
Inter-Client Exchange (ICE) Protocol

Version 1.1

X Consortium Standard

X Version 11, Release 6.4

Robert Scheifler

X Consortium, Inc.

Jordan Brown

Quarterdeck Office Systems

ABSTRACT

There are numerous possible protocols that can be used for communication among
clients. They hav emany similarities and common needs, including authentication,
version negotiation, data typing, and connection management. TheInter-Client
Exchange(ICE) protocol is intended to provide a framework for building such protocols.
Using ICE reduces the complexity of designing new protocols and allows the sharing of
many aspects of the implementation.

Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ‘‘Software’’), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ‘‘A S IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authorization
from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Purpose and Goals

In discussing a variety of protocols — existing, under development, and hypothetical — it was noted that
they hav emany elements in common. Most protocols need mechanisms for authentication, for version
negotiation, and for setting up and taking down connections. There are also cases where the same two
parties need to talk to each other using multiple protocols.For example, an embedding relationship
between two parties is likely to require the simultaneous use of session management, data transfer, focus
negotiation, and command notification protocols. While these are logically separate protocols, it is
desirable for them to share as many pieces of implementation as possible.

TheInter-Client Exchange(ICE) protocol provides a generic framework for building protocols on top of
reliable, byte-stream transport connections. It provides basic mechanisms for setting up and shutting down
connections, for performing authentication, for negotiating versions, and for reporting errors. The
protocols running within an ICE connection are referred to here assubprotocols.ICE provides facilities for
each subprotocol to do its own version negotiation, authentication, and error reporting. In addition, if two
parties are communicating using several different subprotocols, ICE will allow them to share the same
transport layer connection.

2. Overview of the protocol

Through some mechanism outside ICE, two parties make themselves known to each other and agree that
they would like to communicate using an ICE subprotocol. ICE assumes that this negotation includes some
notion by which the parties will decide which is the ‘‘originating’’ party and which is the ‘‘answering’’
party. The negotiation will also need to provide the originating party with a name or address of the
answering party. Examples of mechanisms by which parties can make themselves known to each other are
the X selection mechanism, environment variables, and shared files.

The originating party first determines whether there is an existing ICE connection between the two parties.
If there is, it can re-use the existing connection and move directly to the setup of the subprotocol. If no ICE
connection exists, the originating party will open a transport connection to the answering party and will
start ICE connection setup.

The ICE connection setup dialog consists of three major parts: byte order exchange, authentication, and
connection information exchange. Thefirst message in each direction is aByteOrder message telling
which byte order will be used by the sending party in messages that it sends. After that, the originating
party sends aConnectionSetupmessage giving information about itself (vendor name and release
number) and giving a list of ICE version numbers it is capable of supporting and a list of authentication
schemes it is willing to accept. Authentication is optional. If no authentication is required, the answering
party responds with aConnectionReplymessage giving information about itself, and the connection setup
is complete.

If the connection setup is to be authenticated, the answering party will respond with an
AuthenticationRequired message instead of aConnectionReplymessage. Theparties then exchange
AuthenticationReply andAuthenticationNextPhasemessages until authentication is complete, at which
time the answering party finally sends itsConnectionReplymessage.

Once an ICE connection is established (or an existing connection reused), the originating party starts
subprotocol negotiation by sending aProtocolSetupmessage. Thismessage gives the name of the
subprotocol that the parties have agreed to use, along with the ICE major opcode that the originating party
has assigned to that subprotocol. Authentication can also occur for the subprotocol, independently of
authentication for the connection. Subprotocol authentication is optional. If there is no subprotocol
authentication, the answering party responds with aProtocolReply message, giving the ICE major opcode
that it has assigned for the subprotocol.

Subprotocols are authenticated independently of each other, because they may have differing security
requirements. Ifthere is authentication for this particular subprotocol, it takes place before the answering
party emits theProtocolReply message, and it uses theAuthenticationRequired, AuthenticationReply,
andAuthenticationNextPhasemessages, just as for the connection authentication. Only when
subprotocol authentication is complete does the answering party send itsProtocolReply message.

1

Inter-Client Exchange Protocol X11,Release 6.4

When a subprotocol has been set up and authenticated, the two parties can communicate using messages
defined by the subprotocol. Each message has two opcodes: a major opcode and a minor opcode. Each
party will send messages using the major opcode it has assigned in itsProtocolSetupor ProtocolReply
message. Theseopcodes will, in general, not be the same.For a particular subprotocol, each party will
need to keep track of two major opcodes: the major opcode it uses when it sends messages, and the major
opcode it expects to see in messages it receives. Theminor opcode values and semantics are defined by
each individual subprotocol.

Each subprotocol will have one or more messages whose semantics are that the subprotocol is to be shut
down. Whetherthis is done unilaterally or is performed through negotiation is defined by each subprotocol.
Once a subprotocol is shut down, its major opcodes are removed from use; no further messages on this
subprotocol should be sent until the opcode is reestablished withProtocolSetup.

