
01112     return rb_usascii_str_new2("false");
01113 }
01114 
01115 /*
01116  *  call-seq:
01117  *     false & obj   -> false
01118  *     nil & obj     -> false
01119  *
01120  *  And---Returns <code>false</code>. <i>obj</i> is always
01121  *  evaluated as it is the argument to a method call---there is no
01122  *  short-circuit evaluation in this case.
01123  */
01124 
01125 static VALUE
01126 false_and(VALUE obj, VALUE obj2)
01127 {
01128     return Qfalse;
01129 }
01130 
01131 
01132 /*
01133  *  call-seq:
01134  *     false | obj   ->   true or false
01135  *     nil   | obj   ->   true or false
01136  *
01137  *  Or---Returns <code>false</code> if <i>obj</i> is
01138  *  <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
01139  */
01140 
01141 static VALUE
01142 false_or(VALUE obj, VALUE obj2)
01143 {
01144     return RTEST(obj2)?Qtrue:Qfalse;
01145 }
01146 
01147 
01148 
01149 /*
01150  *  call-seq:
01151  *     false ^ obj    -> true or false
01152  *     nil   ^ obj    -> true or false
01153  *
01154  *  Exclusive Or---If <i>obj</i> is <code>nil</code> or
01155  *  <code>false</code>, returns <code>false</code>; otherwise, returns
01156  *  <code>true</code>.
01157  *
01158  */
01159 
01160 static VALUE
01161 false_xor(VALUE obj, VALUE obj2)
01162 {
01163     return RTEST(obj2)?Qtrue:Qfalse;
01164 }
01165 
01166 /*
01167  * call_seq:
01168  *   nil.nil?               -> true
01169  *
01170  * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
01171  */
01172 
01173 static VALUE
01174 rb_true(VALUE obj)
01175 {
01176     return Qtrue;
01177 }
01178 
01179 /*
01180  * call_seq:
01181  *   nil.nil?               -> true
01182  *   <anything_else>.nil?   -> false
01183  *
01184  * Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
01185  */
01186 
01187 
01188 static VALUE
01189 rb_false(VALUE obj)
01190 {
01191     return Qfalse;
01192 }
01193 
01194 
01195 /*
01196  *  call-seq:
01197  *     obj =~ other  -> nil
01198  *
01199  *  Pattern Match---Overridden by descendants (notably
01200  *  <code>Regexp</code> and <code>String</code>) to provide meaningful
01201  *  pattern-match semantics.
01202  */
01203 
01204 static VALUE
01205 rb_obj_match(VALUE obj1, VALUE obj2)
01206 {
01207     return Qnil;
01208 }
01209 
01210 /*
01211  *  call-seq:
01212  *     obj !~ other  -> true or false
01213  *
01214  *  Returns true if two objects do not match (using the <i>=~</i>
01215  *  method), otherwise false.
01216  */
01217 
01218 static VALUE
01219 rb_obj_not_match(VALUE obj1, VALUE obj2)
01220 {
01221     VALUE result = rb_funcall(obj1, id_match, 1, obj2);
01222     return RTEST(result) ? Qfalse : Qtrue;
01223 }
01224 
01225 
01226 /*
01227  *  call-seq:
01228  *     obj <=> other -> 0 or nil
01229  *
01230  *  Returns 0 if obj === other, otherwise nil.
01231  */
01232 static VALUE
01233 rb_obj_cmp(VALUE obj1, VALUE obj2)
01234 {
01235     if (obj1 == obj2 || rb_equal(obj1, obj2))
01236         return INT2FIX(0);
01237     return Qnil;
01238 }
01239 
01240 /***********************************************************************
01241  *
01242  * Document-class: Module
01243  *
01244  *  A <code>Module</code> is a collection of methods and constants. The
01245  *  methods in a module may be instance methods or module methods.
01246  *  Instance methods appear as methods in a class when the module is
01247  *  included, module methods do not. Conversely, module methods may be
01248  *  called without creating an encapsulating object, while instance
01249  *  methods may not. (See <code>Module#module_function</code>)
01250  *
01251  *  In the descriptions that follow, the parameter <i>sym</i> refers
01252  *  to a symbol, which is either a quoted string or a
01253  *  <code>Symbol</code> (such as <code>:name</code>).
01254  *
01255  *     module Mod
01256  *       include Math
01257  *       CONST = 1
01258  *       def meth
01259  *         #  ...
01260  *       end
01261  *     end
01262  *     Mod.class              #=> Module
01263  *     Mod.constants          #=> [:CONST, :PI, :E]
01264  *     Mod.instance_methods   #=> [:meth]
01265  *
01266  */
01267 
01268 /*
01269  * call-seq:
01270  *   mod.to_s   -> string
01271  *
01272  * Return a string representing this module or class. For basic
01273  * classes and modules, this is the name. For singletons, we
01274  * show information on the thing we're attached to as well.
01275  */
01276 
01277 static VALUE
01278 rb_mod_to_s(VALUE klass)
01279 {
01280     if (FL_TEST(klass, FL_SINGLETON)) {
01281         VALUE s = rb_usascii_str_new2("#<");
01282         VALUE v = rb_iv_get(klass, "__attached__");
01283 
01284         rb_str_cat2(s, "Class:");
01285         switch (TYPE(v)) {
01286           case T_CLASS: case T_MODULE:
01287             rb_str_append(s, rb_inspect(v));
01288             break;
01289           default:
01290             rb_str_append(s, rb_any_to_s(v));
01291             break;
01292         }
01293         rb_str_cat2(s, ">");
01294 
01295         return s;
01296     }
01297     return rb_str_dup(rb_class_name(klass));
01298 }
01299 
01300 /*
01301  *  call-seq:
01302  *     mod.freeze       -> mod
01303  *
01304  *  Prevents further modifications to <i>mod</i>.
01305  *
01306  *  This method returns self.
01307  */
01308 
01309 static VALUE
01310 rb_mod_freeze(VALUE mod)
01311 {
01312     rb_class_name(mod);
01313     return rb_obj_freeze(mod);
01314 }
01315 
01316 /*
01317  *  call-seq:
01318  *     mod === obj    -> true or false
01319  *
01320  *  Case Equality---Returns <code>true</code> if <i>anObject</i> is an
01321  *  instance of <i>mod</i> or one of <i>mod</i>'s descendants. Of
01322  *  limited use for modules, but can be used in <code>case</code>
01323  *  statements to classify objects by class.
01324  */
01325 
01326 static VALUE
01327 rb_mod_eqq(VALUE mod, VALUE arg)
01328 {
01329     return rb_obj_is_kind_of(arg, mod);
01330 }
01331 
01332 /*
01333  * call-seq:
01334  *   mod <= other   ->  true, false, or nil
01335  *
01336  * Returns true if <i>mod</i> is a subclass of <i>other</i> or
01337  * is the same as <i>other</i>. Returns
01338  * <code>nil</code> if there's no relationship between the two.
01339  * (Think of the relationship in terms of the class definition:
01340  * "class A<B" implies "A<B").
01341  *
01342  */
01343 
01344 VALUE
01345 rb_class_inherited_p(VALUE mod, VALUE arg)
01346 {
01347     VALUE start = mod;
01348 
01349     if (mod == arg) return Qtrue;
01350     switch (TYPE(arg)) {
01351       case T_MODULE:
01352       case T_CLASS:
01353         break;
01354       default:
01355         rb_raise(rb_eTypeError, "compared with non class/module");
01356     }
01357     while (mod) {
01358         if (RCLASS_M_TBL(mod) == RCLASS_M_TBL(arg))
01359             return Qtrue;
01360         mod = RCLASS_SUPER(mod);
01361     }
01362     /* not mod < arg; check if mod > arg */
01363     while (arg) {
01364         if (RCLASS_M_TBL(arg) == RCLASS_M_TBL(start))
01365             return Qfalse;
01366         arg = RCLASS_SUPER(arg);
01367     }
01368     return Qnil;
01369 }
01370 
01371 /*
01372  * call-seq:
01373  *   mod < other   ->  true, false, or nil
01374  *
01375  * Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
01376  * <code>nil</code> if there's no relationship between the two.
