The X Keyboard Extension:
Library Specification

Library Version 1.0 / Document Revision 1.1
X Consortium Standard

X Version 11, Release 6.4

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

Will Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

This document is the result of a great deal of hard work by a great many people. Without Erik For-
tune’s work as Architect of the X Keyboard Extension and the longtime support of Silicon Graph-
ics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in providing some
of the content for this document, and Digital Equipment Corporation and Hewlett-Packard for
allowing them to participate in this project, and we are deeply indebted to IBM for providing the
funding to complete this library specification.

Most of all, we thank Gary Aitken and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation reviewers. Their commitment to accuracy and completeness, their
attention to detail, their keen insight, and their good natures when working under tremendous
pressure are in some measure responsible not only for the quality of this document, but for the
quality of the Keyboard extension itself.

Matt Landau

Manager, X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example
Key Labels Num_Lock
New terms SlowKeys acceptance delay

Function definitions

Function references

Parameters or arguments

Structure definitions

Structure references

References to fields in a data structure
References to masks, modifiers, controls

XkbColorPtr XkbAddGeomColor(geom,spec,pixel)
XkbAddGeomColor

geom

XkbGeometryRec

XkbGeometryRec

key_aliases

IgnoreGroupLock

November 10, 1997 Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

1 OVEIVIBW .ttt ettt et ettt ettt e be e et et e et e b e sabeebeesaeeenne 1
1.1 Core X Protocol Support for Keyboardsccocceverieninienieniinienieeeienceeseee e 1

1.2 Xkb Keyboard Extension Support for Keyboards...........oceeverieiiniinieiinieeneeeeceeeen 1

1.3 XKkb EXtension COMPONENLS......c...eerueertieriierieeitiesieesieesteesieesteesieesseesseesaseesseesaseesssessseenns 1

1.3.1 Groups and Shift Levels.......ccccooiiiiiiniiniiiieeteeee et 3

1.3.2 RAIO GIOUPS ..ottt sttt ettt ettt ettt et e st e be e e s beesaeesats 3

1.4 CIIENE THPLS.cnteeuteieeitesiteteettet ettt ettt ettt ettt st b et e bttt e bt e bt et esaeentesbeeaesbeen 3

1.5 Compatibility With the Core Protocol...........coccoiieiiiiiiieiieieeeeeeeee e 4

1.6 Additional ProtoCOl EITOTSccccooiiiiiriiiiiiniiiieiieientceneeeeteteeeet et 4

1.7 Extension Library FUNCHONScoeviiriiiiniiiiniiieneesieeeteceteeete et 4

1.7.1 Error INdiCAtIONScc.eevuieiiriiiiiniiiniietenicetesi ettt ettt s 4

2 Initialization and General Programming Information..........c...ccoceecveniiineenicnnneene 6
2.1 Extension Header FIles..........ccooiiiiiiiniiiiiniiicicenceeteeeeee et e 6

22 EXteNSION NNAINE ..c..eouviiiiiiiiieiieiteteeitet ettt ettt ettt ettt st s aesaeen 6

2.3 Determining Library COmpatibilitycccoceereiierieiieeiieieeeeee et 6

2.4 Initializing the Keyboard EXtENnSIONcccutiriiiiiiirieiiieiieeiteeiteite ettt 7

2.5 Disabling the Keyboard EXteNSIONc..cocueviiiiriiniiniiieniieienteieeiteeetesieete e 8

2.6 PrOtOCOL EITOLS ...ttt ettt ettt s aeeaeas 9

2.7 Display and Device Specifications in Function Callscceceeviiiviiniiiiiinienieenieneee 9

3 Data STUCTUTESeeeiiieiiiie ettt et e st e s 11
3.1 Allocating Xkb Data SIIUCTUIESc.eecuiruieriirieiiiierie ettt 11

32 Adding Data and Editing Data StrUCIUTESc.eevuerrieerieiniienieeieeeteeee st 11

33 Making Changes to the Server’s Keyboard Descriptioncccccoceeverercienenciencneenennn 12

34 Tracking Keyboard Changes in the Server...........ocevirieriiieninieneeeeeeeee e 12

3.5 Freeing Data STIUCIUTEScevviiriiiiieiie ettt ettt ettt e sttt sateeaeesaee s 13

4 XKD EVENLS ...ceiiiiieeiieeeteee ettt ettt ettt s 14
4.1 XKD EVENE TYPES ..ottt ettt ettt sttt sttt sttt st be st e b ent et et e sbeeneesaeenes 14

42 XKb Event Data STIUCIUIESooueeieriieiiniieiencetentete sttt sae e sae e 15

4.3 Selecting XKD EVENLSc..ooiiiiiiiniiiieiieeniteeeteeetese ettt sttt 15

431 EVENEMASKS ..ottt ettt 17

4.4 Unified XKD EVENt TYPE....cc.eeiiitieiitieieetiee ettt et 18

5 KEYDOAId StALEc.evieeiiieiiiie ettt e et e e e saneeenes 19
5.1 Keyboard State DeSCIiPtiON.coueeieriirierieienteieetent ettt sttt 19

5.2 Changing the Keyboard State...........ccecerieiirieiiiieie et 22

5.2.1 Changing MOGIfIEISccueruieiiiruieiieieie ettt 22

5.2.2 Changing GIOUPScecueeuertieriertieiteeteeieettertesete st sitestesitesbeeseesbeestesbeensesseeneesaeenes 23

5.3 Determining Keyboard Statecccoviiiiiiiiiiiiiienieiieerieeeete ettt 23

54 Tracking Keyboard Statecoeevieriiiiinieiiineiie ettt 24

6 Complete Keyboard DesCription..........c.eeevuieiriieiniieenieeeieeeiiee et sieee s 27
6.1 The XKbDeSCREC STIUCTUIEcc.eeiiriieiiiieiirietertete ettt 27