ICE has a facility to negotiate the closing of the connection when there are no longer any active
subprotocols. Wheneither party decides that no subprotocols are active, it can send aWantToClose
message. Ifthe other party agrees to close the connection, it can simply do so. If the other party wants to
keep the connection open, it can indicate its desire by replying with aNoClosemessage.

It should be noted that the party that initiates the connection isn’t necessarily the same as the one that
initiates setting up a subprotocol.For example, suppose party A connects to party B.Party A will issue the
ConnectionSetupmessage and party B will respond with aConnectionReplymessage. (The
authentication steps are omitted here for brevity.) Typically, party A will also issue theProtocolSetup
message and expect aProtocolReply from party B. Once the connection is established, however, either
party may initiate the negotiation of a subprotocol. Continuing this example, party B may decide that it
needs to set up a subprotocol for communication with party A.Party B would issue theProtocolSetup
message and expect aProtocolReply from party A.

3. DataTypes

ICE messages contain several types of data. Byte order is negotiated in the initial connection messages; in
general data is sent in the sender’s byte order and the receiver is required to swap it appropriately. In order
to support 64-bit machines, ICE messages are padded to multiples of 8 bytes. All messages are designed so
that fields are ‘‘naturally’’ aligned on 16-, 32-, and 64-bit boundaries. The following formula gives the
number of bytes necessary to padE bytes to the next multiple ofb:

pad(E, b) = (b − (E modb)) modb

3.1. Primitive Types

Type Name Description

CARD8 8-bitunsigned integer
CARD16 16-bitunsigned integer
CARD32 32-bitunsigned integer
BOOL False or Tr ue
LPCE A character from the X Portable Character Set in Latin

Portable Character Encoding

2

Inter-Client Exchange Protocol X11,Release 6.4

3.2. ComplexTypes

Type Name Type

VERSION [Major, minor: CARD16]
STRING LISTofLPCE

LISTof<type> denotes a counted collection of <type>. The exact encoding varies depending on the
context; see the encoding section.

4. MessageFormat

All ICE messages include the following information:

Field Type Description

CARD8 protocolmajor opcode
CARD8 protocolminor opcode
CARD32 lengthof remaining data in 8-byte units

The fields are as follows:

Protocol major opcode
This specifies what subprotocol the message is intended for. Major opcode 0 is reserved for ICE
control messages. The major opcodes of other subprotocols are dynamically assigned and exchanged
at protocol negotiation time.

Protocol minor opcode
This specifies what protocol-specific operation is to be performed. Minor opcode 0 is reserved for
Errors; other values are protocol-specific.

Length of data in 8-byte units
This specifies the length of the information following the first 8 bytes. Each message-type has a
different format, and will need to be separately length-checked against this value. Asev ery data item
has either an explicit length, or an implicit length, this can be easily accomplished. Messages that
have too little or too much data indicate a serious protocol failure, and should result in aBadLength
error.

5. Overall Protocol Description

Every message sent in a given direction has an implicit sequence number, starting with 1. Sequence
numbers are global to the connection; independent sequence numbers arenotmaintained for each protocol.

Messages of a given major-opcode (i.e., of a given protocol) must be responded to (if a response is called
for) in order by the receiving party. Messages from different protocols can be responded to in arbitrary
order.

Minor opcode 0 in every protocol is for reporting errors. At most one error is generated per request. If
more than one error condition is encountered in processing a request, the choice of which error is returned
is implementation-dependent.

3

Inter-Client Exchange Protocol X11,Release 6.4

Error

offending-minor-opcode: CARD8

severity: { CanContinue, FatalToProtocol, FatalToConnection}

sequence-number: CARD32

class: CARD16

value(s): <dependent on major/minor opcode and class>

This message is sent to report an error in response to a message from any protocol. TheError message
exists in all protocol major-opcode spaces; it is minor-opcode zero in every protocol. The minor opcode of
the message that caused the error is reported, as well as the sequence number of that message. The severity
indicates the sender’s behavior following the identification of the error.CanContinue indicates the sender
is willing to accept additional messages for this protocol.FatalToProcotol indicates the sender is
unwilling to accept further messages for this protocol but that messages for other protocols may be
accepted.FatalToConnection indicates the sender is unwilling to accept any further messages for any
protocols on the connection. The sender is required to conform to specified severity conditions for generic
and ICE (major opcode 0) errors; see Sections 6.1 and 6.2. The class defines the generic class of error.
Classes are specified separately for each protocol (numeric values can mean different things in different
protocols). Theerror values, if any, and their types vary with the specific error class for the protocol.

6. ICE Control Subprotocol — Major Opcode 0

Each of the ICE control opcodes is described below. Most of the messages have additional information
included beyond the description above. The additional information is appended to the message header and
the length field is computed accordingly.

In the following message descriptions, ‘‘Expected errors’’ i ndicates errors that may occur in the normal
course of events. Othererrors (in particularBadMajor , BadMinor , BadState, BadLength, BadValue,
ProtocolDuplicate, and MajorOpcodeDuplicate) might occur, but generally indicate a serious
implementation failure on the part of the errant peer.