01377  * (Think of the relationship in terms of the class definition:
01378  * "class A<B" implies "A<B").
01379  *
01380  */
01381 
01382 static VALUE
01383 rb_mod_lt(VALUE mod, VALUE arg)
01384 {
01385     if (mod == arg) return Qfalse;
01386     return rb_class_inherited_p(mod, arg);
01387 }
01388 
01389 
01390 /*
01391  * call-seq:
01392  *   mod >= other   ->  true, false, or nil
01393  *
01394  * Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
01395  * two modules are the same. Returns
01396  * <code>nil</code> if there's no relationship between the two.
01397  * (Think of the relationship in terms of the class definition:
01398  * "class A<B" implies "B>A").
01399  *
01400  */
01401 
01402 static VALUE
01403 rb_mod_ge(VALUE mod, VALUE arg)
01404 {
01405     switch (TYPE(arg)) {
01406       case T_MODULE:
01407       case T_CLASS:
01408         break;
01409       default:
01410         rb_raise(rb_eTypeError, "compared with non class/module");
01411     }
01412 
01413     return rb_class_inherited_p(arg, mod);
01414 }
01415 
01416 /*
01417  * call-seq:
01418  *   mod > other   ->  true, false, or nil
01419  *
01420  * Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
01421  * <code>nil</code> if there's no relationship between the two.
01422  * (Think of the relationship in terms of the class definition:
01423  * "class A<B" implies "B>A").
01424  *
01425  */
01426 
01427 static VALUE
01428 rb_mod_gt(VALUE mod, VALUE arg)
01429 {
01430     if (mod == arg) return Qfalse;
01431     return rb_mod_ge(mod, arg);
01432 }
01433 
01434 /*
01435  *  call-seq:
01436  *     mod <=> other_mod   -> -1, 0, +1, or nil
01437  *
01438  *  Comparison---Returns -1 if <i>mod</i> includes <i>other_mod</i>, 0 if
01439  *  <i>mod</i> is the same as <i>other_mod</i>, and +1 if <i>mod</i> is
01440  *  included by <i>other_mod</i>. Returns <code>nil</code> if <i>mod</i>
01441  *  has no relationship with <i>other_mod</i> or if <i>other_mod</i> is
01442  *  not a module.
01443  */
01444 
01445 static VALUE
01446 rb_mod_cmp(VALUE mod, VALUE arg)
01447 {
01448     VALUE cmp;
01449 
01450     if (mod == arg) return INT2FIX(0);
01451     switch (TYPE(arg)) {
01452       case T_MODULE:
01453       case T_CLASS:
01454         break;
01455       default:
01456         return Qnil;
01457     }
01458 
01459     cmp = rb_class_inherited_p(mod, arg);
01460     if (NIL_P(cmp)) return Qnil;
01461     if (cmp) {
01462         return INT2FIX(-1);
01463     }
01464     return INT2FIX(1);
01465 }
01466 
01467 static VALUE
01468 rb_module_s_alloc(VALUE klass)
01469 {
01470     VALUE mod = rb_module_new();
01471 
01472     RBASIC(mod)->klass = klass;
01473     return mod;
01474 }
01475 
01476 static VALUE
01477 rb_class_s_alloc(VALUE klass)
01478 {
01479     return rb_class_boot(0);
01480 }
01481 
01482 /*
01483  *  call-seq:
01484  *    Module.new                  -> mod
01485  *    Module.new {|mod| block }   -> mod
01486  *
01487  *  Creates a new anonymous module. If a block is given, it is passed
01488  *  the module object, and the block is evaluated in the context of this
01489  *  module using <code>module_eval</code>.
01490  *
01491  *     fred = Module.new do
01492  *       def meth1
01493  *         "hello"
01494  *       end
01495  *       def meth2
01496  *         "bye"
01497  *       end
01498  *     end
01499  *     a = "my string"
01500  *     a.extend(fred)   #=> "my string"
01501  *     a.meth1          #=> "hello"
01502  *     a.meth2          #=> "bye"
01503  *
01504  *  Assign the module to a constant (name starting uppercase) if you
01505  *  want to treat it like a regular module.
01506  */
01507 
01508 static VALUE
01509 rb_mod_initialize(VALUE module)
01510 {
01511     if (rb_block_given_p()) {
01512         rb_mod_module_exec(1, &module, module);
01513     }
01514     return Qnil;
01515 }
01516 
01517 /*
01518  *  call-seq:
01519  *     Class.new(super_class=Object)               -> a_class
01520  *     Class.new(super_class=Object) { |mod| ... } -> a_class
01521  *
01522  *  Creates a new anonymous (unnamed) class with the given superclass
01523  *  (or <code>Object</code> if no parameter is given). You can give a
01524  *  class a name by assigning the class object to a constant.
01525  *
01526  *  If a block is given, it is passed the class object, and the block
01527  *  is evaluated in the context of this class using
01528  *  <code>class_eval</code>.
01529  *
01530  *     fred = Class.new do
01531  *       def meth1
01532  *         "hello"
01533  *       end
01534  *       def meth2
01535  *         "bye"
01536  *       end
01537  *     end
01538  *
01539  *     a = fred.new     #=> #<#<Class:0x100381890>:0x100376b98>
01540  *     a.meth1          #=> "hello"
01541  *     a.meth2          #=> "bye"
01542  *
01543  *  Assign the class to a constant (name starting uppercase) if you
01544  *  want to treat it like a regular class.
01545  */
01546 
01547 static VALUE
01548 rb_class_initialize(int argc, VALUE *argv, VALUE klass)
01549 {
01550     VALUE super;
01551 
01552     if (RCLASS_SUPER(klass) != 0 || klass == rb_cBasicObject) {
01553         rb_raise(rb_eTypeError, "already initialized class");
01554     }
01555     if (argc == 0) {
01556         super = rb_cObject;
01557     }
01558     else {
01559         rb_scan_args(argc, argv, "01", &super);
01560         rb_check_inheritable(super);
01561     }
01562     RCLASS_SUPER(klass) = super;
01563     rb_make_metaclass(klass, RBASIC(super)->klass);
01564     rb_class_inherited(super, klass);
01565     rb_mod_initialize(klass);
01566 
01567     return klass;
01568 }
01569 
01570 /*
01571  *  call-seq:
01572  *     class.allocate()   ->   obj
01573  *
01574  *  Allocates space for a new object of <i>class</i>'s class and does not
01575  *  call initialize on the new instance. The returned object must be an
01576  *  instance of <i>class</i>.
01577  *
01578  *      klass = Class.new do
01579  *        def initialize(*args)
01580  *          @initialized = true
01581  *        end
01582  *
01583  *        def initialized?
01584  *          @initialized || false
01585  *        end
01586  *      end
01587  *
01588  *      klass.allocate.initialized? #=> false
01589  *
01590  */
01591 
01592 VALUE
01593 rb_obj_alloc(VALUE klass)
01594 {
01595     VALUE obj;
01596 
01597     if (RCLASS_SUPER(klass) == 0 && klass != rb_cBasicObject) {
01598         rb_raise(rb_eTypeError, "can't instantiate uninitialized class");
01599     }
01600     if (FL_TEST(klass, FL_SINGLETON)) {
01601         rb_raise(rb_eTypeError, "can't create instance of singleton class");
01602     }
01603     obj = rb_funcall(klass, ID_ALLOCATOR, 0, 0);
01604     if (rb_obj_class(obj) != rb_class_real(klass)) {
01605         rb_raise(rb_eTypeError, "wrong instance allocation");
01606     }
01607     return obj;
01608 }
01609 
01610 static VALUE
01611 rb_class_allocate_instance(VALUE klass)
01612 {
01613     NEWOBJ(obj, struct RObject);
01614     OBJSETUP(obj, klass, T_OBJECT);
01615     return (VALUE)obj;
01616 }
01617 
01618 /*
01619  *  call-seq:
01620  *     class.new(args, ...)    ->  obj
01621  *
01622  *  Calls <code>allocate</code> to create a new object of
01623  *  <i>class</i>'s class, then invokes that object's
01624  *  <code>initialize</code> method, passing it <i>args</i>.
