X Toolkit Intrinsics — C Language Interface
X Window System

X Version 11, Release 6.4

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Converse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is’” without express or implied

warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Haynes, Mike Chow,
and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)
Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrinsics present an
entirely different programming style, they borrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the above, as well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 Intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March 1988

xi

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals have dedicated significant time to suggesting improvements to the Intrin-
sics:

Steve Pitschke (Stellar) C. Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (AT&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dov (HP) Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988
From Release 3 to Release 4, several new members joined the design team. We greatly appreciate

the thoughtful comments, suggestions, lengthy discussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Converse (MIT) Clive Feather (IXT)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational process for many of
us, and Bill and Frank’s tutelage has carried us through. Vania Joloboff of the OSF also contrib-
uted to the internationalization additions. The implementation efforts of Bill, Gabe Beged-Dov,
and especially Donna Converse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989

and
July 1991

xii

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengthy discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. They deserve recognition and thanks for their
major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)

Vania Joloboff (OSF) Kaleb Keithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people deserve thanks for their contributions:
Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Grotsky, Keith Edwards, Clive
Feather, Stephen Gildea, Dan Heller, Steve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-
bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGilder, Will Walker, and Mike Wexler.

I am especially grateful to two of my colleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithley for leadership in the implementation and the specification work.

Donna Converse
X Consortium
April 1994

xiii

About This Manual

X Toolkit Intrinsics — C Language Interface is intended to be read by both application program-
mers who will use one or more of the many widget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, however, applies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is likely to use many more, if not all, of the Intrinsics functions
in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application programmer. (It is assumed the widget pro-
grammer will have to be familiar with all the information.) Therefore, all entries in the table of
contents that are printed in bold indicate the information that should be of special interest to an
application programmer.

It is also assumed that, as application programmers become more familiar with the concepts dis-
cussed in this manual, they will find it more convenient to implement portions of their applica-
tions as special-purpose or custom widgets. It is possible, nonetheless, to use widgets without
knowing how to build them.

Conventions Used in this Manual
This document uses the following conventions:

. Global symbols are printed in this special font. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printed in italics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return.

xiv

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The Intrinsics
and a widget set make up an X Toolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and application environments. The Intrinsics are a layer on top of Xlib, the C Library
X Interface. They extend the fundamental abstractions provided by the X Window System while
still remaining independent of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows program-
mers to extend a widget set in new ways, either by deriving new widgets from existing ones (sub-
classing) or by writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a widget class
named Core. In Release 4 of the Intrinsics, three nonwidget superclasses were added above Core.
These superclasses are described in Chapter 12. The name of the class now at the root of the
Intrinsics class hierarchy is Object. The remainder of this specification refers uniformly to wid-
gets and Core as if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence to widget actually means “widget” or “object.”

1.2. Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X display. The Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather than by value. The interfaces primarily
intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming conventions apply. In this specification, the term client
refers to any module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/Intrinsic.h>
and <X11/StringDefs.h>, or their equivalent, and they may also include <X11/Xatoms.h> and
<X11/Shell.h>. In addition, widget implementations should include <X11/IntrinsicP.h> instead
of <X11/Intrinsic.h>.

X Toolkit Intrinsics X11 Release 6.4

The applications must also include the additional header files for each widget class that they are
to use (for example, <X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). On a POSIX-based sys-
tem, the Intrinsics object library file is named libXt.a and is usually referenced as —1Xt when
linking the application.

1.3. Procedures and Macros

All functions defined in this specification except those specified below may be implemented as C
macros with arguments. C applications may use “#undef” to remove a macro definition and
ensure that the actual function is referenced. Any such macro will expand to a single expression
that has the same precedence as a function call and that evaluates each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that may expand
their arguments in a manner other than that described above: XtCheckSubclass, XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X window and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointer or keyboard input, and others change their dis-
play in response to input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allowable on widgets of that class. Logically, a widget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physically, a widget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constant” means the class structure is initialized at compile time and never
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is created.) For further informa-
tion, see Section 2.5.

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is cus-
tomizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

X Toolkit Intrinsics

1.4.1. Core Widgets

X11 Release 6.4

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined by the CoreClassPart and CorePart

structures.

1.4.1.1. CoreClassPart Structure

All widget classes contain the fields defined in the CoreClassPart structure.

typedef struct {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;

XtWidgetClassProc class_part_initialize;

XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean compress_motion;
XtEnum compress_exposure;
Boolean compress_enterleave;
Boolean visible_interest;
XtWidgetProc destroys;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtAcceptFocusProc accept_focus;
XtVersionType version;
XtPointer callback_private;
String tm_table;

XtGeometryHandler query_geometry;

XtStringProc display_accelerator;
XtPointer extension;
} CoreClassPart;

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6
See Section 1.6
See Section 1.6
See Section 2.5
See Section 2.5
See Section 2.6
See Chapter 10
See Chapter 10
See Chapter 9
See Chapter 9
Private to resource manager
See Section 7.9
See Section 7.9
See Section 7.9
See Section 7.10
See Section 2.8
See Chapter 6
See Section 7.10
See Section 9.7
See Section 9.7
See Section 9.7
See Section 9.7
See Section 7.3
See Section 1.6
Private to callbacks
See Chapter 10
See Chapter 6
See Chapter 10
See Section 1.6

All widget classes have the Core class fields as their first component. The prototypical Widget-
Class and CoreWidgetClass are defined with only this set of fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are

In IntrinsicP.h:

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h:

extern WidgetClass widgetClass, coreWidgetClass;

The opaque types Widget and WidgetClass and the opaque variable widgetClass are defined
for generic actions on widgets. In order to make these types opaque and ensure that the compiler
does not allow applications to access private data, the Intrinsics use incomplete structure defini-
tions in Intrinsic.h:

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CorePart Structure

All widget instances contain the fields defined in the CorePart structure.

X Toolkit Intrinsics

typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed;

Boolean sensitive;

Boolean ancestor_sensitive;
XtTranslations accelerators;
Pixel border_pixel;

Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;

Colormap colormap;
Window window;

Cardinal depth;

Pixel background_pixel;
Pixmap background_pixmap;
Boolean visible;

Boolean mapped_when_managed;

Described below
See Section 1.6
See Section 2.5
See Section 2.8
See Section 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
See Section 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 7.10
See Chapter 3

X11 Release 6.4

} CorePart;

All widget instances have the Core fields as their first component. The prototypical type Widget
is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to make these types opaque and ensure that the compiler does not allow applications to
access private data, the Intrinsics use incomplete structure definitions in Intrinsic.h.

typedef struct _WidgetRec *Widget, *CoreWidget;

X Toolkit Intrinsics

1.4.1.3. Core Resources

X11 Release 6.4

The resource names, classes, and representation types specified in the coreClassRec resource list

are
Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via the objectClassRec and rectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Default Value

self Address of the widget structure (may not be changed).
widget_class widget_class argument to XtCreateWidget (may not be changed).
parent parent argument to XtCreateWidget (may not be changed).

being_destroyed
destroy_callbacks
constraints

X

y

width

height
border_width
managed
sensitive
ancestor_sensitive
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

Parent’s being_destroyed value.