6.2 Obtaining a Keyboard Description from the Server..........coccevevvienenicncnicnenicncnicnenn 28

6.3 Tracking Changes to the Keyboard Description in the Servercccceceveeieneenienenne. 28

6.4 Allocating and Freeing a Keyboard Description...........cocueeveerieriiienieeneenieenieenieeeeenaenn 28

7 VArtual MOGIIETS ...cueeiieiiieiee ettt s 30
7.1 Virtual Modifier Names and Masksc.cocceeieiiiieriiieneeseee e 30

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-1

The X Keyboard Extension

10

7.2 MOIfIEr DEfINITIONSeeueeeieiiiiieiet ettt sttt ettt et e st et e b et esaeenes 30
7.3 Binding Virtual Modifiers to Real MOdifiersccoccoceeviriieneniieninicnencneeieniceeeeeene 31
7.4 Virtual Modifier Key Mapping........cccceceeeeviireeniinienentenientenieeteneeiteie et enee e 31
7.4.1 Inactive MOIfier SEtScoeeviirieiiinieiiieee ettt 32
7.5 COMVEITIONS ...ttt eite it et et e e st e et e et e etesteeatesaeesbesutebesstenaesatenbessbenbeensebeensenbeeneesaeenes 32
7.6 EXAIMIPLE ..ottt ettt ettt s st ettt e be et s 32
INAICALOTS. ¢ttt ettt st e 34
8.1 INAICALOr INAIMESveeieieieiietieitet ettt ettt sttt et et be e st e be e st e sbe et e sbeeneesaeenes 34
8.2 Indicator Data SIrUCTUIES.......c..couteiiriieiiieiieeete ettt 34
8.2.1 XKbINAIiCatOrRECcoceeiiiiiiieiiiieieeecteee et 34
8.2.2 XKbIndicatorMapREC.ccccoieiiriiiiniieiieeetteeencee et 35
8.3 Getting Information About INdicators...........coccevuireeririeninieneniececeeeeeee e 39
8.3.1 Getting INdiCator Statecoeeviirieiiiniiiieieeeteeee ettt 40
8.3.2 Getting Indicator Information by IndeX.......cccccecuerervirieneniinienicnenieenienene 40
8.3.3 Getting Indicator Information by Nameccccceceeviriincniininiicnenienceieene 40
8.4 Changing Indicator Maps and Stateccceeeeriiriererienieetereete et 41
8.4.1 Effects of Explicit Changes on Indicators...........cccccevereenenienenienenieneeeeeene 41
8.4.2 Changing Indicator Maps by INdeX........cccoeceerieiiiniriinieeieeceeeeee e 42
8.4.3 Changing Indicator Maps by Nameccccerieiiirieienieeieeeeieee e 43
8.4.4 The XkbIndicatorChangesRec Structurecoceevereereiienenieneeieiceeeeene 43
8.5 Tracking Changes to Indicator State O Map........cocueeveerieirieniiiiienieeeeeteeee e 44
8.6 Allocating and Freeing Indicator Maps.........coccevueveeririenenienenienenienieetcnieeeesieeee e 45
BEILS e 47
9.1 BeIl NAIMES ..ottt st sttt e n e sae e 47
9.2 AUIDIE BEILS ...ttt ettt 48
9.3 Bell FUNCHONS ...ttt ettt ettt sttt st e st st be et b e et esbe et e sbeeneesaeenes 48
9.3.1 Generating Named Bellsccccceviiiriirininininieneneicccececeeeee e 49
9.3.2 Generating Named Bell EVENts..........cccoceeivirinineninenienicicceceeeeeecseeeene 50
9.3.3 Forcing a Server-Generated Bell..........ccccocoverinininininininiiceeeenceeeeene 51
9.4 Detecting BEILS ...c.eeeiiiiiiiieeieee ettt ettt st en 51
Keyboard CONIOLSooiuiiiiiiiiiiieeeeee et 53
10.1 Controls that Enable and Disable Other Controlsc.ccecererienerieneeieneeieeceee e 54
10.1.1 The EnabledControls CONtrolcccecerieieriereiieieeieseete e 54
10.1.2 The AutoReset CONLIOL........cccuiriieiiiriieiieiiee et 55
10.2 Control for Bell BEhavior.........cccociiiiiiiiiiiiniiiicneeeeceeceeeree e 56
10.2.1 The AudibleBell CONtIOL.......cc.cocieviiriieiiinieiinieereeeetereeree e 56
10.3 Controls for Repeat Key Behaviorcocceciviiiiiiiiniiiiniiiiienieectceeceeteeeeeeeee 56
10.3.1 The PerKeyRepeat Control.........ccccoeeviireeniiniinenienienienienienieeetenieeivenie e 56
10.3.2 The RepeatKeys COntrol.........coeevereeriineininiinenienientenieeitesieetesieeeese et 56
10.3.3 The Detectable Autorepeat CONtrolcevuereererienienienenienenrenieereneeeeneeenee 57
104 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls).........cccccecerueeuennnne 58
10.5 Controls for Using the Mouse from the Keyboard............cccccooiiriiiniiiiiiinienniiiceeenen 59
10.5.1 The MouseKeys COntrolcocueiriiriienieriiienieeieente ettt st 59
10.5.2 The MouseKeysAccel COntrol..........cocceevieriieenieriiinieeieenieeieesie et 59
10.6 Controls for Better Keyboard Access by Physically Impaired Personscc.ccoccecuenene. 61
10.6.1 The AccessXKeys CONtrol.......c..cocererviireinerienenienienienentenieetenieerene e 62
10.6.2 The AccessXTimeout CONtrolccccecereevirienenienenienerieneeteieetee e 62
10.6.3 The AccessXFeedback Control..........cocoveeviriinenienenienenienienrenieeteneeeesaeenee 63
10.6.4 AccessXINOtIfY EVENScoiiiiriiiiiiiiirieierceeseeestecteeete e 64