01625  *  This is the method that ends up getting called whenever
01626  *  an object is constructed using .new.
01627  *
01628  */
01629 
01630 VALUE
01631 rb_class_new_instance(int argc, VALUE *argv, VALUE klass)
01632 {
01633     VALUE obj;
01634 
01635     obj = rb_obj_alloc(klass);
01636     rb_obj_call_init(obj, argc, argv);
01637 
01638     return obj;
01639 }
01640 
01641 /*
01642  *  call-seq:
01643  *     class.superclass -> a_super_class or nil
01644  *
01645  *  Returns the superclass of <i>class</i>, or <code>nil</code>.
01646  *
01647  *     File.superclass          #=> IO
01648  *     IO.superclass            #=> Object
01649  *     Object.superclass        #=> BasicObject
01650  *     class Foo; end
01651  *     class Bar < Foo; end
01652  *     Bar.superclass           #=> Foo
01653  *
01654  *  returns nil when the given class hasn't a parent class:
01655  *
01656  *     BasicObject.superclass   #=> nil
01657  *
01658  */
01659 
01660 VALUE
01661 rb_class_superclass(VALUE klass)
01662 {
01663     VALUE super = RCLASS_SUPER(klass);
01664 
01665     if (!super) {
01666         if (klass == rb_cBasicObject) return Qnil;
01667         rb_raise(rb_eTypeError, "uninitialized class");
01668     }
01669     while (TYPE(super) == T_ICLASS) {
01670         super = RCLASS_SUPER(super);
01671     }
01672     if (!super) {
01673         return Qnil;
01674     }
01675     return super;
01676 }
01677 
01678 VALUE
01679 rb_class_get_superclass(VALUE klass)
01680 {
01681     return RCLASS_SUPER(klass);
01682 }
01683 
01684 /*
01685  *  call-seq:
01686  *     attr_reader(symbol, ...)    -> nil
01687  *     attr(symbol, ...)             -> nil
01688  *
01689  *  Creates instance variables and corresponding methods that return the
01690  *  value of each instance variable. Equivalent to calling
01691  *  ``<code>attr</code><i>:name</i>'' on each name in turn.
01692  */
01693 
01694 static VALUE
01695 rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
01696 {
01697     int i;
01698 
01699     for (i=0; i<argc; i++) {
01700         rb_attr(klass, rb_to_id(argv[i]), TRUE, FALSE, TRUE);
01701     }
01702     return Qnil;
01703 }
01704 
01705 VALUE
01706 rb_mod_attr(int argc, VALUE *argv, VALUE klass)
01707 {
01708     if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
01709         rb_warning("optional boolean argument is obsoleted");
01710         rb_attr(klass, rb_to_id(argv[0]), 1, RTEST(argv[1]), TRUE);
01711         return Qnil;
01712     }
01713     return rb_mod_attr_reader(argc, argv, klass);
01714 }
01715 
01716 /*
01717  *  call-seq:
01718  *      attr_writer(symbol, ...)    -> nil
01719  *
01720  *  Creates an accessor method to allow assignment to the attribute
01721  *  <i>aSymbol</i><code>.id2name</code>.
01722  */
01723 
01724 static VALUE
01725 rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
01726 {
01727     int i;
01728 
01729     for (i=0; i<argc; i++) {
01730         rb_attr(klass, rb_to_id(argv[i]), FALSE, TRUE, TRUE);
01731     }
01732     return Qnil;
01733 }
01734 
01735 /*
01736  *  call-seq:
01737  *     attr_accessor(symbol, ...)    -> nil
01738  *
01739  *  Defines a named attribute for this module, where the name is
01740  *  <i>symbol.</i><code>id2name</code>, creating an instance variable
01741  *  (<code>@name</code>) and a corresponding access method to read it.
01742  *  Also creates a method called <code>name=</code> to set the attribute.
01743  *
01744  *     module Mod
01745  *       attr_accessor(:one, :two)
01746  *     end
01747  *     Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]
01748  */
01749 
01750 static VALUE
01751 rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
01752 {
01753     int i;
01754 
01755     for (i=0; i<argc; i++) {
01756         rb_attr(klass, rb_to_id(argv[i]), TRUE, TRUE, TRUE);
01757     }
01758     return Qnil;
01759 }
01760 
01761 /*
01762  *  call-seq:
01763  *     mod.const_get(sym, inherit=true)    -> obj
01764  *
01765  *  Checks for a constant with the given name in <i>mod</i>
01766  *  If +inherit+ is set, the lookup will also search
01767  *  the ancestors (and +Object+ if <i>mod</i> is a +Module+.)
01768  *
01769  *  The value of the constant is returned if a definition is found,
01770  *  otherwise a +NameError+ is raised.
01771  *
01772  *     Math.const_get(:PI)   #=> 3.14159265358979
01773  */
01774 
01775 static VALUE
01776 rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
01777 {
01778     VALUE name, recur;
01779     ID id;
01780 
01781     if (argc == 1) {
01782         name = argv[0];
01783         recur = Qtrue;
01784     }
01785     else {
01786         rb_scan_args(argc, argv, "11", &name, &recur);
01787     }
01788     id = rb_to_id(name);
01789     if (!rb_is_const_id(id)) {
01790         rb_name_error(id, "wrong constant name %s", rb_id2name(id));
01791     }
01792     return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
01793 }
01794 
01795 /*
01796  *  call-seq:
01797  *     mod.const_set(sym, obj)    -> obj
01798  *
01799  *  Sets the named constant to the given object, returning that object.
01800  *  Creates a new constant if no constant with the given name previously
01801  *  existed.
01802  *
01803  *     Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
01804  *     Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968
01805  */
01806 
01807 static VALUE
01808 rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
01809 {
01810     ID id = rb_to_id(name);
01811 
01812     if (!rb_is_const_id(id)) {
01813         rb_name_error(id, "wrong constant name %s", rb_id2name(id));
01814     }
01815     rb_const_set(mod, id, value);
01816     return value;
01817 }
01818 
01819 /*
01820  *  call-seq:
01821  *     mod.const_defined?(sym, inherit=true)   -> true or false
01822  *
01823  *  Checks for a constant with the given name in <i>mod</i>
01824  *  If +inherit+ is set, the lookup will also search
01825  *  the ancestors (and +Object+ if <i>mod</i> is a +Module+.)
01826  *
01827  *  Returns whether or not a definition is found:
01828  *
01829  *     Math.const_defined? "PI"   #=> true
01830  *     IO.const_defined? :SYNC   #=> true
01831  *     IO.const_defined? :SYNC, false   #=> false
01832  */
01833 
01834 static VALUE
01835 rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
01836 {
01837     VALUE name, recur;
01838     ID id;
01839 
01840     if (argc == 1) {
01841         name = argv[0];
01842         recur = Qtrue;
01843     }
01844     else {
01845         rb_scan_args(argc, argv, "11", &name, &recur);
01846     }
01847     id = rb_to_id(name);
01848     if (!rb_is_const_id(id)) {
01849         rb_name_error(id, "wrong constant name %s", rb_id2name(id));
01850     }
01851     return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
01852 }
01853 
01854 /*
01855  *  call-seq:
01856  *     obj.instance_variable_get(symbol)    -> obj
01857  *
01858  *  Returns the value of the given instance variable, or nil if the
01859  *  instance variable is not set. The <code>@</code> part of the
01860  *  variable name should be included for regular instance
01861  *  variables. Throws a <code>NameError</code> exception if the
01862  *  supplied symbol is not valid as an instance variable name.