NULL
NULL

0
0
0
0
1

False
True

logical AND of parent’s sensitive and ancestor_sensitive values.

NULL
XtDefaultForeground
XtUnspecifiedPixmap
NULL

0

name argument to XtCreateWidget (may not be changed).

X Toolkit Intrinsics X11 Release 6.4

screen Parent’s screen; top-level widget gets screen from display specifier
(may not be changed).

colormap Parent’s colormap value.

window NULL

depth Parent’s depth; top-level widget gets root window depth.

background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_man- True

aged

XtUnspecifiedPixmap is a symbolic constant guaranteed to be unequal to any valid Pixmap id,
None, and ParentRelative.

1.4.2. Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by the CompositeClassPart and CompositePart structures.

1.4.2.1. CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class fields.

typedef struct {

XtGeometryHandler geometry_manager; See Chapter 6
XtWidgetProc change_managed; See Chapter 3
XtWidgetProc insert_child; See Chapter 3
XtWidgetProc delete_child,; See Chapter 3
XtPointer extension; See Section 1.6

} CompositeClassPart;

The extension record defined for CompositeClassPart with record_type equal to NULLQUARK
is CompositeClassExtensionRec.

typedef struct {

XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allows_change_managed_set; See Section 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core class fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are

In IntrinsicP.h:

extern CompositeClassRec compositeClassRec;

In Intrinsic.h:

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the opaque variable
compositeWidgetClass are defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant for the CompositeClassExtension version
identifier is XtCompositeExtensionVersion (see Section 1.6.12). Intrinsic.h uses an incom-
plete structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following instance
fields defined in the CompositePart structure.

typedef struct {

WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets have the Composite instance fields immediately following the Core instance
fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. Composite Resources

The resource names, classes, and representation types that are specified in the compositeClass-
Rec resource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClnsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0

num_slots 0

insert_position Internal function to insert at end

The children, num_children, and insert_position fields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read by any client but
should only be modified by the composite widget class procedures.

1.4.3. Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’s geometry. The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

X Toolkit Intrinsics X11 Release 6.4

1.4.3.1. ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the fol-
lowing class fields.

typedef struct {

XtResourceList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destroy; See Section 3.6
XtSetValuesFunc set_values; See Section 9.7.2
XtPointer extension; See Section 1.6

} ConstraintClassPart;

The extension record defined for ConstraintClassPart with record_type equal to NULLQUARK
is ConstraintClassExtensionRec.

typedef struct {

XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_values_hook; See Section 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are

In IntrinsicP.h:

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h:

10

X Toolkit Intrinsics X11 Release 6.4

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the opaque variable con-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant for the ConstraintClassExtension version identi-
fier is XtConstraintExtensionVersion (see Section 1.6.12). Intrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

1.4.3.2. ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in the ConstraintPart structure

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. Constraint Resources

The constraintClassRec core_class and constraint_class resources fields are NULL, and the
num_resources fields are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

11

X Toolkit Intrinsics X11 Release 6.4

1.5. Implementation-Specific Types

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics define several types whose precise representation is explicitly dependent
upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero value. Unless explicitly stated, clients
should not assume that the nonzero value is equal to the symbolic value True.

Cardinal An unsigned integer datum with a minimum range of [0..2716-1].
Dimension An unsigned integer datum with a minimum range of [0..2°16-1].
Position A signed integer datum with a minimum range of [-2715..2"15-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function pointer, struc-
ture pointer, or long value. A pointer to any type or function, or a long value may
be converted to an XtPointer and back again and the result will compare equal to
the original value. In ANSI C environments it is expected that XtPointer will be
defined as void*.

XtArgVal A datum large enough to contain an XtPointer, Cardinal, Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct values, two of which
are the symbolic values True and False. The symbolic values TRUE and FALSE
are also defined to be equal to True and False, respectively.

In addition to these specific types, the precise order of the fields within the structure declarations
for any of the instance part records ObjectPart, RectObjPart, CorePart, CompositePart,
ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. These structures may also have additional private fields internal to the implementation.
The ObjectPart, RectObjPart, and CorePart structures must be defined so that any member
with the same name appears at the same offset in ObjectRec, RectObjRec, and CoreRec (Wid-
getRec). No other relations between the offsets of any two fields may be assumed.

1.6. Widget Classing

The widget_class field of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; rather, they implement procedures, called methods, that are
available through their widget class structure. These methods are invoked by generic procedures
that envelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the
amount of code and declarations necessary to make a new widget class that is similar to an exist-
ing class. For example, you do not have to describe every resource your widget uses in an XtRe-
sourceList. Instead, you describe only the resources your widget has that its superclass does not.
Subclasses usually inherit many of their superclasses’ procedures (for example, the expose proce-
dure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether you have chosen the most appropriate
superclass.

12

X Toolkit Intrinsics X11 Release 6.4

To make good use of subclassing, widget declarations and naming conventions are highly styl-
ized. A widget consists of three files:

A public .h file, used by client widgets or applications.
A private .h file, used by widgets whose classes are subclasses of the widget class.

A .c file, which implements the widget.

1.6.1. Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writing new widgets:

Use the X library naming conventions that are applicable. For example, a record compo-
nent name is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). Type and procedure names start with uppercase and use capitaliza-
tion for compound words (for example, ArgList or XtSetValues).

A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscore. To let the compiler catch spelling errors, each
resource name should have a symbolic identifier prefixed with “XtN”’. For example, the
background_pixmap field has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string ‘“‘backgroundPixmap’’. Many predefined names are listed in
<X11/StringDefs.h>. Before you invent a new name, you should make sure there is not
already a name that you can use.

A resource class string starts with a capital letter and uses capitalization for compound
names (for example, ‘“BorderWidth’”). Each resource class string should have a symbolic
identifier prefixed with “XtC” (for example, XtCBorderWidth). Many predefined classes
are listed in <X11/StringDefs.h>.