ByteOrder

byte-order: { MSBfirst , LSBfirst }

Both parties must send this message before sending any other, including errors. This message specifies the
byte order that will be used on subsequent messages sent by this party.

Note: If the receiver detects an error in this message, it must be sure to send its ownByteOrder message
before sending theError .

ConnectionSetup

versions: LISTofVERSION

must-authenticate: BOOL

authentication-protocol-names: LISTofSTRING

vendor: STRING

release: STRING

Responses:ConnectionReply, AuthenticationRequired. (See note)

Expected errors:NoVersion, SetupFailed, NoAuthentication, AuthenticationRejected,
AuthenticationFailed.

The party that initiates the connection (the one that does the ‘‘connect()’’) must send this message as the
second message (afterByteOrder) on startup.

4

Inter-Client Exchange Protocol X11,Release 6.4

Versions gives a list, in decreasing order of preference, of the protocol versions this party is capable of
speaking. Thisdocument specifies major version 1, minor version 0.

If must-authenticate isTr ue, the initiating party demands authentication; the accepting partymustpick an
authentication scheme and use it. In this case, the only valid response isAuthenticationRequired.

If must-authenticate isFalse, the accepting party may choose an authentication mechanism, use a host-
address-based authentication scheme, or skip authentication. When must-authenticate isFalse,
ConnectionReplyandAuthenticationRequired are both valid responses. If a host-address-based
authentication scheme is used,AuthenticationRejectedandAuthenticationFailed errors are possible.

Authentication-protocol-names specifiesa (possibly null, if must-authenticate isFalse) list of
authentication protocols the party is willing to perform. If must-authenticate isTr ue, presumably the party
will offer only authentication mechanisms allowing mutual authentication.

Vendor gives the name of the vendor of this ICE implementation.

Release gives the release identifier of this ICE implementation.

AuthenticationRequired

authentication-protocol-index: CARD8

data: <specific to authentication protocol>

Response:AuthenticationReply.

Expected errors:AuthenticationRejected, AuthenticationFailed.

This message is sent in response to aConnectionSetupor ProtocolSetupmessage to specify that
authentication is to be done and what authentication mechanism is to be used.

The authentication protocol is specified by a 0-based index into the list of names given in the
ConnectionSetupor ProtocolSetup. Any protocol-specific data that might be required is also sent.

AuthenticationReply

data: <specific to authentication protocol>

Responses:AuthenticationNextPhase, ConnectionReply, ProtocolReply.

Expected errors:AuthenticationRejected, AuthenticationFailed, SetupFailed.

This message is sent in response to anAuthenticationRequired or AuthenticationNextPhasemessage, to
supply authentication data as defined by the authentication protocol being used.

Note that this message is sent by the party that initiated the current negotiation — the party that sent the
ConnectionSetupor ProtocolSetupmessage.

AuthenticationNextPhaseindicates that more is to be done to complete the authentication. If the
authentication is complete,ConnectionReply is appropriate if the current authentication handshake is the
result of aConnectionSetup, and aProtocolReply is appropriate if it is the result of aProtocolSetup.

AuthenticationNextPhase

data: <specific to authentication protocol>

Response:AuthenticationReply.

Expected errors:AuthenticationRejected, AuthenticationFailed.

This message is sent in response to anAuthenticationReply message, to supply authentication data as
defined by the authentication protocol being used.

5

Inter-Client Exchange Protocol X11,Release 6.4

ConnectionReply

version-index: CARD8

vendor: STRING

release: STRING

This message is sent in response to aConnectionSetupor AuthenticationReply message to indicate that
the authentication handshake is complete.

Version-index giv es a 0-based index into the list of versions offered in theConnectionSetupmessage; it
specifies the version of the ICE protocol that both parties should speak for the duration of the connection.

Vendor gives the name of the vendor of this ICE implementation.

Release gives the release identifier of this ICE implementation.

ProtocolSetup

protocol-name: STRING

major-opcode: CARD8

versions: LISTofVERSION

vendor: STRING

release: STRING

must-authenticate: BOOL

authentication-protocol-names: LISTofSTRING

Responses:AuthenticationRequired, ProtocolReply.

Expected errors:UnknownProtocol, NoVersion, SetupFailed, NoAuthentication,
AuthenticationRejected, AuthenticationFailed.

This message is used to initiate negotiation of a protocol and establish any authentication specific to it.

Protocol-name gives the name of the protocol the party wishes to speak.

Major-opcode gives the opcode that the party will use in messages it sends.

Versions gives a list of version numbers, in decreasing order of preference, that the party is willing to speak.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

If must-authenticate isTr ue, the initiating party demands authentication; the accepting partymustpick an
authentication scheme and use it. In this case, the only valid response isAuthenticationRequired.

If must-authenticate isFalse, the accepting party may choose an authentication mechanism, use a host-
address-based authentication scheme, or skip authentication. When must-authenticate isFalse,
ProtocolReply andAuthenticationRequired are both valid responses. If a host-address-based
authentication scheme is used,AuthenticationRejectedandAuthenticationFailed errors are possible.