01863  *
01864  *     class Fred
01865  *       def initialize(p1, p2)
01866  *         @a, @b = p1, p2
01867  *       end
01868  *     end
01869  *     fred = Fred.new('cat', 99)
01870  *     fred.instance_variable_get(:@a)    #=> "cat"
01871  *     fred.instance_variable_get("@b")   #=> 99
01872  */
01873 
01874 static VALUE
01875 rb_obj_ivar_get(VALUE obj, VALUE iv)
01876 {
01877     ID id = rb_to_id(iv);
01878 
01879     if (!rb_is_instance_id(id)) {
01880         rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
01881     }
01882     return rb_ivar_get(obj, id);
01883 }
01884 
01885 /*
01886  *  call-seq:
01887  *     obj.instance_variable_set(symbol, obj)    -> obj
01888  *
01889  *  Sets the instance variable names by <i>symbol</i> to
01890  *  <i>object</i>, thereby frustrating the efforts of the class's
01891  *  author to attempt to provide proper encapsulation. The variable
01892  *  did not have to exist prior to this call.
01893  *
01894  *     class Fred
01895  *       def initialize(p1, p2)
01896  *         @a, @b = p1, p2
01897  *       end
01898  *     end
01899  *     fred = Fred.new('cat', 99)
01900  *     fred.instance_variable_set(:@a, 'dog')   #=> "dog"
01901  *     fred.instance_variable_set(:@c, 'cat')   #=> "cat"
01902  *     fred.inspect                             #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
01903  */
01904 
01905 static VALUE
01906 rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val)
01907 {
01908     ID id = rb_to_id(iv);
01909 
01910     if (!rb_is_instance_id(id)) {
01911         rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
01912     }
01913     return rb_ivar_set(obj, id, val);
01914 }
01915 
01916 /*
01917  *  call-seq:
01918  *     obj.instance_variable_defined?(symbol)    -> true or false
01919  *
01920  *  Returns <code>true</code> if the given instance variable is
01921  *  defined in <i>obj</i>.
01922  *
01923  *     class Fred
01924  *       def initialize(p1, p2)
01925  *         @a, @b = p1, p2
01926  *       end
01927  *     end
01928  *     fred = Fred.new('cat', 99)
01929  *     fred.instance_variable_defined?(:@a)    #=> true
01930  *     fred.instance_variable_defined?("@b")   #=> true
01931  *     fred.instance_variable_defined?("@c")   #=> false
01932  */
01933 
01934 static VALUE
01935 rb_obj_ivar_defined(VALUE obj, VALUE iv)
01936 {
01937     ID id = rb_to_id(iv);
01938 
01939     if (!rb_is_instance_id(id)) {
01940         rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
01941     }
01942     return rb_ivar_defined(obj, id);
01943 }
01944 
01945 /*
01946  *  call-seq:
01947  *     mod.class_variable_get(symbol)    -> obj
01948  *
01949  *  Returns the value of the given class variable (or throws a
01950  *  <code>NameError</code> exception). The <code>@@</code> part of the
01951  *  variable name should be included for regular class variables
01952  *
01953  *     class Fred
01954  *       @@foo = 99
01955  *     end
01956  *     Fred.class_variable_get(:@@foo)     #=> 99
01957  */
01958 
01959 static VALUE
01960 rb_mod_cvar_get(VALUE obj, VALUE iv)
01961 {
01962     ID id = rb_to_id(iv);
01963 
01964     if (!rb_is_class_id(id)) {
01965         rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
01966     }
01967     return rb_cvar_get(obj, id);
01968 }
01969 
01970 /*
01971  *  call-seq:
01972  *     obj.class_variable_set(symbol, obj)    -> obj
01973  *
01974  *  Sets the class variable names by <i>symbol</i> to
01975  *  <i>object</i>.
01976  *
01977  *     class Fred
01978  *       @@foo = 99
01979  *       def foo
01980  *         @@foo
01981  *       end
01982  *     end
01983  *     Fred.class_variable_set(:@@foo, 101)     #=> 101
01984  *     Fred.new.foo                             #=> 101
01985  */
01986 
01987 static VALUE
01988 rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
01989 {
01990     ID id = rb_to_id(iv);
01991 
01992     if (!rb_is_class_id(id)) {
01993         rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
01994     }
01995     rb_cvar_set(obj, id, val);
01996     return val;
01997 }
01998 
01999 /*
02000  *  call-seq:
02001  *     obj.class_variable_defined?(symbol)    -> true or false
02002  *
02003  *  Returns <code>true</code> if the given class variable is defined
02004  *  in <i>obj</i>.
02005  *
02006  *     class Fred
02007  *       @@foo = 99
02008  *     end
02009  *     Fred.class_variable_defined?(:@@foo)    #=> true
02010  *     Fred.class_variable_defined?(:@@bar)    #=> false
02011  */
02012 
02013 static VALUE
02014 rb_mod_cvar_defined(VALUE obj, VALUE iv)
02015 {
02016     ID id = rb_to_id(iv);
02017 
02018     if (!rb_is_class_id(id)) {
02019         rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
02020     }
02021     return rb_cvar_defined(obj, id);
02022 }
02023 
02024 static struct conv_method_tbl {
02025     const char *method;
02026     ID id;
02027 } conv_method_names[] = {
02028     {"to_int", 0},
02029     {"to_ary", 0},
02030     {"to_str", 0},
02031     {"to_sym", 0},
02032     {"to_hash", 0},
02033     {"to_proc", 0},
02034     {"to_io", 0},
02035     {"to_a", 0},
02036     {"to_s", 0},
02037     {NULL, 0}
02038 };
02039 
02040 static VALUE
02041 convert_type(VALUE val, const char *tname, const char *method, int raise)
02042 {
02043     ID m = 0;
02044     int i;
02045     VALUE r;
02046 
02047     for (i=0; conv_method_names[i].method; i++) {
02048         if (conv_method_names[i].method[0] == method[0] &&
02049             strcmp(conv_method_names[i].method, method) == 0) {
02050             m = conv_method_names[i].id;
02051             break;
02052         }
02053     }
02054     if (!m) m = rb_intern(method);
02055     r = rb_check_funcall(val, m, 0, 0);
02056     if (r == Qundef) {
02057         if (raise) {
02058             rb_raise(rb_eTypeError, "can't convert %s into %s",
02059                      NIL_P(val) ? "nil" :
02060                      val == Qtrue ? "true" :
02061                      val == Qfalse ? "false" :
02062                      rb_obj_classname(val),
02063                      tname);
02064         }
02065         return Qnil;
02066     }
02067     return r;
02068 }
02069 
02070 VALUE
02071 rb_convert_type(VALUE val, int type, const char *tname, const char *method)
02072 {
02073     VALUE v;
02074 
02075     if (TYPE(val) == type) return val;
02076     v = convert_type(val, tname, method, TRUE);
02077     if (TYPE(v) != type) {
02078         const char *cname = rb_obj_classname(val);
02079         rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)",
02080                  cname, tname, cname, method, rb_obj_classname(v));
02081     }
02082     return v;
02083 }
02084 
02085 VALUE
02086 rb_check_convert_type(VALUE val, int type, const char *tname, const char *method)
02087 {
02088     VALUE v;
02089 
02090     /* always convert T_DATA */
02091     if (TYPE(val) == type && type != T_DATA) return val;
02092     v = convert_type(val, tname, method, FALSE);
02093     if (NIL_P(v)) return Qnil;
02094     if (TYPE(v) != type) {
02095         const char *cname = rb_obj_classname(val);
02096         rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)",
02097                  cname, tname, cname, method, rb_obj_classname(v));
02098     }
02099     return v;
02100 }
02101 
02102 
02103 static VALUE
02104 rb_to_integer(VALUE val, const char *method)
02105 {
02106     VALUE v;
02107 
02108     if (FIXNUM_P(val)) return val;
02109     if (TYPE(val) == T_BIGNUM) return val;
02110     v = convert_type(val, "Integer", method, TRUE);
02111     if (!rb_obj_is_kind_of(v, rb_cInteger)) {
02112         const char *cname = rb_obj_classname(val);
02113         rb_raise(rb_eTypeError, "can't convert %s to Integer (%s#%s gives %s)",
02114                  cname, cname, method, rb_obj_classname(v));
02115     }
02116     return v;