A resource representation string is spelled identically to the type name (for example,
“TranslationTable’”). Each representation string should have a symbolic identifier prefixed
with “XtR” (for example, XtRTranslationTable). Many predefined representation types are
listed in <X11/StringDefs.h>.

New widget classes start with a capital and use uppercase for compound words. Given a
new class name AbcXyz, you should derive several names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names
use uppercase (for example, “Highlight” and “NotifyClient”).

13

X Toolkit Intrinsics X11 Release 6.4

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global
symbols, or as a mixture of the two. The (implicit) type of the identifier is String. The pointer
value itself is not significant; clients must not assume that inequality of two identifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environments, they also intro-
duce the possibility of multiple definition conflicts when applications attempt to use indepen-
dently developed widgets simultaneously.

1.6.2. Widget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains
. A reference to the public .h file for the superclass.

. Symbolic identifiers for the names and classes of the new resources that this widget adds to
its superclass. The definitions should have a single space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

. Type declarations for any new resource data types defined by the class.
. The class record pointer variable used to create widget instances.

. The C type that corresponds to widget instances of this class.

. Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"

#define XtNforeground "foreground"
#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSetText();
/* Widget w */
/* String text */

extern String LabelGetText();
/* Widget w */

#endif LABEL_H

14

X Toolkit Intrinsics X11 Release 6.4

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Constraint
widget class is Constraint.h.

1.6.3. Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

. A reference to the public .h file for the class.
. A reference to the private .h file for the superclass.

. Symbolic identifiers for any new resource representation types defined by the class. The
definitions should have a single space between the definition name and the value and no
trailing space or comment.

. A structure part definition for the new fields that the widget instance adds to its superclass’s
widget structure.

. The complete widget instance structure definition for this widget.

. A structure part definition for the new fields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

. The complete constraint structure definition if the widget class is a subclass of Constraint.

. Type definitions for any new procedure types used by class methods declared in the widget
class part.

. A structure part definition for the new fields that this widget class adds to its superclass’s
widget class structure.

. The complete widget class structure definition for this widget.

. The complete widget class extension structure definition for this widget, if any.

. The symbolic constant identifying the class extension version, if any.

. The name of the global class structure variable containing the generic class structure for
this class.

. An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {
/* Settable resources */

15

X Toolkit Intrinsics X11 Release 6.4

Pixel foreground;
XFontStruct *font;

String label; /* text to display */

XtJustify justify;

Dimension internal_width; /* # pixels horizontal border */
Dimension internal_height; /* # pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensitive;
} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

CorePart core;

LabelPart label;
} LabelRec;

/* Types for Label class methods */
typedef void (*LabelSetTextProc)();
/* Widget w */
/* String text */

typedef String (*LabelGetTextProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetTextProc set_text;
LabelGetTextProc get_text;
XtPointer extension;
} LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label_class;
} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

16

X Toolkit Intrinsics X11 Release 6.4

#define LabellnheritSetText((LabelSetTextProc)_XtInherit)
#define LabellnheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h
file is the first nine characters of the widget class followed by a capital P. For example, the private
.h file for the Constraint widget class is ConstrainP.h.

1.6.4. Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

. Class information (for example, superclass, class_name, widget_size, class_initialize, and
class_inited).

. Data constants (for example, resources and num_resources, actions and num_actions, visi-
ble_interest, compress_motion, compress_exposure, and version).

. Widget operations (for example, initialize, realize, destroy, resize, expose, set_values,
accept_focus, and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the superclass private
.h file. For direct subclasses of the generic core widget, superclass should be initialized to the
address of the widgetClassRec structure. The superclass is used for class chaining operations
and for inheriting or enveloping a superclass’s operations (see Sections 1.6.7, 1.6.9, and 1.6.10).

The class_name field contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string ‘““Label””. More than one widget class can share the
same text class name. This string must be permanently allocated prior to or during the execution
of the class initialization procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not the size of the
class structure).

The version field indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set it to
the implementation-defined symbolic value XtVersion in the widget class structure initialization.
Those widget writers who believe that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special value XtVersionDontCheck in the version field to
disable version checking for those widgets. If a widget needs to compile alternative code for dif-
ferent revisions of the Intrinsics interface definition, it may use the symbol XtSpecificationRe-
lease, as described in Chapter 13. Use of XtVersion allows the Intrinsics implementation to rec-
ognize widget binaries that were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer adds fields to
class parts, all subclass structure layouts change, requiring complete recompilation. To allow
clients to avoid recompilation, an extension field at the end of each class part can point to a record
that contains any additional class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

17

X Toolkit Intrinsics

/* Resources specific to Label */

static XtResource resources|[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,

}

XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void ClasslInitialize();
static void Initialize();
static void Realize();

static void SetText();

static void GetText();

/* Class record constant */
LabelClassRec labelClassRec = {

{

/* core_class fields */

/* superclass

/* class_name

/* widget_size

/* class_initialize

/* class_part_initialize
/* class_inited

/* initialize

/* initialize_hook

/* realize

/* actions

/* num_actions

/* resources

/* num_resources

/* xrm_class

/* compress_motion
/* compress_exposure
/* compress_enterleave
/* visible_interest

/* destroy

/* resize

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

18

X11 Release 6.4

(WidgetClass)&coreClassRec,

"Label",
sizeof(LabelRec),
Classlnitialize,
NULL,

False,

Initialize,

NULL,

Realize,

NULL,

0,

resources,
XtNumber(resources),
NULLQUARK,
True,

True,

True,

False,

NULL,

Resize,

X Toolkit Intrinsics X11 Release 6.4

/* expose */ Redisplay,
/* set_values */ SetValues,
/* set_values_hook */ NULL,
/* set_values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback_offsets */ NULL,
/* tm_table */ NULL,
/* query_geometry */ XtInheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension */ NULL

1,

{

/* Label_class fields */

/* get_text */ GetText,
[* set_text */ SetText,
/* extension */ NULL

}

};

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSetText(w, text)
Widget w;
String text;

{
Label WidgetClass Iwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text)(w, text)

}

/* Private procedures */

1.6.5. Widget Class and Superclass Look Up
To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtClass function returns a pointer to the widget’s class structure.

19

X Toolkit Intrinsics X11 Release 6.4

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtSuperclass function returns a pointer to the widget’s superclass class structure.

1.6.6. Widget Subclass Verification

To check the subclass to which a widget belongs, use XtIsSubclass.

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any subclass
thereof.