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-2

The X Keyboard Extension

11

12

13

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events..........cccccceieeieninieneenennenne. 65
10.6.6 The SIOWKEYS CONMIOL......cc.eeiiiiieiiitieiieiteie ettt 65
10.6.7 The BounceKeys CONtrol.........cceeciirieriiniinierieie ettt 66
10.6.8 The StickyKeys CONtrol.........c.couieiiiriieriiniee ettt 67
10.7 Controls for General Keyboard Mapping..........ceevveevueerieenienienniienieeieesieesiee e esiee e 68
10.7.1 The GroupsWrap CONtrolccceeriiriiiirieniiienieeieente ettt s s 69
10.7.2 The IgnoreLockMods CONIOLc.ccovuierieriiienieiiieniie ettt 69
10.7.3 The IgnoreGroupLock CONtrolcoceevieriiienieriiiiiieeieenie et 70
10.7.4 The InternalMods CONtrol............cccooeeviirieririenenienenieeereeerere e 70
10.8 The XKbControlSREC StIrUCLUIEc..ccuiviiiiiiiiiiiiciteecee e 71
10.9 QUETYING CONLIOLS ...ttt sttt ettt st be e e 77
10.10 Changing CONIOLS.ccoutiriieriierieeieerite ettt et et e et e st e et esaee e bt e satesbeesabesseesaseeseesanean 77
10.10.1 The XkbControlsChangesRec StruCturecccuevvveerierrieenieeiiiienieeiee e 78
10.11 Tracking Changes to Keyboard CONtrolscccccoeevierienienieniinienenieneeieneeienieeieniens 79
10.12 Allocating and Freeing an XKbControlSRECcc.eecuivieiiinieiiiieieeeeeeee e 80
10.13 The Miscellaneous Per-client CONtrolsc.ccecerievienieiiinieniineeeeeeneerene e 81
X LIbrary CONIOLSccoouueiiiiiiiiieiieceeee et 82
11.1 Controls Affecting Keycode-to-String Translationccceeceeiererienieiieneeienceeeeeene 82
11.1.1 ForceLatin 1LOOKUP. ...cc.ceuiitieiitieiecteee ettt 82
11.1.2 ConsumeLOOKUPMOMSc...ooruiiriiiniiiiieiienieesteeeeite ettt 82
11.1.3 AlwaysConsumeShiftANdLOCKcoociriiiiriiiiiieee e 83
11.2 Controls Affecting CompoSe PrOCESSINGcovveeriiriiieriiiiiiiieeiteeieeiee st 83
11.2.1 ConsumeKeysOnComposeFailcccoocieriiiiniiiiiiniiiiieniceeeeee e 83
11.2.2 ComMPOSELED........ciiiiiiiieiieiieettete ettt ettt ettt ettt e e sane s 84
11.2.3 BeepOnComposeFailccoouiiiiiiiiiiiiiiiiniiesieeeee ettt 84
11.3 Controls Effecting Event DEIIVETYccocceviiiiiiiiiniiieieiieenteeceeteeeee e 84
11.3.1 IgnoreNewKeyboardsccccevieiiriiniineiniiiieneneeiestecteeeteeee e 84
11.4 Manipulating the Library COntrols.........coceeceeieririerenierie et 85
11.4.1 Determining Which Library Controls are Implemented..............cccccecueveeeenene. 85
11.4.2 Determining the State of the Library Controlsccccoocevieiiniieninienieieenne 85
11.4.3 Changing the State of the Library Controlsccoocevieririenenienieiereeeeeeene 85
Interpreting Key EVENLSooiiiiiiiiieiiiccce e 87
12.1 Effects of Xkb on the Core X Librarycccccoccevireenirienenienenienenieieerenieeeenieeee e 87
12.1.1 Effects of Xkb on Event State.........c.cccoovvininininininiiiicicciceceeececeeee 87
12.1.2 Effects of Xkb on MappingNotify EVentsc.cccccevevieniniicniniiininicnenienene 87
12.1.3 X Library Functions Affected by XKbcccccoceviriininiininiininiineicceiencne 88
12.2 Xkb Event and Keymap FUNCHONScc.cceiiiiiriniiirininenencieieeeeceeeeeee e 89
Keyboard GEOMEIIYcccviiiiiiieeiiieeiiee ettt ettt e e sveeesbeeeebeeeaaeessneennns 92
13.1 Shapes and OULLNEScc.eeeerierienieiienieeeeet ettt sttt ettt sae e 94
13.2 SECTIOIS ..veevtentteuteetienteettete et e bt et e s bt et e s bt ea e eb e et e eu e e bt e st e sbeeatesbeeaaesaeenbesbeenbeestenbeessenbeeneenaeenes 95
13.3 ROWS QN KEYS ..ottt ettt st et st en 95
13.4 DOOAAAS ..ot 96
13.5 Overlay Rows and Overlay Keysccccoeviririirininininienenciciccececeeeeeee e 96
13.6 Drawing a Keyboard Representation...............eevveerierrieenieiniiinieeieeeieeiee st 97
13.7 Geometry Data SIUCTUIESc...evueeiiriieienieeieeeete ettt ettt 98
13.8 Getting Keyboard Geometry From the Servercoccovievenieiinienineeeeceeeseee 104
13.9 Using Keyboard GEOMELIYccverueiriiiiiiiiieiieeite sttt ettt sttt et s 105
13.10 Adding Elements to a Keyboard GEOMELIY..........cccereeriereerienienienieienienieeeeneeeeeseenees 106

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-3

The X Keyboard Extension

13.11 Allocating and Freeing Geometry COMPONENLS..........cevuereierierrierieeienieeienieeeeseeeeeseeenees 110
14 XKkb Keyboard Mapping........c.coceeeueenieeiiinienieeniieeieesite sttt 116
14.1 Notation and TerminOlOZYccceeeuerieriirienertenerieneeeseete sttt erte e ebee e eaeeseeenees 116
14.1.1 Core Implementationccceeeerueriererienennieneeieneeesit ettt 117

14.1.2 XKb IMpIementationcc.cecereeruereenerienenieneeienieeestteie et enee e 117

14.2 Getting Map Components from the Serverccooceeviiirienieniniereeee e 118
14.3 Changing Map Components in the SEIVETccccuerieerieriieinieeieeee ettt 120
14.3.1 The XkbMapChangesRec StrUCIUIEccecveerieriieniieniieiie et 120

14.4 Tracking Changes to Map COMPONENLSc..eeveruerierernierieieniieienieeieeeeeeeeeeeneeeeeseeenees 122
14.5 Allocating and Freeing Client and Server Mapscccccoeeverierenienienieneeieseeee e 123
14.5.1 Allocating an Empty Client Mapcccoeoevieienirnenieeceeeee e 123

14.5.2 Freeing a CHENt MAPcocuevuieiiiiieieeieieeese et 124

14.5.3 Allocating an Empty Server Mapcccoccovieieiiiienieeceeeeeee e 124

14.5.4 Freeing a Server MaPcooeeiieienieiierieeeseeee sttt ettt 125

15 Xkb Client Keyboard Mapping..........cccveerieeeriieeniieeniieenieeenieeeriveeesereesiveesenes 126
15.1 The XkbClientMapReC SIUCTUIEcoouirtiriiriiniiiierieetesieeteste ettt s 127
15.2 KOy T DS ettt ettt ettt ettt et e bt et e bt et e satebesae e b ene e beeneen 127
15.2.1 The Canonical Key TYPEScccovevuriiriririniniiniinenestesteieteeereeeeeeee e 129