Authentication-protocol-names specifiesa (possibly null, if must-authenticate isFalse) list of
authentication protocols the party is willing to perform. If must-authenticate isTr ue, presumably the party
will offer only authentication mechanisms allowing mutual authentication.

6

Inter-Client Exchange Protocol X11,Release 6.4

ProtocolReply

major-opcode: CARD8

version-index: CARD8

vendor: STRING

release: STRING

This message is sent in response to aProtocolSetupor AuthenticationReply message to indicate that the
authentication handshake is complete.

Major-opcode gives the opcode that this party will use in messages that it sends.

Version-index giv es a 0-based index into the list of versions offered in theProtocolSetupmessage; it
specifies the version of the protocol that both parties should speak for the duration of the connection.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

Ping

Response:PingReply.

This message is used to test if the connection is still functioning.

PingReply

This message is sent in response to aPing message, indicating that the connection is still functioning.

WantToClose

Responses:WantToClose, NoClose, ProtocolSetup.

This message is used to initiate a possible close of the connection. The sending party has noticed that, as a
result of mechanisms specific to each protocol, there are no active protocols left. There are four possible
scenarios arising from this request:

(1) Thereceiving side noticed too, and has already sent aWantToClose. On receiving aWantToClose
while already attempting to shut down, each party should simply close the connection.

(2) Thereceiving side hasn’t noticed, but agrees. It closes the connection.

(3) Thereceiving side has aProtocolSetup ‘‘ in flight,’’ i n which case it is to ignoreWantToClose and
the party sendingWantToClose is to abandon the shutdown attempt when it receives the
ProtocolSetup.

(4) Thereceiving side wants the connection kept open for some reason not specified by the ICE protocol,
in which case it sendsNoClose.

See the state transition diagram for additional information.

NoClose

This message is sent in response to aWantToClose message to indicate that the responding party does not
want the connection closed at this time. The receiving party should not close the connection. Either party
may again initiateWantToClose at some future time.

6.1. GenericError Classes

These errors should be used by all protocols, as applicable.For ICE (major opcode 0),FatalToProtocol
should be interpreted asFatalToConnection.

7

Inter-Client Exchange Protocol X11,Release 6.4

BadMinor

offending-minor-opcode: <any>

severity: FatalToProtocol or CanContinue (protocol’s discretion)

values: (none)

Received a message with an unknown minor opcode.

BadState

offending-minor-opcode: <any>

severity: FatalToProtocol or CanContinue (protocol’s discretion)

values: (none)

Received a message with a valid minor opcode which is not appropriate for the current state of the protocol.

BadLength

offending-minor-opcode: <any>

severity: FatalToProtocol or CanContinue (protocol’s discretion)

values: (none)

Received a message with a bad length. The length of the message is longer or shorter than required to
contain the data.

BadValue

offending-minor-opcode: <any>

severity: CanContinue

values: CARD32 Byte offset to offending value in offending message
CARD32 Length of offending value
<varies> Offending value

Received a message with a bad value specified.

6.2. ICE Error Classes

These errors are all major opcode 0 errors.

BadMajor

offending-minor-opcode: <any>

severity: CanContinue

values: CARD8 Opcode

The opcode given is not one that has been registered.

8

Inter-Client Exchange Protocol X11,Release 6.4

NoAuthentication

offending-minor-opcode: ConnectionSetup, ProtocolSetup

severity: ConnectionSetup→ FatalToConnection
ProtocolSetup→ FatalToProtocol

values: (none)

None of the authentication protocols offered are available.

NoVersion

offending-minor-opcode: ConnectionSetup, ProtocolSetup

severity: ConnectionSetup→ FatalToConnection
ProtocolSetup→ FatalToProtocol

values: (none)

None of the protocol versions offered are available.

SetupFailed

offending-minor-opcode: ConnectionSetup, ProtocolSetup, AuthenticationReply

severity: ConnectionSetup→ FatalToConnection
ProtocolSetup→ FatalToProtocol
AuthenticationReply → FatalToConnection if authenticating a connection, otherwise
FatalToProtocol

values: STRING reason

The sending side is unable to accept the new connection or new protocol for a reason other than
authentication failure. Typically this error will be a result of inability to allocate additional resources on the
sending side. The reason field will give a human-interpretable message providing further detail on the type
of failure.

AuthenticationRejected

offending-minor-opcode: AuthenticationReply, AuthenticationRequired,
AuthenticationNextPhase

severity: FatalToProtocol

values: STRING reason

Authentication rejected. The peer has failed to properly authenticate itself. The reason field will give a
human-interpretable message providing further detail.

AuthenticationFailed

offending-minor-opcode: AuthenticationReply, AuthenticationRequired,
AuthenticationNextPhase

severity: FatalToProtocol

values: STRING reason

Authentication failed.AuthenticationFailed does not imply that the authentication was rejected, as
AuthenticationRejecteddoes. Insteadit means that the sender was unable to complete the authentication
for some other reason. (For instance, it may have been unable to contact an authentication server.) The
reason field will give a human-interpretable message providing further detail.