02117 }
02118 
02119 VALUE
02120 rb_check_to_integer(VALUE val, const char *method)
02121 {
02122     VALUE v;
02123 
02124     if (FIXNUM_P(val)) return val;
02125     if (TYPE(val) == T_BIGNUM) return val;
02126     v = convert_type(val, "Integer", method, FALSE);
02127     if (!rb_obj_is_kind_of(v, rb_cInteger)) {
02128         return Qnil;
02129     }
02130     return v;
02131 }
02132 
02133 VALUE
02134 rb_to_int(VALUE val)
02135 {
02136     return rb_to_integer(val, "to_int");
02137 }
02138 
02139 static VALUE
02140 rb_convert_to_integer(VALUE val, int base)
02141 {
02142     VALUE tmp;
02143 
02144     switch (TYPE(val)) {
02145       case T_FLOAT:
02146         if (base != 0) goto arg_error;
02147         if (RFLOAT_VALUE(val) <= (double)FIXNUM_MAX
02148             && RFLOAT_VALUE(val) >= (double)FIXNUM_MIN) {
02149             break;
02150         }
02151         return rb_dbl2big(RFLOAT_VALUE(val));
02152 
02153       case T_FIXNUM:
02154       case T_BIGNUM:
02155         if (base != 0) goto arg_error;
02156         return val;
02157 
02158       case T_STRING:
02159       string_conv:
02160         return rb_str_to_inum(val, base, TRUE);
02161 
02162       case T_NIL:
02163         if (base != 0) goto arg_error;
02164         rb_raise(rb_eTypeError, "can't convert nil into Integer");
02165         break;
02166 
02167       default:
02168         break;
02169     }
02170     if (base != 0) {
02171         tmp = rb_check_string_type(val);
02172         if (!NIL_P(tmp)) goto string_conv;
02173       arg_error:
02174         rb_raise(rb_eArgError, "base specified for non string value");
02175     }
02176     tmp = convert_type(val, "Integer", "to_int", FALSE);
02177     if (NIL_P(tmp)) {
02178         return rb_to_integer(val, "to_i");
02179     }
02180     return tmp;
02181 
02182 }
02183 
02184 VALUE
02185 rb_Integer(VALUE val)
02186 {
02187     return rb_convert_to_integer(val, 0);
02188 }
02189 
02190 /*
02191  *  call-seq:
02192  *     Integer(arg,base=0)    -> integer
02193  *
02194  *  Converts <i>arg</i> to a <code>Fixnum</code> or <code>Bignum</code>.
02195  *  Numeric types are converted directly (with floating point numbers
02196  *  being truncated).    <i>base</i> (0, or between 2 and 36) is a base for
02197  *  integer string representation.  If <i>arg</i> is a <code>String</code>,
02198  *  when <i>base</i> is omitted or equals to zero, radix indicators
02199  *  (<code>0</code>, <code>0b</code>, and <code>0x</code>) are honored.
02200  *  In any case, strings should be strictly conformed to numeric
02201  *  representation. This behavior is different from that of
02202  *  <code>String#to_i</code>.  Non string values will be converted using
02203  *  <code>to_int</code>, and <code>to_i</code>.
02204  *
02205  *     Integer(123.999)    #=> 123
02206  *     Integer("0x1a")     #=> 26
02207  *     Integer(Time.new)   #=> 1204973019
02208  *     Integer("0930", 10) #=> 930
02209  *     Integer("111", 2)   #=> 7
02210  */
02211 
02212 static VALUE
02213 rb_f_integer(int argc, VALUE *argv, VALUE obj)
02214 {
02215     VALUE arg = Qnil;
02216     int base = 0;
02217 
02218     switch (argc) {
02219       case 2:
02220         base = NUM2INT(argv[1]);
02221       case 1:
02222         arg = argv[0];
02223         break;
02224       default:
02225         /* should cause ArgumentError */
02226         rb_scan_args(argc, argv, "11", NULL, NULL);
02227     }
02228     return rb_convert_to_integer(arg, base);
02229 }
02230 
02231 double
02232 rb_cstr_to_dbl(const char *p, int badcheck)
02233 {
02234     const char *q;
02235     char *end;
02236     double d;
02237     const char *ellipsis = "";
02238     int w;
02239     enum {max_width = 20};
02240 #define OutOfRange() ((end - p > max_width) ? \
02241                       (w = max_width, ellipsis = "...") : \
02242                       (w = (int)(end - p), ellipsis = ""))
02243 
02244     if (!p) return 0.0;
02245     q = p;
02246     while (ISSPACE(*p)) p++;
02247 
02248     if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
02249         return 0.0;
02250     }
02251 
02252     d = strtod(p, &end);
02253     if (errno == ERANGE) {
02254         OutOfRange();
02255         rb_warning("Float %.*s%s out of range", w, p, ellipsis);
02256         errno = 0;
02257     }
02258     if (p == end) {
02259         if (badcheck) {
02260           bad:
02261             rb_invalid_str(q, "Float()");
02262         }
02263         return d;
02264     }
02265     if (*end) {
02266         char buf[DBL_DIG * 4 + 10];
02267         char *n = buf;
02268         char *e = buf + sizeof(buf) - 1;
02269         char prev = 0;
02270 
02271         while (p < end && n < e) prev = *n++ = *p++;
02272         while (*p) {
02273             if (*p == '_') {
02274                 /* remove underscores between digits */
02275                 if (badcheck) {
02276                     if (n == buf || !ISDIGIT(prev)) goto bad;
02277                     ++p;
02278                     if (!ISDIGIT(*p)) goto bad;
02279                 }
02280                 else {
02281                     while (*++p == '_');
02282                     continue;
02283                 }
02284             }
02285             prev = *p++;
02286             if (n < e) *n++ = prev;
02287         }
02288         *n = '\0';
02289         p = buf;
02290 
02291         if (!badcheck && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
02292             return 0.0;
02293         }
02294 
02295         d = strtod(p, &end);
02296         if (errno == ERANGE) {
02297             OutOfRange();
02298             rb_warning("Float %.*s%s out of range", w, p, ellipsis);
02299             errno = 0;
02300         }
02301         if (badcheck) {
02302             if (!end || p == end) goto bad;
02303             while (*end && ISSPACE(*end)) end++;
02304             if (*end) goto bad;
02305         }
02306     }
02307     if (errno == ERANGE) {
02308         errno = 0;
02309         OutOfRange();
02310         rb_raise(rb_eArgError, "Float %.*s%s out of range", w, q, ellipsis);
02311     }
02312     return d;
02313 }
02314 
02315 double
02316 rb_str_to_dbl(VALUE str, int badcheck)
02317 {
02318     char *s;
02319     long len;
02320     double ret;
02321     VALUE v = 0;
02322 
02323     StringValue(str);
02324     s = RSTRING_PTR(str);
02325     len = RSTRING_LEN(str);
02326     if (s) {
02327         if (badcheck && memchr(s, '\0', len)) {
02328             rb_raise(rb_eArgError, "string for Float contains null byte");
02329         }
02330         if (s[len]) {           /* no sentinel somehow */
02331             char *p =  ALLOCV(v, len);
02332             MEMCPY(p, s, char, len);
02333             p[len] = '\0';
02334             s = p;
02335         }
02336     }
02337     ret = rb_cstr_to_dbl(s, badcheck);
02338     if (v)
02339         ALLOCV_END(v);
02340     return ret;
02341 }
02342 
02343 VALUE
02344 rb_Float(VALUE val)
02345 {
02346     switch (TYPE(val)) {
02347       case T_FIXNUM:
02348         return DBL2NUM((double)FIX2LONG(val));
02349 
02350       case T_FLOAT:
02351         return val;
02352 
02353       case T_BIGNUM:
02354         return DBL2NUM(rb_big2dbl(val));
02355 
02356       case T_STRING:
02357         return DBL2NUM(rb_str_to_dbl(val, TRUE));
02358 
02359       case T_NIL:
02360         rb_raise(rb_eTypeError, "can't convert nil into Float");
02361         break;
02362 
02363       default:
02364         return rb_convert_type(val, T_FLOAT, "Float", "to_f");
02365     }
02366 }
02367 
02368 /*
02369  *  call-seq:
02370  *     Float(arg)    -> float
02371  *
02372  *  Returns <i>arg</i> converted to a float. Numeric types are converted
02373  *  directly, the rest are converted using <i>arg</i>.to_f. As of Ruby
02374  *  1.8, converting <code>nil</code> generates a <code>TypeError</code>.