15.2.2 Getting Key Types from the Servercooceeveiierenieninieeeeeeeee e 131

15.2.3 Changing the Number of Levels in a Key Type.......cccceeevieninieninieniieenenee. 132

15.2.4 Copying KeY TYPES....ccueeriieuieiieiieie ettt s 132

15.3 Key SYmDBOL Map.......ooiiiiiiiiiiieieneceeeeeteee ettt ettt s 133
15.3.1 Per-Key Key Type INICEScoceeruirieniriiniiieniieieneeieeeceeeeee e 133

15.3.2 Per-Key Group Informationcecceeeeveenienenieeneneenienieieneenieeeenrceeeneeenes 134

15.3.3 KeY WIdth c.cceiiiiiiiiiieceecee ettt 135

15.3.4 Offset in to the Symbol Map........cccecveviiiiniiiinieienieieneeieeeee e 135

15.3.5 Getting the Symbol Map for Keys from the Servercccccoceevivveninccncnne. 136

15.3.6 Changing the Number of Groups and Types Bound to a Key...........c.ccccuee.e. 137

15.3.7 Changing the Number of Symbols Bound to a Key........ccccccceeveevinveninncncnnee. 138

154 The Per-Key Modifler Mapcccceoueriiriiriiniiieneitereeeeetesiteeeteeeete st 138
15.4.1 Getting the Per-Key Modifier Map from the Servercccceceevenveencnnecncnnne. 139

16 Xkb Server Keyboard Mappingcoccueeevveeiiiieniiieeniieenieeesieeeee e 140
16.1 KEY ACHIONS ...ttt ettt ettt et et et e sb e st e bt e sabeesaeesateas 141
16.1.1 The XKbACHON SIUCLULEccutruieiiriieiierenieereneeresie ettt 142

16.1.2 The XKbANYACHON SIIUCLUTEeevveiriiieiieriiieiieeiie ettt ettt 143

16.1.3 Actions for Changing Modifiers’” State..........ccocevvveerieriieinerriieinierieenee e 143

16.1.4 Actions for Changing Group State...........cceecueerieriiienieniieenienieenee e eeeenes 145

16.1.5 Actions for Moving the POINLETccc.eevieriiinieniiiniieeieeee et 147

16.1.6 Actions for Simulating Pointer Button Press and Release............ccccceevveennnee. 148

16.1.7 Actions for Changing the Pointer Button Simulatedccocceeveeviiiniennennne. 149

16.1.8 Actions for Locking Modifiers and Group..........ccccceeeeeveeeneernieeneensieeneeneeenne 150

16.1.9 Actions for Changing the ACtive SCTeeN.........ccceevuieriiiriiiiriiiieiierieereeeeeee 153

16.1.10 Actions for Changing Boolean Controls State............ceeceeveerieeneeniieeneeneeenne 154

16.1.11 Actions for Generating MESSAZESeerueeriieriieriieniienieenieeeieesiee e eseeseeens 155

16.1.12 Actions for Generating a Different Keycodeccccevvveiviiiniiniinieenienieenn. 156

16.1.13 Actions for Generating DeviceButtonPress and DeviceButtonRelease............ 158

16.1.14 Actions for Simulating Events from Device Valuators.........c.ccceeceevcieeneeneennn. 159

16.1.15 Obtaining Key Actions for Keys from the Server............ccocevveivieniieiniennennne. 160

16.1.16 Changing the Number of Actions Bound to a Keyccccevviiiviiniiiinieniennnn. 160

16.2 KEY BERAVIOT ..ottt sttt s 161
16.2.1 RAIO GIOUPS -.cevveniiiriiieiieiteieeitete ettt sttt sttt ettt 161

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-4

The X Keyboard Extension

16.2.2 The XkbBehavior StrUCLUIEcccceriiririenieeierieeesteee et 161

16.2.3 Obtaining Key Behaviors for Keys from the Server..........ccccocevviveninienenen. 162

16.3 Explicit Components—Avoiding Automatic Remapping by the Server..........cc.cccc........ 163

16.3.1 Obtaining Explicit Components for Keys from the Server...........ccccceceeeeennenee. 163

16.4 Virtual Modifier MapPIngcoceevveeierieriinieiieneeteneetesteete sttt et 164

16.4.1 Obtaining Virtual Modifier Bindings from the Server..........ccccecevvencnenennee. 165

16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server 166

17 The Xkb Compatibility Map.......ccccceeeriiiiiiiiiiieeiieeee e 167
17.1 The XKkbCompatMap SIUCIUTEccceeeruiiriiiriieiieenite sttt siee st saee st e sieesaeeene 169

17.1.1 Xkb State to Core Protocol State Transformationcc.ccccceveeeieveenieceencenee. 169

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation............. 170

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations 173

17.2 Getting Compatibility Map Components From the Servercccccccevvevincincnncnennne. 174

17.3 Using the Compatibility Mapccoeierieiiniiienieeeeee et s 175

17.4 Changing the Server’s Compatibility Map........ccceeceeriieinieriieenieeieenie ettt 177

17.5 Tracking Changes to the Compatibility Mapcccccoceeverirnienienenienienieneeeeceeeseene 178

17.6 Allocating and Freeing the Compatibility Map........cccoceeirererinenenenenieieeeeeeeceeene 179

18 SYMDOIIC NAMESeeiiiiieiiie ettt e et e e sbe e e eeeebeeeaaeeensaeens 180
18.1 The XKbNameSREC StIUCIUIE.........coueviiiiiiiiiieieiiccse e 180

18.2 Symbolic Names MasKScccueiuieriiiiiiieieiieeiesteee ettt ettt sttt s enee s 182

18.3 Getting Symbolic Names From the Server...........ccccovveeviiniiiniiniieniciieeieseeeeeeeee 183

18.4 Changing Symbolic Names 0n the SeIver.........c.ccoceveireriinenienienieienieeeeeneeee e 183

18.5 Tracking Name CRangesccoveriieierieieeeese ettt 185

18.6 Allocating and Freeing Symbolic Names..........cceevieriienieniieenieniieee et 186

19 Replacing a Keyboard “On the Fly” ..o, 187
20 Server Database of Keyboard COmpoOnentscoocueeervieenieeenieennieennieenieeens 190
20.1 COMPONENE NAMESveeirieiieriiieiieeie ettt stte st e st e st e bt e ebe e bee s bt esbeesabeesbeesaseebes 191

20.2 Listing the Known Keyboard COmMPONENtscccccoeevuerernienienienienienienieseenieeeeseeennes 191

20.3 CompPonent HINES.......coeeiriririinininieieieieeetetetet ettt sttt ere s 192

20.4 Building a Keyboard Description Using the Server Databaseccocceeveeviienieneennne. 193

21 Attaching Xkb Actions to X Input Extension Devicescccecvevviiiiiniicnnneene 198
21.1 XKDDEVICEINTORECc.viiuiitieieiieeet ettt ettt 199