9

Inter-Client Exchange Protocol X11,Release 6.4

ProtocolDuplicate

offending-minor-opcode: ProtocolSetup

severity: FatalToProtocol (but see note)

values: STRING protocol name

The protocol name was already registered. Thisis fatal to the ‘‘new’’ protocol being set up by
ProtocolSetup, but it does not affect the existing registration.

MajorOpcodeDuplicate

offending-minor-opcode: ProtocolSetup

severity: FatalToProtocol (but see note)

values: CARD8 opcode

The major opcode specified was already registered. Thisis fatal to the ‘‘new’’ protocol being set up by
ProtocolSetup, but it does not affect the existing registration.

UnknownProtocol

offending-minor-opcode: ProtocolSetup

severity: FatalToProtocol

values: STRING protocol name

The protocol specified is not supported.

7. StateDiagrams

Here are the state diagrams for the party that initiates the connection:

start:
connect to other end, sendByteOrder , ConnectionSetup→ conn_wait

conn_wait:
receive ConnectionReply→ stasis
receive AuthenticationRequired → conn_auth1
receive Error → quit
receive <other>, sendError → quit

conn_auth1:
if good auth data, sendAuthenticationReply → conn_auth2
if bad auth data, sendError → quit

conn_auth2:
receive ConnectionReply→ stasis
receive AuthenticationNextPhase→ conn_auth1
receive Error → quit
receive <other>, sendError → quit

10

Inter-Client Exchange Protocol X11,Release 6.4

Here are top-level state transitions for the party that accepts connections.

listener:
accept connection→ init_wait

init_wait:
receive ByteOrder , ConnectionSetup→ auth_ask
receive <other>, sendError → quit

auth_ask:
sendByteOrder , ConnectionReply→ stasis
sendAuthenticationRequired → auth_wait
sendError → quit

auth_wait:
receive AuthenticationReply → auth_check
receive <other>, sendError → quit

auth_check:
if no more auth needed, sendConnectionReply→ stasis
if good auth data, sendAuthenticationNextPhase→ auth_wait
if bad auth data, sendError → quit

Here are the top-level state transitions for all parties after the initial connection establishment subprotocol.

Note: thisis not quite the truth for branches out from stasis, in that multiple conversations can be
interleaved on the connection.

stasis:
sendProtocolSetup→ proto_wait
receive ProtocolSetup→ proto_reply
sendPing → ping_wait
receive Ping, sendPingReply → stasis
receive WantToClose → shutdown_attempt
receive <other>, sendError → stasis
all protocols shut down, sendWantToClose → close_wait

proto_wait:
receive ProtocolReply → stasis
receive AuthenticationRequired → give_auth1
receive Error , giv e up on this protocol→ stasis
receive WantToClose → proto_wait

give_auth1:
if good auth data, sendAuthenticationReply → give_auth2
if bad auth data, sendError , giv e up on this protocol→ stasis
receive WantToClose → give_auth1

give_auth2:
receive ProtocolReply → stasis
receive AuthenticationNextPhase→ give_auth1
receive Error , giv e up on this protocol→ stasis
receive WantToClose → give_auth2

proto_reply:
sendProtocolReply → stasis
sendAuthenticationRequired → take_auth1
sendError , giv e up on this protocol→ stasis

11

Inter-Client Exchange Protocol X11,Release 6.4

take_auth1:
receive AuthenticationReply → take_auth2
receive Error , giv e up on this protocol→ stasis

take_auth2:
if good auth data→ take_auth3
if bad auth data, sendError , giv e up on this protocol→ stasis

take_auth3:
if no more auth needed, sendProtocolReply → stasis
if good auth data, sendAuthenticationNextPhase→ take_auth1
if bad auth data, sendError , giv e up on this protocol→ stasis

ping_wait:
receive PingReply → stasis

quit:
→ close connection

Here are the state transitions for shutting down the connection:

shutdown_attempt:
if want to stay alive anyway, sendNoClose→ stasis
else→ quit

close_wait:
receive ProtocolSetup→ proto_reply
receive NoClose→ stasis
receive WantToClose → quit
connection close→ quit

8. Protocol Encoding

In the encodings below, the first column is the number of bytes occupied. The second column is either the
type (if the value is variable) or the actual value. Thethird column is the description of the value (e.g., the
parameter name). Receivers must ignore bytes that are designated as unused or pad bytes.

This document describes major version 1, minor version 0 of the ICE protocol.

LISTof<type> indicates some number of repetitions of <type>, with no additional padding. The number of
repetitions must be specified elsewhere in the message.