02375  *
02376  *     Float(1)           #=> 1.0
02377  *     Float("123.456")   #=> 123.456
02378  */
02379 
02380 static VALUE
02381 rb_f_float(VALUE obj, VALUE arg)
02382 {
02383     return rb_Float(arg);
02384 }
02385 
02386 VALUE
02387 rb_to_float(VALUE val)
02388 {
02389     if (TYPE(val) == T_FLOAT) return val;
02390     if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
02391         rb_raise(rb_eTypeError, "can't convert %s into Float",
02392                  NIL_P(val) ? "nil" :
02393                  val == Qtrue ? "true" :
02394                  val == Qfalse ? "false" :
02395                  rb_obj_classname(val));
02396     }
02397     return rb_convert_type(val, T_FLOAT, "Float", "to_f");
02398 }
02399 
02400 VALUE
02401 rb_check_to_float(VALUE val)
02402 {
02403     if (TYPE(val) == T_FLOAT) return val;
02404     if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
02405         return Qnil;
02406     }
02407     return rb_check_convert_type(val, T_FLOAT, "Float", "to_f");
02408 }
02409 
02410 double
02411 rb_num2dbl(VALUE val)
02412 {
02413     switch (TYPE(val)) {
02414       case T_FLOAT:
02415         return RFLOAT_VALUE(val);
02416 
02417       case T_STRING:
02418         rb_raise(rb_eTypeError, "no implicit conversion to float from string");
02419         break;
02420 
02421       case T_NIL:
02422         rb_raise(rb_eTypeError, "no implicit conversion to float from nil");
02423         break;
02424 
02425       default:
02426         break;
02427     }
02428 
02429     return RFLOAT_VALUE(rb_Float(val));
02430 }
02431 
02432 VALUE
02433 rb_String(VALUE val)
02434 {
02435     VALUE tmp = rb_check_string_type(val);
02436     if (NIL_P(tmp))
02437         tmp = rb_convert_type(val, T_STRING, "String", "to_s");
02438     return tmp;
02439 }
02440 
02441 
02442 /*
02443  *  call-seq:
02444  *     String(arg)   -> string
02445  *
02446  *  Converts <i>arg</i> to a <code>String</code> by calling its
02447  *  <code>to_s</code> method.
02448  *
02449  *     String(self)        #=> "main"
02450  *     String(self.class)  #=> "Object"
02451  *     String(123456)      #=> "123456"
02452  */
02453 
02454 static VALUE
02455 rb_f_string(VALUE obj, VALUE arg)
02456 {
02457     return rb_String(arg);
02458 }
02459 
02460 VALUE
02461 rb_Array(VALUE val)
02462 {
02463     VALUE tmp = rb_check_array_type(val);
02464 
02465     if (NIL_P(tmp)) {
02466         tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_a");
02467         if (NIL_P(tmp)) {
02468             return rb_ary_new3(1, val);
02469         }
02470     }
02471     return tmp;
02472 }
02473 
02474 /*
02475  *  call-seq:
02476  *     Array(arg)    -> array
02477  *
02478  *  Returns <i>arg</i> as an <code>Array</code>. First tries to call
02479  *  <i>arg</i><code>.to_ary</code>, then <i>arg</i><code>.to_a</code>.
02480  *
02481  *     Array(1..5)   #=> [1, 2, 3, 4, 5]
02482  */
02483 
02484 static VALUE
02485 rb_f_array(VALUE obj, VALUE arg)
02486 {
02487     return rb_Array(arg);
02488 }
02489 
02490 /*
02491  *  Document-class: Class
02492  *
02493  *  Classes in Ruby are first-class objects---each is an instance of
02494  *  class <code>Class</code>.
02495  *
02496  *  When a new class is created (typically using <code>class Name ...
02497  *  end</code>), an object of type <code>Class</code> is created and
02498  *  assigned to a global constant (<code>Name</code> in this case). When
02499  *  <code>Name.new</code> is called to create a new object, the
02500  *  <code>new</code> method in <code>Class</code> is run by default.
02501  *  This can be demonstrated by overriding <code>new</code> in
02502  *  <code>Class</code>:
02503  *
02504  *     class Class
02505  *        alias oldNew  new
02506  *        def new(*args)
02507  *          print "Creating a new ", self.name, "\n"
02508  *          oldNew(*args)
02509  *        end
02510  *      end
02511  *
02512  *
02513  *      class Name
02514  *      end
02515  *
02516  *
02517  *      n = Name.new
02518  *
02519  *  <em>produces:</em>
02520  *
02521  *     Creating a new Name
02522  *
02523  *  Classes, modules, and objects are interrelated. In the diagram
02524  *  that follows, the vertical arrows represent inheritance, and the
02525  *  parentheses meta-classes. All metaclasses are instances
02526  *  of the class `Class'.
02527  *                             +---------+             +-...
02528  *                             |         |             |
02529  *             BasicObject-----|-->(BasicObject)-------|-...
02530  *                 ^           |         ^             |
02531  *                 |           |         |             |
02532  *              Object---------|----->(Object)---------|-...
02533  *                 ^           |         ^             |
02534  *                 |           |         |             |
02535  *                 +-------+   |         +--------+    |
02536  *                 |       |   |         |        |    |
02537  *                 |    Module-|---------|--->(Module)-|-...
02538  *                 |       ^   |         |        ^    |
02539  *                 |       |   |         |        |    |
02540  *                 |     Class-|---------|---->(Class)-|-...
02541  *                 |       ^   |         |        ^    |
02542  *                 |       +---+         |        +----+
02543  *                 |                     |
02544  *    obj--->OtherClass---------->(OtherClass)-----------...
02545  *
02546  */
02547 
02548 
02567 /*  Document-class: BasicObject
02568  *
02569  *  BasicObject is the parent class of all classes in Ruby.  It's an explicit
02570  *  blank class.
02571  *
02572  *  BasicObject can be used for creating object hierarchies independent of
02573  *  Ruby's object hierarchy, proxy objects like the Delegator class, or other
02574  *  uses where namespace pollution from Ruby's methods and classes must be
02575  *  avoided.
02576  *
02577  *  To avoid polluting BasicObject for other users an appropriately named
02578  *  subclass of BasicObject should be created instead of directly modifying
02579  *  BasicObject:
02580  *
02581  *    class MyObjectSystem < BasicObject
02582  *    end
02583  *
02584  *  BasicObject does not include Kernel (for methods like +puts+) and
02585  *  BasicObject is outside of the namespace of the standard library so common
02586  *  classes will not be found without a using a full class path.