The XtIsSubclass function returns True if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items they contain can use XtIsSubclass to find out if a widget belongs
to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equivalent to XtIsSubclass for each of the built-in classes. These proce-
dures are XtIsObject, XtIsRectObj, XtIsWidget, XtIsComposite, XtIsConstraint, XtIs-
Shell, XtIsOverrideShell, XtIsWMShell, XtIsVendorShell, XtIsTransientShell, XtIsTo-
pLevelShell, XtIsApplicationShell, and XtIsSessionShell.

All these macros and functions have the same argument description.

Boolean Xtls<class> (w)
Widget w;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

These procedures may be faster than calling XtIsSubclass directly for the built-in classes.

To check a widget’s class and to generate a debugging error message, use XtCheckSubclass,
defined in <X11/IntrinsicP.h>:

20

X Toolkit Intrinsics X11 Release 6.4

void XtCheckSubclass(w, widget_class, message)
Widget w;
WidgetClass widget_class;
String message;

w Specifies the widget or object whose class is to be checked. Must be of class
Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any subclass
thereof.

message Specifies the message to be used.

The XtCheckSubclass macro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. If the specified widget’s class
is not a subclass, XtCheckSubclass constructs an error message from the supplied message, the
widget’s actual class, and the expected class and calls XtErrorMsg. XtCheckSubclass should
be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclass is only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structures. With a linked field, the Intrinsics access the
field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). The self-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest
resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry_manager

change_managed
insert_child

21

X Toolkit Intrinsics X11 Release 6.4

delete_child
accepts_objects
allows_change_managed_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_manager

With downward superclass chaining, the invocation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widget’s class structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values _hook
resources

In addition, for subclasses of Constraint, the following fields of the ConstraintClassPart and
ConstraintClassExtensionRec structures are chained from the Constraint class down to the sub-
class:

resources

initialize

set_values

get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field of ConstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, however,
a class may need to register type converters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does not have initialization procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsics. A class initialization procedure pointer is of type
XtProc:

22

X Toolkit Intrinsics X11 Release 6.4

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initialize field.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class,
but for subclasses as well, and are done in the class’s class part initialization procedure, a pointer
to which is stored in the class_part_initialize field. The class_part_initialize procedure pointer is
of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClass widget_class;

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These procedures have the
responsibility of doing any dynamic initializations necessary to their class’s part of the record.
The most common is the resolution of any inherited methods defined in the class. For example, if
a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core ’s class_part_initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are defined in the class
record. Next, Composite’s class_part_initialize procedure is called to initialize the composite part
of C’s class record. Finally, the class_part_initialize procedures for A, B, and C, in that order, are
called. For further information, see Section 1.6.9. Classes that do not define any new class fields
or that need no extra processing for them can specify NULL in the class_part_initialize field.

All widget classes, whether they have a class initialization procedure or not, must start with their
class_inited field False.

The first time a widget of a class is created, XtCreateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass order, by checking each class_inited field
and, if it is False, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then set the class_inited field to a nonzero value.
After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void ClassInitialize()

{
XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,

NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created. To initialize a
widget class without creating any widgets, use XtInitializeWidgetClass.

23

X Toolkit Intrinsics X11 Release 6.4

void XtlnitializeWidgetClass(object_class)
WidgetClass object_class;

object_class Specifies the object class to initialize. May be objectClass or any subclass
thereof.

If the specified widget class is already initialized, XtInitializeWidgetClass returns immediately.

If the class initialization procedure registers type converters, these type converters are not avail-
able until the first object of the class or subclass is created or XtInitializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operation xyz, specify the constant XtInheritXyz in your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are never inherited. Widget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclass’s value for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal value _XtInherit cast to the appropriate type. _XtIn-
herit is a procedure that issues an error message if it is actually called.

For example, CompositeP.h contains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) _XtInherit)
#define XtInheritInsertChild ((XtArgsProc) _Xtlnherit)

#define XtInheritDeleteChild ((XtWidgetProc) _XtInherit)

Composite’s class_part_initialize procedure begins as follows:

static void CompositeClassPartlInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass we = (CompositeWidgetClass)widgetClass;

CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (we->composite_class.geometry_manager == XtInheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

24

X Toolkit Intrinsics X11 Release 6.4

}

if (we->composite_class.change_managed == XtInheritChangeManaged) {
we->composite_class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare any reserved value it wishes for the inheritance constant for its new fields. The following
inheritance constants are defined:

For Object:
XtInheritAllocate
XtInheritDeallocate

For Core:
XtInheritRealize
XtInheritResize
XtInheritExpose
XtInheritSetValuesAlmost
XtInheritAcceptFocus
XtInheritQueryGeometry
XtInheritTranslations
XtInheritDisplayAccelerator

For Composite:
XtInheritGeometryManager
XtInheritChangeManaged
XtInheritInsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

1.6.11. Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a wid-
get’s expose procedure might call its superclass’s expose and then perform a little more work on
its own. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclass’s insert_child and then calling XtManageChild to add
the child to the managed set.

25

X Toolkit Intrinsics X11 Release 6.4

Note

A class method should not use XtSuperclass but should instead call the class
method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers only, not the widget’s class pointers, as the wid-
get’s class may be a subclass of the class whose implementation is being referenced.

This technique is referred to as enveloping the superclass’s operation.

1.6.12. Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To per-
mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointer. If no extension fields for a class have yet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell classes, sub-
classes can provide values for these fields by setting the extension pointer for the appropriate part
in their class structure to point to a statically declared extension record containing the additional
fields. Setting the extension field is never mandatory; code that uses fields in the extension record
must always check the extension field and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from a single exten-
sion field, extension records should be declared as a linked list, and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;
};
next_extension Specifies the next record in the list, or NULL.
record_type Specifies the particular structure declaration to which each extension record
instance conforms.
version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.
record_size Specifies the total number of bytes allocated for the extension record.

The record_type field identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list. The record_type field is normally
assigned the result of XrmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with the two characters “XT” for future standard uses. The
value NULLQUARK may also be used by the class part owner in extension records attached to its
own class part extension field to identify the extension record unique to that particular class.

The version field is an owner-defined constant that may be used to identify binary files that have
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. The record_size field value includes the four common header fields and

26

X Toolkit Intrinsics X11 Release 6.4

should normally be initialized with sizeof ().

Any value stored in the class part extension fields of CompositeClassPart, ConstraintClass-
Part, or ShellClassPart must point to an extension record conforming to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, given a widget class and the offset of the extension field in the class record.

To locate a class extension record, use XtGetClassExtension.