8.1. Primitive Types

Type Name Length (bytes) Description

CARD8 1 8-bit unsigned integer
CARD16 2 16-bit unsigned integer
CARD32 4 32-bit unsigned integer
LPCE 1 A character from the X Portable Character Set in Latin

Portable Character Encoding

12

Inter-Client Exchange Protocol X11,Release 6.4

8.2. Enumerations

Type Name Value Description

BOOL 0 False
1 Tr ue

8.3. CompoundTypes

Type Name Length (bytes)Type Description

VERSION
2 CARD16 Majorversion number
2 CARD16 Minorversion number

STRING
2 CARD16 lengthof string in bytes
n LISTofLPCE string
p unused, p = pad(n+2, 4)

8.4. ICE Minor opcodes

Message Name Encoding

Error 0
ByteOrder 1
ConnectionSetup 2
AuthenticationRequired 3
AuthenticationReply 4
AuthenticationNextPhase 5
ConnectionReply 6
ProtocolSetup 7
ProtocolReply 8
Ping 9
PingReply 10
WantToClose 11
NoClose 12

13

Inter-Client Exchange Protocol X11,Release 6.4

8.5. MessageEncoding

Error
1 CARD8 major-opcode
1 0 Error
2 CARD16 class
4 (n+p)/8+1 length
1 CARD8 offending-minor-opcode
1 sev erity:

0 CanContinue
1 FatalToProtocol
2 FatalToConnection

2 unused
4 CARD32 sequencenumber of erroneous message
n <varies> value(s)
p pad, p = pad(n,8)

ByteOrder
1 0 ICE
1 1 ByteOrder
1 byte-order:

0 LSBfirst
1 MSBfirst

1 unused
4 0 length

ConnectionSetup
1 0 ICE
1 2 ConnectionSetup
1 CARD8 Numberof versions offered
1 CARD8 Numberof authentication protocol names offered
4 (i+j+k+m+p)/8+1 length
1 BOOL must-authenticate
7 unused
i STRING vendor
j STRING release
k LISTofSTRING authentication-protocol-names
m LISTofVERSION version-list
p unused, p = pad(i+j+k+m,8)

AuthenticationRequired
1 0 ICE
1 3 AuthenticationRequired
1 CARD8 authentication-protocol-index
1 unused
4 (n+p)/8+1 length
2 n length of authentication data
6 unused
n <varies> data
p unused, p = pad(n,8)

14

Inter-Client Exchange Protocol X11,Release 6.4

AuthenticationReply
1 0 ICE
1 4 AuthenticationReply
2 unused
4 (n+p)/8+1 length
2 n length of authentication data
6 unused
n <varies> data
p unused, p = pad(n,8)

AuthenticationNextPhase
1 0 ICE
1 5 AuthenticationNextPhase
2 unused
4 (n+p)/8+1 length
2 n length of authentication data
6 unused
n <varies> data
p unused, p = pad(n,8)

ConnectionReply
1 0 ICE
1 6 ConnectionReply
1 CARD8 version-index
1 unused
4 (i+j+p)/8 length
i STRING vendor
j STRING release
p unused, p = pad(i+j,8)

ProtocolSetup
1 0 ICE
1 7 ProtocolSetup
1 CARD8 major-opcode
1 BOOL must-authenticate
4 (i+j+k+m+n+p)/8+1 length
1 CARD8 Numberof versions offered
1 CARD8 Numberof authentication protocol names offered
6 unused
i STRING protocol-name
j STRING vendor
k STRING release
m LISTofSTRING authentication-protocol-names
n LISTofVERSION version-list
p unused, p = pad(i+j+k+m+n,8)

ProtocolReply
1 0 ICE
1 8 ProtocolReply
1 CARD8 version-index
1 CARD8 major-opcode
4 (i+j+p)/8 length
i STRING vendor
j STRING release
p unused, p = pad(i+j, 8)

15

Inter-Client Exchange Protocol X11,Release 6.4

Ping
1 0 ICE
1 9 Ping
2 0 unused
4 0 length

PingReply
1 0 ICE
1 10 PingReply
2 0 unused
4 0 length

WantToClose
1 0 ICE
1 11 WantToClose
2 0 unused
4 0 length

NoClose
1 0 ICE
1 12 NoClose
2 0 unused
4 0 length

8.6. Error Class Encoding

Generic errors have classes in the range 0x8000−0xFFFF, and subprotocol-specific errors are in the range
0x0000−0x7FFF.

8.6.1. GenericError Class Encoding

Class Encoding

BadMinor 0x8000
BadState 0x8001
BadLength 0x8002
BadValue 0x8003

8.6.2. ICE-specificError Class Encoding

Class Encoding

BadMajor 0
NoAuthentication 1
NoVersion 2
SetupFailed 3
AuthenticationRejected 4
AuthenticationFailed 5
ProtocolDuplicate 6
MajorOpcodeDuplicate 7
UnknownProtocol 8

16

Inter-Client Exchange Protocol X11,Release 6.4

Appendix A

A. Modification History

A.1. Release6 to Release 6.1

Release 6.1 added the ICE X rendezvous protocol (Appendix B) and updated the document version to 1.1.

A.2. Release6.1 to Release 6.3

Release 6.3 added the listen on well known ports feature.

17

Inter-Client Exchange Protocol X11,Release 6.4

Appendix B

B. ICE X Rendezvous Protocol

B.1. Introduction

The ICE X rendezvous protocol is designed to answer the need posed in Section 2 for one mechanism by
which two clients interested in communicating via ICE are able to exchange the necessary information.
This protocol is appropriate for any two ICE clients who also have X connections to the same X server.