02587  *
02588  *  A variety of strategies can be used to provide useful portions of the
02589  *  standard library to subclasses of BasicObject.  A subclass could
02590  *  <code>include Kernel</code> to obtain +puts+, +exit+, etc.  A custom
02591  *  Kernel-like module could be created and included or delegation can be used
02592  *  via #method_missing:
02593  *
02594  *    class MyObjectSystem < BasicObject
02595  *      DELEGATE = [:puts, :p]
02596  *
02597  *      def method_missing(name, *args, &block)
02598  *        super unless DELEGATE.include? name
02599  *        ::Kernel.send(name, *args, &block)
02600  *      end
02601  *
02602  *      def respond_to_missing?(name, include_private = false)
02603  *        DELGATE.include?(name) or super
02604  *      end
02605  *    end
02606  *
02607  *  Access to classes and modules from the Ruby standard library can be
02608  *  obtained in a BasicObject subclass by referencing the desired constant
02609  *  from the root like <code>::File</code> or <code>::Enumerator</code>.
02610  *  Like #method_missing, #const_missing can be used to delegate constant
02611  *  lookup to +Object+:
02612  *
02613  *    class MyObjectSystem < BasicObject
02614  *      def self.const_missing(name)
02615  *        ::Object.const_get(name)
02616  *      end
02617  *    end
02618  */
02619 
02620 /*  Document-class: Object
02621  *
02622  *  Object is the root of Ruby's class hierarchy.  Its methods are available
02623  *  to all classes unless explicitly overridden.
02624  *
02625  *  Object mixes in the Kernel module, making the built-in kernel functions
02626  *  globally accessible. Although the instance methods of Object are defined
02627  *  by the Kernel module, we have chosen to document them here for clarity.
02628  *
02629  *  In the descriptions of Object's methods, the parameter <i>symbol</i> refers
02630  *  to a symbol, which is either a quoted string or a Symbol (such as
02631  *  <code>:name</code>).
02632  */
02633 
02634 void
02635 Init_Object(void)
02636 {
02637     int i;
02638 
02639     Init_class_hierarchy();
02640 
02641 #if 0
02642     // teach RDoc about these classes
02643     rb_cBasicObject = rb_define_class("BasicObject", Qnil);
02644     rb_cObject = rb_define_class("Object", rb_cBasicObject);
02645     rb_cModule = rb_define_class("Module", rb_cObject);
02646     rb_cClass =  rb_define_class("Class",  rb_cModule);
02647 #endif
02648 
02649 #undef rb_intern
02650 #define rb_intern(str) rb_intern_const(str)
02651 
02652     rb_define_private_method(rb_cBasicObject, "initialize", rb_obj_dummy, 0);
02653     rb_define_alloc_func(rb_cBasicObject, rb_class_allocate_instance);
02654     rb_define_method(rb_cBasicObject, "==", rb_obj_equal, 1);
02655     rb_define_method(rb_cBasicObject, "equal?", rb_obj_equal, 1);
02656     rb_define_method(rb_cBasicObject, "!", rb_obj_not, 0);
02657     rb_define_method(rb_cBasicObject, "!=", rb_obj_not_equal, 1);
02658 
02659     rb_define_private_method(rb_cBasicObject, "singleton_method_added", rb_obj_dummy, 1);
02660     rb_define_private_method(rb_cBasicObject, "singleton_method_removed", rb_obj_dummy, 1);
02661     rb_define_private_method(rb_cBasicObject, "singleton_method_undefined", rb_obj_dummy, 1);
02662 
02663     rb_mKernel = rb_define_module("Kernel");
02664     rb_include_module(rb_cObject, rb_mKernel);
02665     rb_define_private_method(rb_cClass, "inherited", rb_obj_dummy, 1);
02666     rb_define_private_method(rb_cModule, "included", rb_obj_dummy, 1);
02667     rb_define_private_method(rb_cModule, "extended", rb_obj_dummy, 1);
02668     rb_define_private_method(rb_cModule, "method_added", rb_obj_dummy, 1);
02669     rb_define_private_method(rb_cModule, "method_removed", rb_obj_dummy, 1);
02670     rb_define_private_method(rb_cModule, "method_undefined", rb_obj_dummy, 1);
02671 
02672     rb_define_method(rb_mKernel, "nil?", rb_false, 0);
02673     rb_define_method(rb_mKernel, "===", rb_equal, 1);
02674     rb_define_method(rb_mKernel, "=~", rb_obj_match, 1);
02675     rb_define_method(rb_mKernel, "!~", rb_obj_not_match, 1);
02676     rb_define_method(rb_mKernel, "eql?", rb_obj_equal, 1);
02677     rb_define_method(rb_mKernel, "hash", rb_obj_hash, 0);
02678     rb_define_method(rb_mKernel, "<=>", rb_obj_cmp, 1);
02679 
02680     rb_define_method(rb_mKernel, "class", rb_obj_class, 0);
02681     rb_define_method(rb_mKernel, "singleton_class", rb_obj_singleton_class, 0);
02682     rb_define_method(rb_mKernel, "clone", rb_obj_clone, 0);
02683     rb_define_method(rb_mKernel, "dup", rb_obj_dup, 0);
02684     rb_define_method(rb_mKernel, "initialize_copy", rb_obj_init_copy, 1);
02685     rb_define_method(rb_mKernel, "initialize_dup", rb_obj_init_dup_clone, 1);
02686     rb_define_method(rb_mKernel, "initialize_clone", rb_obj_init_dup_clone, 1);
02687 
02688     rb_define_method(rb_mKernel, "taint", rb_obj_taint, 0);
02689     rb_define_method(rb_mKernel, "tainted?", rb_obj_tainted, 0);
02690     rb_define_method(rb_mKernel, "untaint", rb_obj_untaint, 0);
02691     rb_define_method(rb_mKernel, "untrust", rb_obj_untrust, 0);
02692     rb_define_method(rb_mKernel, "untrusted?", rb_obj_untrusted, 0);
02693     rb_define_method(rb_mKernel, "trust", rb_obj_trust, 0);
02694     rb_define_method(rb_mKernel, "freeze", rb_obj_freeze, 0);
02695     rb_define_method(rb_mKernel, "frozen?", rb_obj_frozen_p, 0);
02696 
02697     rb_define_method(rb_mKernel, "to_s", rb_any_to_s, 0);
02698     rb_define_method(rb_mKernel, "inspect", rb_obj_inspect, 0);
02699     rb_define_method(rb_mKernel, "methods", rb_obj_methods, -1);
02700     rb_define_method(rb_mKernel, "singleton_methods", rb_obj_singleton_methods, -1); /* in class.c */
02701     rb_define_method(rb_mKernel, "protected_methods", rb_obj_protected_methods, -1);
02702     rb_define_method(rb_mKernel, "private_methods", rb_obj_private_methods, -1);
02703     rb_define_method(rb_mKernel, "public_methods", rb_obj_public_methods, -1);
02704     rb_define_method(rb_mKernel, "instance_variables", rb_obj_instance_variables, 0); /* in variable.c */
02705     rb_define_method(rb_mKernel, "instance_variable_get", rb_obj_ivar_get, 1);
02706     rb_define_method(rb_mKernel, "instance_variable_set", rb_obj_ivar_set, 2);
02707     rb_define_method(rb_mKernel, "instance_variable_defined?", rb_obj_ivar_defined, 1);
02708     rb_define_private_method(rb_mKernel, "remove_instance_variable",
02709                              rb_obj_remove_instance_variable, 1); /* in variable.c */
02710 
02711     rb_define_method(rb_mKernel, "instance_of?", rb_obj_is_instance_of, 1);
02712     rb_define_method(rb_mKernel, "kind_of?", rb_obj_is_kind_of, 1);
02713     rb_define_method(rb_mKernel, "is_a?", rb_obj_is_kind_of, 1);
02714     rb_define_method(rb_mKernel, "tap", rb_obj_tap, 0);
02715 
02716     rb_define_global_function("sprintf", rb_f_sprintf, -1); /* in sprintf.c */