XtPointer XtGetClassExtension(object_class, byte_offset, type, version, record_size)
WidgetClass object_class;
Cardinal byte_offset;
XrmQuark type;
long version;
Cardinal record_size;

object_class Specifies the object class containing the extension list to be searched.

byte_offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.

version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required

for a match, or O.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is nonzero. XtGetClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the extension
owner.

27

X Toolkit Intrinsics X11 Release 6.4

Chapter 2

Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned by XtAp-
pCreateShell is the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no children of any kind are the leaves of
the widget tree. With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the class compositeWidgetClass, are containers for an
arbitrary, but widget implementation-defined, collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the two. Composite widgets
also contain methods for managing the geometry (layout) of any child widget. Under unusual cir-
cumstances, a composite widget may have zero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so. Primitive widgets also do not have
general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and
destruction) on composite widgets and all their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, XtRealizeWidget tra-
verses the tree downward and recursively realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resources traverse the tree
upward and determine the inheritance of resources from a widget’s ancestors. XtMake-
GeometryRequest traverses the tree up one level and calls the geometry manager that is respon-
sible for a widget child’s geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget that XtAppCreateShell returns has a parent pointer of NULL.

To facilitate downward traversal of the widget tree, the children field of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite widget’s geometry manager. Primitive widgets
that instantiate children are entirely responsible for all operations that require downward traversal
below themselves. In addition, every widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can call any Intrinsics function other than XtSetLanguageProc and
XtToolkitThreadlInitialize, it must initialize the Intrinsics by using

. XtToolkitInitialize, which initializes the Intrinsics internals

28

X Toolkit Intrinsics X11 Release 6.4

. XtCreateApplicationContext, which initializes the per-application state
. XtDisplaylInitialize or XtOpenDisplay, which initializes the per-display state
. XtAppCreateShell, which creates the root of a widget tree

Or an application can call the convenience procedure XtOpenApplication, which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should call XtSetLanguageProc prior to calling XtDisplayInitialize, XtOpenDisplay,
XtOpenApplication, or XtApplInitialize.

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatch events independently of any other instance.
Further, an application instance may need multiple display connections to have widgets on multi-
ple displays. From the application’s point of view, multiple display connections usually are
treated together as a single unit for purposes of event dispatching. To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from another. The major component of an application
context is a list of one or more X Display pointers for that application. The Intrinsics handle all
display connections within a single application context simultaneously, handling input in a round-
robin fashion. The application context type XtAppContext is opaque to clients.

To initialize the Intrinsics internals, use XtToolKitInitialize.

void XtToolkitInitialize()

If XtToolkitInitialize was previously called, it returns immediately. When XtToolkitThrea-
dInitialize is called before XtToolkitInitialize, the latter is protected against simultaneous acti-
vation by multiple threads.

To create an application context, use XtCreateApplicationContext.

XtAppContext XtCreate ApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use XtDe-
stroyApplicationContext.

void XtDestroyApplicationContext(app_context)
XtAppContext app_context;

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context. If called
from within an event dispatch (for example, in a callback procedure), XtDestroyApplication-
Context does not destroy the application context until the dispatch is complete.

29

X Toolkit Intrinsics X11 Release 6.4

To get the application context in which a given widget was created, use XtWidgetToApplica-
tionContext.

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

w Specifies the widget for which you want the application context. Must be of class
Object or any subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, use XtDisplayInitialize.

void XtDisplaylnitialize(app_context, display, application_name, application_class,
options, num_options, argc, argv)
XtAppContext app_context;
Display *display;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
int *argc;
String *argv;

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmParseC-
ommand. For further information, see Section 15.9 in XIlib — C Lan-
guage X Interface and Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retrieves the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls the Xlib XrmParseCommand function to parse
the command line, and performs other per-display initialization. After XrmParseCommand has
been called, argc and argv contain only those parameters that were not in the standard option ta-
ble or in the table specified by the options argument. If the modified argc is not zero, most appli-
cations simply print out the modified argv along with a message listing the allowable options. On
POSIX-based systems, the application name is usually the final component of argv[0]. If the

30

X Toolkit Intrinsics X11 Release 6.4

synchronous resource is True, XtDisplaylInitialize calls the Xlib XSynchronize function to put
Xlib into synchronous mode for this display connection and any others currently open in the
application context. See Sections 2.3 and 2.4 for details on the application_name, applica-
tion_class, options, and num_options arguments.

XtDisplaylInitialize calls XrmSetDatabase to associate the resource database of the default
screen with the display before returning.

To open a display, initialize it, and then add it to an application context, use XtOpenDisplay .

Display *XtOpenDisplay(app_context, display_string, application_name, application_class,
options, num_options, argc, argv)
XtAppContext app_context;
String display_string;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
int *argc;
String *argv;

app_context Specifies the application context.

display_string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmParseC-
ommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function calls XOpenDisplay with the specified display_string. If dis-
play_string is NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified in argv, the user’s default display is retrieved from the environ-
ment. On POSIX-based systems, this is the value of the DISPLAY environment variable.

If this succeeds, XtOpenDisplay then calls XtDisplayInitialize and passes it the opened display
and the value of the —name option specified in argv as the application name. If no —name option
is specified and application_name is non-NULL, application_name is passed to XtDisplayIni-
tialize. If application_name is NULL and if the environment variable RESOURCE_NAME is
set, the value of RESOURCE_NAME is used. Otherwise, the application name is the name used
to invoke the program. On implementations that conform to ANSI C Hosted Environment sup-
port, the application name will be argv[0] less any directory and file type components, that is, the
final component of argv[0], if specified. If argv[0] does not exist or is the empty string, the appli-
cation name is “main”’. XtOpenDisplay returns the newly opened display or NULL if it failed.

See Section 7.12 for information regarding the use of XtOpenDisplay in multiple threads.

31

X Toolkit Intrinsics X11 Release 6.4

To close a display and remove it from an application context, use XtCloseDisplay.

void XtCloseDisplay(display)
Display *display;

display Specifies the display.

The XtCloseDisplay function calls XCloseDisplay with the specified display as soon as it is
safe to do so. If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications
need only call XtCloseDisplay if they are to continue executing after closing the display; other-
wise, they should call XtDestroyApplicationContext.

See Section 7.12 for information regarding the use of XtCloseDisplay in multiple threads.

2.2. Establishing the Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of type XtLanguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display;
String language;
XtPointer client_data;

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client_data Passes the additional client data specified in the call to XtSetLanguageProc.