21.2 Querying Xkb Features for Non-KeyClass Input Extension Devices..........c.ccccocvevuueeee. 200

21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure..........c..ccceeneeeee. 203

21.4 Setting Xkb Features for Non-KeyClass Input Extension Devices...........ccccceverienuennnee 204

21.5 XKkbExtensionDeviceNOtify EVENL.........cociiiiiiiiiniiiiiiieeieciteeeeee et 206

21.6 Tracking Changes to EXtension DeviCescccoerviirernieniinienienienicieeteiceteceee e 207

22 DEebUZZING ALAS ..eeeuiiiiiiiieeiieeee ettt ettt s 210
TabIE 22. TGIOSSATY ..eeeueviieiiieeiiieeiieeetieeetteeeteeeettee et eeetteeesaeesssaeessseeennseeensseeensseesnseeens 211

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-5

The X Keyboard Extension

Figure 1.1

Figure 5.1

Figure 10.1
Figure 131
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 14.1
Figure 15.1
Figure 16.1
Figure 16.2
Figure 17.1
Figure 17.2
Figure 17.3
Figure 20.1

Overall XKb StrUCHUTEcooueiiiiiiiiiieeieeeeeceeeee e 2
XKD SEALE....cneteeiteeeiteeteeeteetee ettt e 19
MouseKeys ACCEIErationcovueeeriieeniiieniieeieeeieeeeeee e 61
Rotated Keyboard SeCtions.........ccccuveeriieiiiieeiiieeiieciee e 92
Keyboard with FOur SECtions..........coocveeriieeniiiiiniieeiieeieeeeeeeeeeeee e 94
ROWS 1N @ SECHOMN.....ciiiiiiiiiiiicecee e 95
Xkb Geometry Data StruCtUIeS.........cecveeerieeeriieeiiieeieeeiee e eree e 98
Xkb Geometry Data Structures (Doodads)coocveeriieiniieenieennieenieeen. 99
Xkb Geometry Data Structures (OVerlays)........ccoocueeevieennieennieennieennee. 100
Key Surface, Shape Outlines, and Bounding BoXccccceevvvevnviennnnn. 105
Shift Levels and Groups.........c.c.eeeveeriiieniiieeniieeniieerieeeeee e 117
XKD CHENE MAP....ccuiiiiiiiiiiieeeete ettt 126
Server Map RelationShipscoovvieeiiiieniiiieniiieniie et 140
Virtual Modifier Relationships..........coocuiiiiiiiiiiiiiiiiiiiiececceeeee, 165
Server Interaction with Types of Clients...........cccceveieiiiniieininnieenienen. 167
Server Derivation of State and Keyboard Mapping Components............ 168
Xkb Compatibility Data StrucCtures.coooveeeriveeriiieeniieenieeerieeeieeee 169
Building a New Keyboard Description from the Server Database 196

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOF-12

The X Keyboard Extension

Table 1.1
Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 15.1
Table 15.2
Table 15.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Function Error Returns Due to Extension Problems.............ccccccovviiiiiiiiiiennnnnn. 4
XKD ProtOCOI EITOTS ..cccuiviiiieciiiie ettt et e e et e e e e e e e nvaaaeeas 9
BadKeyboard Protocol Error resource_id Valuesccocceeveiiiiiiniiiinicennneen. 9
XKD EVENE TYPES .eeuivieiniiieeiieeeie ettt ettt ettt et e et eeibeesaaaeennnes 14
XkbSelectEvents Mask CONSLANEScccvveeeeieiieeeiiiiieeeeieeeeesiveeeeevreeeeeeeeens 17
Real Modifier MASKS.........cooiiiiieiciiee ettt e e e e eaaaeaeea 22
Symbolic Group NAMES.......cccueiiiiieiiiieeiiieeee et e e 23
XkbStateNotify Event Detail Masks........ccccoeviiiiiiiiniiiiniiiiiiceieeeceeee e 24
XkbDescRec Component Referencescoovveeeieeniieiniiieniieeniiceicceieeeee 27
Mask Bits for XKbDESCRECccooiuviiiiiiiiiiiicieeeeeee e 28
XkbIndicatorMapRec flags Field...........ccoociiiiiiiiiiiiieeceee 35

XkblIndicatorMapRec which_groups and groups, Keyboard Drives Indicator...37
XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard...37

XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator 38
XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard........ 39
Predefined Bellsc...oooiiiiiiiiie e 48
Bell Sounding and Bell Event Generatingc.ccceevvuveeriieenieeeniieenieeeeee e 49
Xkb Keyboard CONLIOLScoouiiiiiiiiiiiiieeeiieeeteeete et 53
MouseKeySACCEl FIldSoovuiiiiiiiiiiiiiie et 59
AccessXFeedback Masks.........oocuiiiiiiiiiniiiiieieeecceece e 63
AcCesSXNOLY EVENTSooiiiiiiiiiiiiiiii e 64
AccessXNotify Event Detailsccceoviiiiiiieiiiieiiieeeeeeesee e 65
XKD CONLIOLS ..ttt ettt 72
Controls Mask BItSeoiiiiiiiiiiiiiieeceeeeee e 73
GroupsWrap options (groups_wrap field)cccecveeriiiiniieiniieeiieeeeeee e, 74
Access X Enable/Disable Bits (ax_options field)cccoceeeviiiiniieinicinnieennee. 75
Library Control Masksccoouiiiiiiiiiiiiiciecetecee e 85
DO0AAA TYPLS .nvvieenieieeiieeeteeee ettt et et e e e 96
Xkb Mapping Component Masks and Convenience Functions..............c......... 118
XkbMapChangesRec Masks.......coccueiiiiiiiiiiiiiiiiieeceececeeceee e 121
XKbAIOcClientMap Maskscovuiiiriiiiriieeieeeieeeteeeee e 123
XKbAIlocServerMap Masks........coouiiiiiiiiiiiiiiiieeieeeteeeiee e 124
Example Key TYPEccouiiiiiiiiiie e 128
group_info Range Normalizationccceeveuvieriiieiniieeniie e 134
Group IndeX CONSLANLSeeeviiiiiriiieeiiieeriee ettt et et sireesieee e 137
ACHON TYPES ittt ettt e e e e 143
MOdIfier ACHON TYPES ..vveeeuriieriieeeiieeeiteeeiee et ettt e st e e sreeeeaeeeereeenns 144
Modifier ACtion FIagscc.cooiiiiiiiiiiiiiiieeeiee e 145
Group ACHION TYPES ..cuvieiiiiiiiiieeeiee ettt 146
Group ACtiON FIags......cooiiiiiiiiieiiieeeece ettt e 146
PoInter ACtION TYPES......eeiiiiiiiiiiiiiieeite ettt 147