02717     rb_define_global_function("format", rb_f_sprintf, -1);  /* in sprintf.c */
02718 
02719     rb_define_global_function("Integer", rb_f_integer, -1);
02720     rb_define_global_function("Float", rb_f_float, 1);
02721 
02722     rb_define_global_function("String", rb_f_string, 1);
02723     rb_define_global_function("Array", rb_f_array, 1);
02724 
02725     rb_cNilClass = rb_define_class("NilClass", rb_cObject);
02726     rb_define_method(rb_cNilClass, "to_i", nil_to_i, 0);
02727     rb_define_method(rb_cNilClass, "to_f", nil_to_f, 0);
02728     rb_define_method(rb_cNilClass, "to_s", nil_to_s, 0);
02729     rb_define_method(rb_cNilClass, "to_a", nil_to_a, 0);
02730     rb_define_method(rb_cNilClass, "inspect", nil_inspect, 0);
02731     rb_define_method(rb_cNilClass, "&", false_and, 1);
02732     rb_define_method(rb_cNilClass, "|", false_or, 1);
02733     rb_define_method(rb_cNilClass, "^", false_xor, 1);
02734 
02735     rb_define_method(rb_cNilClass, "nil?", rb_true, 0);
02736     rb_undef_alloc_func(rb_cNilClass);
02737     rb_undef_method(CLASS_OF(rb_cNilClass), "new");
02738     /*
02739      * An alias of +nil+
02740      */
02741     rb_define_global_const("NIL", Qnil);
02742 
02743     rb_define_method(rb_cModule, "freeze", rb_mod_freeze, 0);
02744     rb_define_method(rb_cModule, "===", rb_mod_eqq, 1);
02745     rb_define_method(rb_cModule, "==", rb_obj_equal, 1);
02746     rb_define_method(rb_cModule, "<=>",  rb_mod_cmp, 1);
02747     rb_define_method(rb_cModule, "<",  rb_mod_lt, 1);
02748     rb_define_method(rb_cModule, "<=", rb_class_inherited_p, 1);
02749     rb_define_method(rb_cModule, ">",  rb_mod_gt, 1);
02750     rb_define_method(rb_cModule, ">=", rb_mod_ge, 1);
02751     rb_define_method(rb_cModule, "initialize_copy", rb_mod_init_copy, 1); /* in class.c */
02752     rb_define_method(rb_cModule, "to_s", rb_mod_to_s, 0);
02753     rb_define_method(rb_cModule, "included_modules", rb_mod_included_modules, 0); /* in class.c */
02754     rb_define_method(rb_cModule, "include?", rb_mod_include_p, 1); /* in class.c */
02755     rb_define_method(rb_cModule, "name", rb_mod_name, 0);  /* in variable.c */
02756     rb_define_method(rb_cModule, "ancestors", rb_mod_ancestors, 0); /* in class.c */
02757 
02758     rb_define_private_method(rb_cModule, "attr", rb_mod_attr, -1);
02759     rb_define_private_method(rb_cModule, "attr_reader", rb_mod_attr_reader, -1);
02760     rb_define_private_method(rb_cModule, "attr_writer", rb_mod_attr_writer, -1);
02761     rb_define_private_method(rb_cModule, "attr_accessor", rb_mod_attr_accessor, -1);
02762 
02763     rb_define_alloc_func(rb_cModule, rb_module_s_alloc);
02764     rb_define_method(rb_cModule, "initialize", rb_mod_initialize, 0);
02765     rb_define_method(rb_cModule, "instance_methods", rb_class_instance_methods, -1); /* in class.c */
02766     rb_define_method(rb_cModule, "public_instance_methods",
02767                      rb_class_public_instance_methods, -1);    /* in class.c */
02768     rb_define_method(rb_cModule, "protected_instance_methods",
02769                      rb_class_protected_instance_methods, -1); /* in class.c */
02770     rb_define_method(rb_cModule, "private_instance_methods",
02771                      rb_class_private_instance_methods, -1);   /* in class.c */
02772 
02773     rb_define_method(rb_cModule, "constants", rb_mod_constants, -1); /* in variable.c */
02774     rb_define_method(rb_cModule, "const_get", rb_mod_const_get, -1);
02775     rb_define_method(rb_cModule, "const_set", rb_mod_const_set, 2);
02776     rb_define_method(rb_cModule, "const_defined?", rb_mod_const_defined, -1);
02777     rb_define_private_method(rb_cModule, "remove_const",
02778                              rb_mod_remove_const, 1); /* in variable.c */
02779     rb_define_method(rb_cModule, "const_missing",
02780                      rb_mod_const_missing, 1); /* in variable.c */
02781     rb_define_method(rb_cModule, "class_variables",
02782                      rb_mod_class_variables, 0); /* in variable.c */
02783     rb_define_method(rb_cModule, "remove_class_variable",
02784                      rb_mod_remove_cvar, 1); /* in variable.c */
02785     rb_define_method(rb_cModule, "class_variable_get", rb_mod_cvar_get, 1);
02786     rb_define_method(rb_cModule, "class_variable_set", rb_mod_cvar_set, 2);
02787     rb_define_method(rb_cModule, "class_variable_defined?", rb_mod_cvar_defined, 1);
02788     rb_define_method(rb_cModule, "public_constant", rb_mod_public_constant, -1);
02789     rb_define_method(rb_cModule, "private_constant", rb_mod_private_constant, -1);
02790 
02791     rb_define_method(rb_cClass, "allocate", rb_obj_alloc, 0);
02792     rb_define_method(rb_cClass, "new", rb_class_new_instance, -1);
02793     rb_define_method(rb_cClass, "initialize", rb_class_initialize, -1);
02794     rb_define_method(rb_cClass, "initialize_copy", rb_class_init_copy, 1); /* in class.c */
02795     rb_define_method(rb_cClass, "superclass", rb_class_superclass, 0);
02796     rb_define_alloc_func(rb_cClass, rb_class_s_alloc);
02797     rb_undef_method(rb_cClass, "extend_object");
02798     rb_undef_method(rb_cClass, "append_features");
02799 
02800     rb_cData = rb_define_class("Data", rb_cObject);
02801     rb_undef_alloc_func(rb_cData);
02802 
02803     rb_cTrueClass = rb_define_class("TrueClass", rb_cObject);
02804     rb_define_method(rb_cTrueClass, "to_s", true_to_s, 0);
02805     rb_define_method(rb_cTrueClass, "&", true_and, 1);
02806     rb_define_method(rb_cTrueClass, "|", true_or, 1);
02807     rb_define_method(rb_cTrueClass, "^", true_xor, 1);
02808     rb_undef_alloc_func(rb_cTrueClass);
02809     rb_undef_method(CLASS_OF(rb_cTrueClass), "new");
02810     /*
02811      * An alias of +true+
02812      */
02813     rb_define_global_const("TRUE", Qtrue);
02814 
02815     rb_cFalseClass = rb_define_class("FalseClass", rb_cObject);
02816     rb_define_method(rb_cFalseClass, "to_s", false_to_s, 0);
02817     rb_define_method(rb_cFalseClass, "&", false_and, 1);
02818     rb_define_method(rb_cFalseClass, "|", false_or, 1);
02819     rb_define_method(rb_cFalseClass, "^", false_xor, 1);
02820     rb_undef_alloc_func(rb_cFalseClass);
02821     rb_undef_method(CLASS_OF(rb_cFalseClass), "new");
02822     /*
02823      * An alias of +false+
02824      */
02825     rb_define_global_const("FALSE", Qfalse);
02826 
02827     id_eq = rb_intern("==");
02828     id_eql = rb_intern("eql?");
02829     id_match = rb_intern("=~");
02830     id_inspect = rb_intern("inspect");
02831     id_init_copy = rb_intern("initialize_copy");
02832     id_init_clone = rb_intern("initialize_clone");
02833     id_init_dup = rb_intern("initialize_dup");
02834 
02835     for (i=0; conv_method_names[i].method; i++) {
02836         conv_method_names[i].id = rb_intern(conv_method_names[i].method);
02837     }
02838 }
02839