B.2. Overview of ICE X Rendezvous

The ICE X Rendezvous Mechanism requires clients willing to act as ICE originating parties to pre-register
the ICE subprotocols they support in an ICE_PROT OCOLS property on their top-level window. Clients
willing to act as ICE answering parties then send an ICE_PROT OCOLS X ClientMessageev ent to the ICE
originating parties. ThisClientMessageev ent identifies the ICE network IDs of the ICE answering party
as well as the ICE subprotocol it wishes to speak. Upon receipt of this message the ICE originating party
uses the information to establish an ICE connection with the ICE answering party.

B.3. RegisteringKnown Protocols

Clients willing to act as ICE originating parties preregister the ICE subprotocols they support in a list of
atoms held by an ICE_PROT OCOLS property on their top-level window. The name of each atom listed in
ICE_PROT OCOLS must be of the form ICE_INITIATE_pnamewherepnameis the name of the ICE
subprotocol the ICE originating party is willing to speak, as would be specified in an ICEProtocolSetup
message.

Clients with an ICE_INITIATE_pnameatom in the ICE_PROT OCOLS property on their top-level windows
must respond toClientMessageev ents of type ICE_PROT OCOLS specifying ICE_INITIATE_pname. If a
client does not want to respond to these client message events, it should remove the ICE_INITIATE_pname
atom from its ICE_PROT OCOLS property or remove the ICE_PROT OCOLS property entirely.

B.4. Initiating the Rendezvous

To initiate the rendezvous a client acting as an ICE answering party sends an XClientMessageev ent of
type ICE_PROT OCOLS to an ICE originating party. This ICE_PROT OCOLS client message contains the
information the ICE originating party needs to identify the ICE subprotocol the two parties will use as well
as the ICE network identification string of the ICE answering party.

Before the ICE answering party sends the client message event it must define a text property on one of its
windows. Thistext property contains the ICE answering party’s ICE network identification string and will
be used by ICE originating parties to determine the ICE answering party’s list of ICE network IDs.

The property name will normally be ICE_NETWORK_IDS, but may be any name of the ICE answering
party’s choosing. Theformat for this text property is as follows:

Field Value

type XA_STRING
format 8
value comma-separatedlist of ICE network IDs

Once the ICE answering party has established this text property on one of its windows, it initiates the
rendezvous by sending an ICE_PROT OCOLS ClientMessageev ent to an ICE originating party’s top-level
window. This event has the following format and must only be sent to windows that have pre-registered the

18

Inter-Client Exchange Protocol X11,Release 6.4

ICE subprotocol in an ICE_PROT OCOLS property on their top-level window.

Field Value

message_type Atom= "ICE_PROT OCOLS"
format 32
data.l[0] Atomidentifying the ICE subprotocol to speak
data.l[1] Timestamp
data.l[2] ICE answering party’s window ID with ICE network IDs text property
data.l[3] Atom naming text property containing the ICE answering party’s ICE

network IDs
data.l[4] Reserved. Mustbe 0.

The name of the atom in data.l[0] must be of the form ICE_INITIATE_pname, wherepnameis the name of
the ICE subprotocol the ICE answering party wishes to speak.

When an ICE originating party receives aClientMessageev ent of type ICE_PROT OCOLS specifying
ICE_INITIATE_pnameit can initiate an ICE connection with the ICE answering party. To open this
connection the client retrieves the ICE answering party’s ICE network IDs from the window specified in
data.l[2] using the text property specified in data.l[3].

If the connection attempt fails for any reason, the client must respond to the client message event by
sending a returnClientMessageev ent to the window specified in data.l[2]. This return event has the
following format:

Field Value

message_type Atom= "ICE_INITIATE_FAILED"
format 32
data.l[0] Atomidentifying the ICE subprotocol requested
data.l[1] Timestamp
data.l[2] Initiating party’s window ID (holding ICE_PROT OCOLS)
data.l[3] int:reason for failure
data.l[4] Reserved, must be 0

The values of data.l[0] and data.l[1] are copied directly from the client message event the client received.

The value in data.l[2] is the id of the window to which the ICE_PROT OCOLS.ICE_INITIATE_pname
client message event was sent.

Data.l[3] has one of the following values:

19

Inter-Client Exchange Protocol X11,Release 6.4

Value Encoding Description

1OpenFailed The client was unable to open the connection (e.g. a call to
IceOpenConnection() failed). If the client is able to distinguish
authentication or authorization errors from general errors, then the
preferred reply isAuthenticationFailed for authorization errors.

2AuthenticationFailed Authentication or authorization of the connection or protocol setup was
refused. Thisreply will be given only if the client is able to distinguish
it from OpenFailed; otherwiseOpenFailed will be returned.

3SetupFailed The client was unable to initiate the specified protocol on the
connection (e.g. a call to IceProtocolSetup() failed).

4UnknownProtocol The client does not recognize the requested protocol. (This represents a
semantic error on the part of the answering party.)