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 16.16
Table 16.17
Table 16.18
Table 16.19
Table 16.20
Table 16.21
Table 17.1
Table 17.2
Table 18.1
Table 18.2
Table 19.1
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 21.1
Table 22.1

Pointer Button AcCtion TYPeS.......coccueeeriiiiiiieeiiieeieeeiteeeiee et see e e e 149
Pointer Button Action FIagscceeiiiiiiiiiiiiiieiieeeiceeeecee e 149
Pointer Default F1agsccccooiiiiiiiiiiiieeeee e 150
ISO Action Flags when XkbSA_ISODAItISGroup is Setcccceevveevviveenrirennns 151
ISO Action Flags when XkbSA_ISODAltIsGroup is Not Setc.ccceevvenunennee. 152
ISO Action Affect Field Valuesccooeeviiiiiiiiiiiiieeeceeceeen 152
Switch Screen Action FIagscc.ooviiiiiiiiiniiiieiieeieeeee e 153
Controls ACtION TYPES ...covuiviiiiiiiiiieeeieeeiee ettt s 154
Control Action FIags......ccoouueiiiiiiiiieiieeieeceee e 154
Message ACtion FIagsccueevoiiiiiiiiiiie e 155
Device Button AcCtion TYPESccoeuieiriieiiiieiiieeiiieeeiteesiee et 158
Device Button Action FIags........cccueiiiiiiiiiiiiiiiiieceeceeceeceeeeeeee 158
Device Valuator v<n>_what High Bits Valuesc.cccccocvvieviiiiniiiiniieniees 159
KeY BERAVIOTScoiuiiiiiiiiieiieeeeeee ettt 161
Explicit Component Masks.........coocueiiriiiiiiiiiiiiiiieeeiceee e 163
Symbol Interpretation Match Criteria.........ooocveeeviiieriiieeniiieeniieeiee e 172
Compatibility Map Component Masks...........ccceevuiiiniiiiniiiiniieiieeeieeeieee 174
Symbolic Names Masks......cccueiiiiiiiiiiiieiececeteeee e 182
XkbNameChanges Fields.........cc.eoviiiiiiiiiiiieiiieeieeceeeee e 184
XkbNewKeyboardNotifyEvent Details...........cccceevieiriiiiniiiiiniieiiieeieeeieee 188
Server Database Keyboard Components...........ccccceeveeeuieniiinieenieeenieneeeieenene 190
XkbComponentNameRec Flags Bits.........cccovvieiiiieniiieniiieciieeieeeiee e 193
Want and Need Mask Bits and Required Names Components.............c.....c..... 195
XkbDescRec Components Returned for Values of Want & Needs 197
XkbDeviceInfoRec Mask Bitscoooueiiiiniiiiiiniiiieniececceeeeeeee e 200
Debug Control Masksccoueeeiiiiiiiiiiiieiiee ettt 210

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOT-2

The X Keyboard Extension 1 Overview

1.1

1.2

1.3

Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifies the ways that the Shift, Control, and Lock modifiers
and the modifiers bound to the Mode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows users to specify that a key affects
one or more modifiers. This behavior is simple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with ISO9995, or a host of other national and international standards.

* A second keyboard group may be specified using a modifier, but this has side effects
that wreak havoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number of keyboard groups to two.

* Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine that keys should lock when pressed. This leads to incompatibilities
between X servers with no way for clients to detect implementation differences.

* Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system wide and X library capitalization behavior.

* Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

* The lack of any explicit descriptions for indicators, most modifiers, and other aspects
of the keyboard appearance requires clients that wish to clearly describe the keyboard
to a user to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

November 10, 1997 Library Version 1.0/Document Revision 1.1 1

The X Keyboard Ex

tension

1 Overview

Figure 1.1 shows the overall structure of the Xkb extension:

Xkb Extension
Xkb-aware Xkb-capable | | Xkb-unaware
User User User Kevboard
Application Application Application y
Core Xlib X Server
Xkb Server Extension
Xkb Core Xlib |4 |------- T e
Additions | Client Map | Server Map | Compatibility Map
to Xl;b Xkb Modifications | | 777777 T S
(Xkb to Core Xlib Controls | Indicator Map | Names | Geometry
functions) functions ' :

!

Server Database of
Keyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the

server maintains a keyboard description that includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map

The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

November 10, 1997 Library Version 1.0/Document Revision 1.1 2

The X Keyboard Extension 1 Overview

1.3.1

1.3.2

1.4

Indicators

The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
group XkbKB_RadioGroup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

* Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

* Xkb-capable applications
These applications make no use of Xkb extended functionality and Application Pro-
gramming Interfaces (APIs) directly. However, they are linked with a version of Xlib
that includes Xkb and indirectly benefit from some of Xkb’s features.

November 10, 1997 Library Version 1.0/Document Revision 1.1 3

The X Keyboard Extension 1 Overview

1.5

1.6

1.7

1.7.1

* Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs and require
Xkb’s functionality to be mapped to core Xlib functionality to operate properly.

Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated events to core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol error, BadKeyboard, to the core protocol error
set. See section 2.6 for a discussion of the BadKeyboard protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of this test, BadAc—
cess and BadMatch (due to incompatible versions) protocol errors should normally not
be generated.

Table 1.1 Function Error Returns Due to Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

1. X11R6.1 is the first release by the X Consortium, Inc.,that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

November 10, 1997 Library Version 1.0/Document Revision 1.1 4

The X Keyboard Extension 1 Overview

Many Xkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they simply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, a Bool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

November 10, 1997 Library Version 1.0/Document Revision 1.1 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

* <X11/XKBlib.h>
XKBlib.h isthe main header file for Xkb; it declares constants, types, and functions.
* <Xll/extensions/XKBstr.h>
XKBstr.h declares types and constants for Xkb. It is included automatically from
<X11/XKB1lib.h>; you should never need to reference it directly in your application
code.
* <Xll/extensions/XKB.h>
XKB.h defines constants for Xkb. It is included automatically from <X11 /XKB—
str.h>; you should never need to reference it directly in your application code.
e <Xll/extensions/XKBgeom.h>
XKBgeom.h declares types, symbolic constants, and functions for manipulating key-
board geometry descriptions.