The language procedure allows an application to set the locale to the value of the language
resource determined by XtDisplayInitialize. The function returns a new language string that
will be subsequently used by XtDisplayInitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
XtDisplaylnitialize, use XtSetLanguageProc.

32

X Toolkit Intrinsics X11 Release 6.4

XtLanguageProc XtSetLanguageProc(app_context, proc, client_data)
XtAppContext app_context;
XtLanguageProc proc;
XtPointer client_data;

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProc sets the language procedure that will be called from XtDisplaylInitialize
for all subsequent Displays initialized in the specified application context. If app_context is
NULL, the specified language procedure is registered in all application contexts created by the
calling process, including any future application contexts that may be created. If proc is NULL,
a default language procedure is registered. XtSetLanguageProc returns the previously regis-
tered language procedure. If a language procedure has not yet been registered, the return value is
unspecified, but if this return value is used in a subsequent call to XtSetLanguageProc, it will
cause the default language procedure to be registered.

The default language procedure does the following:

. Sets the locale according to the environment. On ANSI C-based systems this is done by
calling setlocale(LC_ALL, language). If an error is encountered, a warning message is
issued with XtWarning.

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued with XtWarning and the locale is set to “C”’.

. Calls XSetLocaleModifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call to setlocale(LC_ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling XtSetLanguage-
Proc prior to XtDisplayInitialize, as in the following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loading the Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display. It then creates a resource database for the default screen of the display by combining the
following sources in order, with the entries in the first named source having highest precedence:

. Application command line (argc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

33

X Toolkit Intrinsics X11 Release 6.4

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.

. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally, or
when XtScreenDatabase is called), it is created in the following manner using the sources listed
above in the same order:

. A temporary database, the ‘“‘server resource database’, is created from the string returned
by XResourceManagerString or, if XResourceManagerString returns NULL, the con-
tents of a resource file in the user’s home directory. On POSIX-based systems, the usual
name for this user preference resource file is SHOME/.Xdefaults.

. If a language procedure has been set, XtDisplayInitialize first searches the command line
for the option ““-xnlLanguage’, or for a -xrm option that specifies the xnlLanguage/Xnl-
Language resource, as specified by Section 2.4. If such a resource is found, the value is
assumed to be entirely in XPCS, the X Portable Character Set. If neither option is specified
on the command line, XtDisplaylInitialize queries the server resource database (which is
assumed to be entirely in XPCS) for the resource name.xnlLanguage, class Class.XnlLan-
guage where name and Class are the application_name and application_class specified to
XtDisplaylInitialize. The language procedure is then invoked with the resource value if
found, else the empty string. The string returned from the language procedure is saved for
all future references in the Intrinsics that require the per-display language string.

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.
. If a language procedure has not been set, the initial database is then queried for the resource

name.xnlLanguage, class Class.XnlLanguage as specified above. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment variable. If no language string is found, the empty string is
used. This language string is saved for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the user’s environment resource file is then merged
into the initial resource database if the file exists. This file is user-, host-, and process-spe-
cific and is expected to contain user preferences that are to override those specifications in
the per-display and per-screen resources. On POSIX-based systems, the user’s environ-
ment resource file name is specified by the value of the XENVIRONMENT environment
variable. If this environment variable does not exist, the user’s home directory is searched
for a file named .Xdefaults-h0st, where host is the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. These specifications are the string returned by XScreenResourceString for the
respective screen and are owned entirely by the user.

34

X Toolkit Intrinsics X11 Release 6.4

. Next, the server resource database created earlier is merged into the screen resource data-
base. The server property, and corresponding user preference file, are owned and con-
structed entirely by the user.

. The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user. Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by the other. The file
name is found by calling XrmSetDatabase with the current screen resource database, after
preserving the original display-associated database, then calling XtResolvePathname with
the parameters (display, NULL, NULL, NULL, path, NULL, 0, NULL), where path is
defined in an operating-system-specific way. On POSIX-based systems, path is defined to
be the value of the environment variable XUSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. This default value is constrained in the following manner:

— If the environment variable XAPPLRESDIR is not defined, the default XUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

1. %C, %N, %L or %C, %N, %1, Jot, oc
2. %C, %N, %l

3. %C, %N

4. %N, %L or %N, %l, Yot, Yoc

5. %N, %l

6. %N

The order of these six entries within the path must be as given above. The order and
use of substitutions within a given entry are implementation-dependent.

— If XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must contain at
least seven entries. These entries must contain the following directory prefixes and sub-

stitutions:

1. S$XAPPLRESDIR with 9%C, %N, %L or %C, %N, %], %t, %c
2. S$XAPPLRESDIR with %C, %N, %]

3. $XAPPLRESDIR with %C, %N

4. $XAPPLRESDIR with %N, %L or 9N, %1, Yot, %oc

5. $XAPPLRESDIR with %N, %l

6. $XAPPLRESDIR with %N

7. $HOME with %N

The order of these seven entries within the path must be as given above. The order and
use of substitutions within a given entry are implementation-dependent.

. Last, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain sitewide customizations
specified by the system manager. The name of the application class resource file is found

35

X Toolkit Intrinsics X11 Release 6.4

by calling XtResolvePathname with the parameters (display, ““app-defaults”, NULL,
NULL, NULL, NULL, 0, NULL). This file is expected to be provided by the developer of
the application and may be required for the application to function properly. A simple
application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specifications with XtAppSetFallback-
Resources. Note that the customization substitution string is retrieved dynamically by
XtResolvePathname so that the resolved file name of the application class resource file
can be affected by any of the earlier sources for the screen resource database, even though
the contents of the class resource file have lowest precedence. After calling XtRe-
solvePathname, the original display-associated database is restored.

To obtain the resource database for a particular screen, use XtScreenDatabase.

XrmDatabase XtScreenDatabase(screen)
Screen *screen;

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabase function returns the fully merged resource database as specified above,
associated with the specified screen. If the specified screen does not belong to a Display initial-
ized by XtDisplaylInitialize, the results are undefined.

To obtain the default resource database associated with a particular display, use XtDatabase.

XrmDatabase XtDatabase(display)
Display *display;

display Specifies the display.