5Refused The client was in the process of removing ICE_INITIATE_pnamefrom
its ICE_PROT OCOLS list when the client message was sent; the client
no longer is willing to establish the specified ICE communication.

Advice to Implementors

Clients willing to act as ICE originating parties must update the ICE_PROT OCOLS property
on their top-level windows to include the ICE_INITIATE_pnameatom(s) identifying the ICE
subprotocols they speak. Themethod a client uses to update the ICE_PROT OCOLS property
to include ICE_INITIATE_pnameatoms is implementation dependent, but the client must
ensure the integrity of the list to prevent the accidental omission of any atoms previously in the
list.

When setting up the ICE network IDs text property on one of its windows, the ICE answering
party can determine its comma-separated list of ICE network IDs by calling
IceComposeNetworkIdList() after making a call to IceListenForConnections(). Themethod an
ICE answering party uses to find the top-level windows of clients willing to act as ICE
originating parties is dependent upon the nature of the answering party. Some may wish to use
the approach of requiring the user to click on a client’s window. Others wishing to find
existing clients without requiring user interaction might use something similar to the
XQueryTree() method used by several freely-available applications. In order for the ICE
answering party to become automatically aware of new clients willing to originate ICE
connections, the ICE answering party might register for SubstructureNotify events on the root
window of the display. When it receives a SubstructureNotify event, the ICE answering party
can check to see if it was the result of the creation of a new client top-level window with an
ICE_PROT OCOLS property.

In any case, before attempting to use this ICE X Rendezvous Mechanism ICE answering
parties wishing to speak ICE subprotocolpnameshould check for the ICE_INITIATE_pname
atom in the ICE_PROT OCOLS property on a client’s top-level window. A client that does not
include an ICE_INITIATE_pnameatom in a ICE_PROT OCOLS property on some top-level
window should be assumed to ignoreClientMessageev ents of type ICE_PROT OCOLS
specifying ICE_INITIATE_pnamefor ICE subprotocolpname.

B.5. ICE Subprotocol Versioning

Although the version of the ICE subprotocol could be passed in the client message event, ICE provides
more a flexible version negotiation mechanism than will fit within a singleClientMessageev ent. Because
of this, ICE subprotocol versioning is handled within the ICE protocol setup phase.

20

Inter-Client Exchange Protocol X11,Release 6.4

Example

Clients wish to communicate with each other via an ICE subprotocol known as "RAP V1.0".
In RAP terminology one party, the "agent", communicates with other RAP-enabled
applications on demand. The user may direct the agent to establish communication with a
specific application by clicking on the application’s window, or the agent may watch for new
application windows to be created and automatically establish communication.

During startup the ICE answering party (the agent) first calls IceRegisterForProtocolReply()
with a list of the versions (i.e., 1.0) of RAP the agent can speak. The answering party then
calls IceListenForConnections() followed by IceComposeNetworkIdList() and stores the
resulting ICE network IDs string in a text property on one of its windows.

When the answering party (agent) finds a client with which it wishes to speak, it checks to see
if the ICE_INITIATE_RAP atom is in the ICE_PROT OCOLS property on the client’s top-level
window. If it is present the agent sends the client’s top-level window an ICE_PROT OCOLS
client message event as described above. When the client receives the client message event
and is willing to originate an ICE connection using RAP, it performs an
IceRegisterForProtocolSetup() with a list of the versions of RAP the client can speak. The
client then retrieves the agent’s ICE network ID from the property and window specified by the
agent in the client message event and calls IceOpenConnection(). After this call succeeds the
client calls IceProtocolSetup() specifying the RAP protocol. During this process, ICE calls the
RAP protocol routines that handle the version negotiation.

Note that it is not necessary for purposes of this rendezvous that the client application call any
ICElib functions prior to receipt of the client message event.

21

Inter-Client Exchange Protocol X11,Release 6.4

22

Table of Contents

1. Purpose and Goals. 1
2. Overview of the protocol . 1
3. Data Types . 2
3.1. Primitive Types . 2
3.2. Complex Types . 2
4. Message Format . 3
5. Overall Protocol Description. 3
6. ICE Control Subprotocol — Major Opcode 0. 4
6.1. Generic Error Classes. 7
6.2. ICE Error Classes . 8
7. State Diagrams. 10
8. Protocol Encoding. 12
8.1. Primitive Types . 12
8.2. Enumerations. 12
8.3. Compound Types . 13
8.4. ICE Minor opcodes. 13
8.5. Message Encoding. 14
8.6. Error Class Encoding . 16
8.6.1. Generic Error Class Encoding. 16
8.6.2. ICE-specific Error Class Encoding. 16
A. Modification History . 17
A.1. Release 6 to Release 6.1. 17
A.2. Release 6.1 to Release 6.3. 17
B. ICE X Rendezvous Protocol. 18
B.1. Introduction . 18
B.2. Overview of ICE X Rendezvous . 18
B.3. Registering Known Protocols. 18
B.4. Initiating the Rendezvous . 18
B.5. ICE Subprotocol Versioning . 20

i