Extension Name
The name of the Xkb extension is given in <X11/extensions/Xkb.h>:
#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calling XInitExtension and passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should not call XInitExtension directly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, call XkbLibraryVersion.

Bool XkbLibraryVersion(lib_major_in_out, lib_minor_in_out)
int * lib_major_in_out; /¥ specifies and returns the major Xkb library version. */
int * [ib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic value XkbMa jorVersion in lib_major_in_out and XkbMinorVer—
sion in lib_minor_in_out. These arguments represent the version of the library used at
compile time. The XkbLibraryVersion function backfills the major and minor version
numbers of the library used at run time in lib_major_in_out and lib_minor_in_out. If the

November 10, 1997 Library Version 1.0/Document Revision 1.1 6

The X Keyboard Extension 2 Initialization and General Programming

versions of the compile time and run time libraries are compatible, XkbLibraryVersion
returns True, otherwise, it returns False.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. Use XkbQueryExtension to do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtension to check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism functions (XQueryExtension and XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

You must call XkbQueryExtension or XkbOpenDisplay before using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions are: XkbIgnoreExtension, XkbLibraryVersion, and a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library functions made prior to initializ-
ing the Xkb extension cause BadAccess protocol errors.

XkbQueryExtension both determines whether a compatible Xkb extension is present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_out)

Display * dpy; /* connection to the X server */

int * opcode_rtrn; /* backfilled with the major extension opcode */

int * event_rtrn; /* backfilled with the extension base event code */

int * error_rtrn; /* backfilled with the extension base error code */

int * major_in_out; /* compile time lib major version in, server major version out */
int * minor_in_out; /* compile time lib min version in, server minor version out */

The XkbQueryExtension function determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is present, XkbQue-
ryExtension returns True; otherwise, it returns False.

If a compatible version of Xkb is present, XkbQueryExtension initializes the extension. It
backfills the major opcode for the keyboard extension in opcode_rtrn, the base event code
in event_rtrn, the base error code in error_rtrn, and the major and minor version numbers
of the extension in major_in_out and minor_in_out. The major opcode is reported in the

req_major fields of some Xkb events. For a discussion of the base event code, see section
4.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the function XkbOpenDisplay to perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char *display_name; [* hardware display name, which determines the display and
communications domain to be used */
int * event_rtrn, /* backfilled with the extension base event code */
int * error_rtrn, /* backfilled with the extension base error code */
int * major_in_out; /* compile time lib major version in, server major version out */
int * minor_in_out, /* compile time lib minor version in, server minor version out */
int * reason_rtrn; /* backfilled with a status code */

XkbOpenDisplay is a convenience function that opens an X display connection and initial-
izes the X keyboard extension. In all cases, upon return reason_rtrn contains a status value
indicating success or the type of failure. If major_in_out and minor_in_out are not NULL,
XkbOpenDisplay first calls XkbLibraryVersion to determine whether the client library is
compatible, passing it the values pointed to by major_in_out and minor_in_out. If the
library is incompatible, XkbOpenDisplay backfills major_in_out and minor_in_out with
the major and minor extension versions of the library being used and returns NULL. If the
library is compatible, XkbOpenDisplay next calls XOpenDisplay with the display_name.
If this fails, the function returns NULL. If successful, XkbOpenDisplay calls XkbQueryEx-
tension and backfills the major and minor Xkb server extension version numbers in
major_in_out and minor_in_out. If the server extension version is not compatible with the
library extension version or if the server extension is not present, XkbOpenDisplay closes
the display and returns NULL. When successful, the function returns the display connec-
tion.

The possible values for reason_rtrn are:

* XkbOD_BadLibraryVersion indicates XkbLibraryVersion returned False.

* XkbOD_ConnectionRefused indicates the display could not be opened.

* XkbOD_BadServerVersion indicates the library and the server have incompatible
extension versions.

* XkbOD_NonXkbServer indicates the extension is not present in the X server.

* XkbOD_Success indicates that the function succeeded.

Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the preXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtension to prevent core X library keyboard functions from using the X
Keyboard Extension. You must call XkbIgnoreExtension before you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkbIgnoreExtension(ignore)
Bool ignore; [* True means ignore the extension */

November 10, 1997 Library Version 1.0/Document Revision 1.1 8

The X Keyboard Extension 2 Initialization and General Programming

2.6

2.7

XkbIgnoreExtension tells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignore is True, the library does not initial-
ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore is False, the library treats subsequent calls to XOpenDisplay normally
and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabled. XkbIgnoreExtension returns False if it was unable to apply
the ignore request.

Protocol Errors

Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this document as a BadXxx protocol error, where
Xxx 1s some name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table 2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb extension has not been properly initialized

BadKeyboard The device specified was not a valid core or input extension device

BadImplementation Invalid reply from server

BadAlloc Unable to allocate storage

BadMatch A compatible version of Xkb was not available in the server or an argument
has correct type and range, but is otherwise invalid

BadValue An argument is out of range

BadAtom A name is neither a valid Atom or None

BadDevice Device, Feedback Class, or Feedback ID invalid

The Xkb extension adds a single protocol error, BadKeyboard, to the core protocol error
set. This error code will be reported as the error_rtrn when XkbQueryExtension is called.
When a BadKeyboard error is reported in an XErrorEvent, additional information is
reported in the resource_id field. The most significant byte of the resource_id is a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback ID as indicated in the table.

Table 2.2 BadKeyboard Protocol Error resource_id Values

high-order byte value meaning low-order byte
XkbErr_BadDevice Oxff device not found device ID
XkbErr_BadClass Oxfe device found, but it is of the wrong class class ID
XkbErr_Badld Oxfd device found, class ok, but device does not feedback ID

contain a feedback with the indicated ID

Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPtr is also passed as an argument, the Display* argument must match the dpy
field of the XkbDescRec pointed to by the XkbDescPtr argument, or else the dpy field
of the XkbDescRec must be NULL. If they don’t match or the dpy field is not NULL, a

November 10, 1997 Library Version 1.0/Document Revision 1.1 9

The X Keyboard Extension 2 Initialization and General Programming

BadMatch error is returned (either in the return value or a backfilled Status variable).
Upon successful return, the dpy field of the XkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
quently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display * dpy) and a device identifier (unsigned int device_spec). In some cases, the
device identifier is implicit and is taken as the device_spec field of an XkbDescRec struc-
ture passed as an argument.