The XtDatabase function is equivalent to XrmGetDatabase. It returns the database associated
with the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources listed above), use
XtAppSetFallbackResources.

void XtAppSetFallbackResources(app_context, specification_list)
XtAppContext app_context;
String *specification_list;

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list ~ Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry in specification_list points to a string in the format of XrmPutLineResource. Fol-
lowing a call to XtAppSetFallbackResources, when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class

36

-

X Toolkit Intrinsics X11 Release 6.4

resource file according to the rules given above and if specification_list is not NULL, the resource
specifications in specification_list will be merged into the screen resource database in place of the
application-specific class resource file. XtAppSetFallbackResources is not required to copy
specification_list; the caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or until XtAppSetFallbackResources is
called again. The value NULL for specification_list removes any previous fallback resource spec-
ification for the application context. The intended use for fallback resources is to provide a mini-
mal number of resources that will make the application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Parsing the Command Line

The XtOpenDisplay function first parses the command line for the following options:

—display Specifies the display name for XOpenDisplay.
—name Sets the resource name prefix, which overrides the application name passed to
XtOpenDisplay .

—xnllanguage Specifies the initial language string for establishing locale and for finding appli-
cation class resource files.

XtDisplaylInitialize has a table of standard command line options that are passed to XrmPar-
seCommand for adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbreviations. The format of this table is described in Section 15.9
in XIlib — C Language X Interface.

typedef enum {

XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNArgs, /* Ignore this option and the next */

/* OptionDescRec.value arguments in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */

} XrmOptionKind,;

typedef struct {

char *option; /* Option name in argv */

char *specifier; /* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */

XPointer value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

37

X Toolkit Intrinsics

X11 Release 6.4

Option String Resource Name Argument Kind Resource Value
—background *background SepArg next argument
—bd *borderColor SepArg next argument
—bg *background SepArg next argument
—borderwidth .borderWidth SepArg next argument
—bordercolor *borderColor SepArg next argument
-bw .borderWidth SepArg next argument
—display .display SepArg next argument
—fg *foreground SepArg next argument
—fn *font SepArg next argument
—font *font SepArg next argument
—foreground *foreground SepArg next argument
—geometry .geometry SepArg next argument
—iconic .iconic NoArg “true”

—name .name SepArg next argument
—reverse .reverseVideo NoArg “on”

-1V .reverseVideo NoArg “on”

+rv reverseVideo NoArg “off”
—selectionTimeout .selectionTimeout SepArg next argument
—synchronous .synchronous NoArg “on”
+synchronous .synchronous NoArg “off™

—title title SepArg next argument
—xnllanguage xnlLanguage SepArg next argument
—Xrm next argument ResArg next argument
—xtsessionlD .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo is True, the values of XtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. If a value is found in the resource database during display initialization, XtDisplayInitial-
ize makes a call to XSynchronize for all display connections currently open in the application
context. Therefore, when multiple displays are initialized in the same application context, the
most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
context. When multiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The —xrm option provides a method of setting any resource in an application. The next argument
should be a quoted string identical in format to a line in the user resource file. For example, to
give a red background to all command buttons in an application named xmh, you can start it up
as

xmh —xrm ’xmh*Command.background: red’

38

X Toolkit Intrinsics X11 Release 6.4

When it parses the command line, XtDisplaylInitialize merges the application option table with
the standard option table before calling the Xlib XrmParseCommand function. An entry in the
application table with the same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names are kept in the merged ta-
ble. The Intrinsics reserve all option names beginning with the characters “-xt” for future stan-
dard uses.

2.5. Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of the
widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and adds some
(usually, most or all) of its widgets to their respective parents’ managed set by calling XtMan-
ageChild. To avoid an O(n?) creation process where each composite widget lays itself out each
time a widget is created and managed, parent widgets are not notified of changes in their managed
set during this phase.

After all widgets have been created, the application calls XtRealizeWidget with the top-level
widget to execute the second and third phases. XtRealizeWidget first recursively traverses the
widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry negoti-
ation. A parent deals with constraints on its size imposed from above (for example, when a user
specifies the application window size) and suggestions made from below (for example, when a
primitive child computes its preferred size). One difference between the two can cause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its children. You cannot predict where anything will go on the screen
until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the X
Server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down) traversal of the
widget tree, allocates an X window to each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed as
an arglist, a pointer to an array of Arg structures, which contains

39

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
String name;
XtArgVal value;
} Arg, *Arglist;

where XtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of an XtArgVal, the resource value is
stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an ArgList, use XtSetArg.

void XtSetArg(arg, name, value)

Arg arg;

String name;

XtArgVal value;
arg Specifies the name/value pair to set.
name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal, else the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg args[20];

int n;

n=0;

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

XtSetValues(widget, args, n);
Alternatively, an application can statically declare the argument list and use XtNumber:

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

|5

XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-decre-
ment within the first argument to XtSetArg. XtSetArg can be implemented as a macro that
evaluates the first argument twice.

To merge two arglist arrays, use XtMergeArgLists.

40

X Toolkit Intrinsics X11 Release 6.4

ArgList XtMergeArgLists(argsl, num_argsl, args2, num_args2)
ArgList argsl,;
Cardinal num_argsl,;
Arglist args2;
Cardinal num_args2;

argsl Specifies the first argument list.
num_argsl Specifies the number of entries in the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by using XtFree.

All Intrinsics interfaces that require ArgList arguments have analogs conforming to the ANSI C
variable argument list (traditionally called ‘““varargs’) calling convention. The name of the analog
is formed by prefixing “Va” to the name of the corresponding ArgList procedure; e.g.,
XtVaCreateWidget. Each procedure named XtVasomething takes as its last arguments, in place
of the corresponding ArgList/ Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of type String and each value is of type XtArgVal. The end
of the list is identified by a name entry containing NULL. Developers writing in the C language
wishing to pass resource name and value pairs to any of these interfaces may use the ArgList and
varargs forms interchangeably.

Two special names are defined for use only in varargs lists: XtVaTypedArg and XtVaNest-
edList.

#define XtVaTypedArg "XtVaTypedArg"

If the name XtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted as a name/type/value/size tuple where name is of type String, type is of
type String, value is of type XtArgVal, and size is of type int. When a varargs list containing
XtVaTypedArg is processed, a resource type conversion (see Section 9.6) is performed if neces-
sary to convert the value into the format required by the associated resource. If fype is XtRString,
then value contains a pointer to the string and size contains the number of bytes allocated, includ-
ing the trailing null byte. If fype is not XtRString, then if size is less than or equal to
sizeof(XtArgVal), the value should be the data cast to the type XtArgVal, otherwise value is a
pointer to the data. If the type conversion fails for any reason, a warning message is issued and
the list entry is skipped.

41

X Toolkit Intrinsics X11 Release 6.4

#define XtVaNestedList "XtVaNestedList"

If the name XtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as an XtVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use with XtVaNestedList in multiple calls, use
XtVaCreateArgsList.

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(unused, ...)
XtPointer unused,
unused This argument is not currently used and must be specified as NULL.