The device identifier can specify any X input extension device with a KeyClass compo-
nent, or it can specify the constant, XkbUseCoreKbd. The use of XkbUseCoreKbd
allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument and an XkbDescPtr is also
passed as an argument, if either the argument or the XkbDescRec device_spec field is
XkbUseCoreKbd, and if the function returns successfully, the XkbDescPtr device_spec
field will have been converted from XkbUseCoreKbd to a real Xkb device ID. If the func-
tion does not complete successfully, the device_spec field remains unchanged. Subse-
quently, the device id argument must match the device_spec field of the XkbDescPtr
argument. If they don’t match, a BadMatch error is returned (either in the return value or
a backfilled Status variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when you use XkbUseCoreKbd,
XkbUseCoreKbd will work and the identifier returned by the server will refer to the core
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of subcomponents to be allocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s an XkbResizeKeyType function.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed by sz_, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixed by num_, specifies

November 10, 1997 Library Version 1.0/Document Revision 1.1 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

* (Call the allocator function with some arbitrary size, as a hint.
* For those arrays that have an Xkb...Add... function, call it each time you want to add
new data to the array. The function expands the array if necessary.

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I’ll need space for four new shapes in this geometry.” This makes sure that
sz_shapes - num_shapes >= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checks the sz_ and num__ fields of the array, resizes the
array if necessary, adds the entry to the array, and then updates the num__ field.

Making Changes to the Server’s Keyboard Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate special changes data structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flags in the
changes data structure causes indeterminate behavior.

Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 12

The X Keyboard Extension 3 Data Structures

When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes” event information in the corresponding changes data structure.
These “note changes” functions are defined for all major Xkb components, and their
names have the form XkbNote{ Component}Changes, where Component is the name of a
major Xkb component such as Map or Names. When you want to copy these changes from
the server into a local copy of the keyboard description, use the corresponding Xkb-
Get{Component}Changes function, passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directly use malloc to allocate Xkb data structures,
you should not free Xkb data structures or components directly using free or Xfree. Xkb
provides functions to free the various data structures and their components. Always use
the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed by free or Xfree.

November 10, 1997 Library Version 1.0/Document Revision 1.1 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clients is by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the keyboard.l

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. You may request Xkb events by calling either XkbSelect-
Events or XkbSelectEventDetails. XkbSelectEvents requests Xkb events by their event type
and causes them to be reported to your client application under all circumstances. You can
specify a finer granularity for event reporting by using XkbSelectEventDetails; in this case
events are reported only when the specific detail conditions you specify have been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type
is defined by two fields in the X event data structure. One is the fype field, containing the
base event code. This base event code is a value the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event code in
the rype field identifies the event as an Xkb extension event, rather than an event from
another extension or a core X protocol event. You can obtain the base event code via a call
to XkbQueryExtension or XkbOpenDisplay. The second field is the Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the header file <X I/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined in Xkb.h. Each event is described in more detail in the section referenced for that
event.

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboardNotify Keyboard geometry; keycode range change 19 187
XkbMapNotify Keyboard mapping change 14.4 122
XkbStateNotify Keyboard state change 5.4 25
XkbControlsNotify Keyboard controls state change 10.11 79
XkbIndicatorStateNotify Keyboard indicators state change 8.5 45
XkbIndicatorMapNotify Keyboard indicators map change 8.5 45
XkbNamesNotify Keyboard name change 18.5 185
XkbCompatMapNotify Keyboard compatibility map change 17.5 178
XkbBellNotify Keyboard bell generated 9.4 52

1. The one exception to this rule is the XkbExtensionDeviceNotify event report that is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

November 10, 1997 Library Version 1.0/Document Revision 1.1 14

The X Keyboard Extension 4 Xkb Events

4.2

4.3

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbActionMessage Keyboard action message 16.1.11 155
XkbAccessXNotify AccessX state change 10.6.4 65
XkbExtensionDeviceNotifyExtension device change 21.6 207

Xkb Event Data Structures

Xkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event is reporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures and are described in the XkbAnyEvent structure:

typedef struct {

int type; /* Xkb extension base event code */

unsigned long serial; /* X server serial number for event */

Bool send_event; /* True => synthetically generated */

Display * display; /* server connection where event generated */
Time time; /* server time when event generated */

int xkb_type; /* Xkb minor event code */

unsigned int device; /* Xkb device ID, will not be XkbUseCoreKbd */

} XkbAnyEvent;

For any Xkb event, the type field is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension events. The serial, send_event, and display
fields are as described for all X11 events. The time field is set to the time when the event
was generated and is expressed in milliseconds. The xkb_type field contains the minor
extension event code, which is the extension event type, and is one of the values listed in
Table 4.1. The device field contains the keyboard device identifier associated with the
event. This is never XkbUseCoreKbd, even if the request that generated the event speci-
fied a device of XkbUseCoreKbd. If the request that generated the event specified
XkbUseCoreKbd, device contains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extension device, device
contains that same identifier.

Other data fields specific to individual Xkb events are described in subsequent chapters
where the events are described.

Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteria for any one event, Xkb allows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When select-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

November 10, 1997 Library Version 1.0/Document Revision 1.1 15

The X Keyboard Extension 4 Xkb Events

You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb events. XkbSelect-
Events allows you to select or deselect delivery of more than one Xkb event type at once.
Events selected using XkbSelectEvents are delivered to your program under all circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, use XkbSelectEventDetails. XkbSelectEventDetails only
allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, use XkbSelectEvents.

Bool XkbSelectEvents(display, device_spec, bits_to_change, values_for_bits)
Display * display; /* connection to the X server */
unsigned int device_spec, [* device ID, or XkbUseCoreKbd */
unsigned long int bits_to_change; /* determines events to be selected / deselected */
unsigned long int values_for_bits;/* 1=>select, 0->deselect; for events in bits_to_change */

This request changes the Xkb event selection mask for the keyboard specified by
device_spec.

Each Xkb event that can be selected is represented by a bit in the bits_to_change and
values_for_bits masks. Only the event selection bits specified by the bits_to_change
parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in the bits_to_change parameter and set the corre-
sponding bit in the values_for_bits parameter. To turn off event selection for an event, set
the bit for the event in the bits_to_change parameter and do not set the corresponding bit
in the values_for_bits parameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. There is no interface to return your
client’s current event selection mask. Clients cannot set other clients’ event selection
masks.

If a bit is not set in the bits_to_change parameter, but the corresponding bit is set in the
values_for_bits parameter, a BadMatch protocol erro