Specifies a variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer, which may be used with XtVaNestedList. The end of both lists is identified by a name
entry containing NULL. Any entries of type XtVaTypedArg are copied as specified without
applying conversions. Data passed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed using XtFree when no longer needed.

Use of resource files and of the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

2.5.2. Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

42

X Toolkit Intrinsics X11 Release 6.4

Widget XtCreateWidget(name, object_class, parent, args, num_args)
String name;
WidgetClass object_class;
Widget parent;
ArgList args;
Cardinal num_args;

name

Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any other wid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. Must be objectClass or

any subclass thereof.

parent Specifies the parent widget. Must be of class Object or any subclass thereof.
args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing
the following in order:

Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

If the specified class is not coreWidgetClass or a subclass thereof, and the parent’s class is
a subclass of compositeWidgetClass and either no extension record in the parent’s com-
posite class part extension field exists with the record_type NULLQUARK or the
accepts_objects field in the extension record is False, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

If the specified class contains an extension record in the object class part extension field
with record_type NULLQUARK and the allocate field is not NULL, the procedure is
invoked to allocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parent’s constraints
and stores the address of this memory into the constraints field. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes the constraints field.

Initializes the Core nonresource data fields self, parent, widget_class, being_destroyed,
name, managed, window, visible, popup_list, and num_popups.

Initializes the resource fields (for example, background_pixel) by using the CoreClassPart
resource lists specified for this class and all superclasses.

If the parent is a member of the class constraintWidgetClass, initializes the resource
fields of the constraints record by using the ConstraintClassPart resource lists specified
for the parent’s class and all superclasses up to constraintWidgetClass.

Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widget’s initialize procedure.

If the parent is a member of the class constraintWidgetClass, calls the ConstraintClass-
Part initialize procedures, starting at constraintWidgetClass on down to the parent’s
ConstraintClassPart initialize procedure.

If the parent is a member of the class compositeWidgetClass, puts the widget into its par-
ent’s children list by calling its parent’s insert_child procedure. For further information,

43

X Toolkit Intrinsics X11 Release 6.4

see Section 3.1.

To create an instance of a widget using varargs lists, use XtVaCreateWidget.

Widget XtVaCreateWidget(name, object_class, parent, ...)
String name;
WidgetClass object_class;
Widget parent;

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. Must be objectClass or
any subclass thereof.

parent Specifies the parent widget. Must be of class Object or any subclass thereof.

Specifies the variable argument list to override any other resource specifications.

The XtVaCreateWidget procedure is identical in function to XtCreateWidget with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree
that can potentially be on different screens or displays. An application uses XtAppCreateShell
to create independent widget trees.

Widget XtAppCreateShell(name, application_class, widget_class, display, args, num_args)
String name;
String application_class;
WidgetClass widget_class;
Display *display;
Arglist args;
Cardinal num_args;

name Specifies the instance name of the shell widget. If name is NULL, the appli-
cation name passed to XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_name string when widget_class is applicationShellWidgetClass or a
subclass thereof.

widget_class Specifies the widget class for the top-level widget (e.g., applicationShell-
WidgetClass).

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scanning args for the XtNscreen

44

X Toolkit Intrinsics X11 Release 6.4

argument. If no XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resource name.screen, class Class.Screen where
Class is the specified application_class if widget_class is applicationShellWidgetClass or a
subclass thereof. If widget_class is not applicationShellWidgetClass or a subclass, Class is the
class_name field from the CoreClassPart of the specified widget_class. If this query fails, the
default screen of the specified display is used. Once the screen is determined, the resource data-
base associated with that screen is used to retrieve all remaining resources for the shell widget not
specified in args. The widget name and Class as determined above are used as the leftmost (i.e.,
root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as determined above
will be stored into the WM_CLASS property on the widget’s window when it becomes realized.
If the specified widget_class is applicationShellWidgetClass or a subclass thereof, the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

. Designate one shell as the real top-level shell and create the others as pop-up children of it
by using XtCreatePopupShell.

. Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications like
the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use XtVaAppCre-
ateShell.

45

X Toolkit Intrinsics X11 Release 6.4

Widget XtVaAppCreateShell(name, application_class, widget_class, display, ...)
String name;
String application_class;
WidgetClass widget_class;
Display *display;

name Specifies the instance name of the shell widget. If name is NULL, the
application name passed to XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_name string when widget_class is applicationShellWidgetClass
or a subclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource database
used to retrieve the shell widget resources.

Specifies the variable argument list to override any other resource specifi-
cations.

The XtVaAppCreateShell procedure is identical in function to XtAppCreateShell with the args
and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application may use XtOpenApplication or
XtVaOpenApplication.

46

X Toolkit Intrinsics

X11 Release 6.4

Widget XtOpenApplication(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, widget_class, args, num_args)
XtAppContext *app_context_return;
String application_class;
XrmOptionDescList options;
Cardinal num_options;

int *argc_in_out,

String *argv_in_out;

String *fallback_resources;
WidgetClass widget_class;

Arglist args;

Cardinal num_args;
app_context_return
application_class
options
num_options
argc_in_out
argv_in_out

fallback_resources

widget_class

args

num_args

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entries in options.

Specifies a pointer to the number of command line arguments.
Specifies a pointer to the command line arguments.

Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

Specifies the argument list to override any other resource specifications
for the created shell widget.

Specifies the number of entries in the argument list.

The XtOpenApplication function calls XtToolkitInitialize followed by XtCreateApplication-
Context, then calls XtOpenDisplay with display_string NULL and application_name NULL,
and finally calls XtAppCreateShell with name NULL, the specified widget_class, an argument
list and count, and returns the created shell. The recommended widger_class is sessionShellWid-
getClass. The argument list and count are created by merging the specified args and num_args
with a list containing the specified argc and argv. The modified argc and argv returned by
XtDisplaylInitialize are returned in argc_in_out and argv_in_out. If app_context_return is not
NULL, the created application context is also returned. If the display specified by the command
line cannot be opened, an error message is issued and XtOpenApplication terminates the appli-
cation. If fallback_resources is non-NULL, XtAppSetFallbackResources is called with the
value prior to calling XtOpenDisplay.

47

X Toolkit Intrinsics X11 Release 6.4

Widget XtVaOpenApplication(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, widget_class, ...)
XtAppContext *app_context_return;
String application_class;
XrmOptionDescList options;
Cardinal num_options;
int *argc_in_out,
String *argv_in_out;
String *fallback_resources;
WidgetClass widget_class;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file
