X Session Management Library
Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Ralph Mor

X Consortium

Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Overview of Session Management

The purpose of the X Session Management Protocol (XSMP) is to provide a uniform mechanism for users
to save and restore their sessions. A session is a group of clients, each of which has a particular state. The
session is controlled by a network service called the session manager. The session manager issues com-
mands to its clients on behalf of the user. These commands may cause clients to save their state or to termi-
nate. It is expected that the client will save its state in such a way that the client can be restarted at a later
time and resume its operation as if it had never been terminated. A client’s state might include information
about the file currently being edited, the current position of the insertion point within the file, or the start of
an uncommitted transaction. The means by which clients are restarted is unspecified by this protocol.

For purposes of this protocol, a client of the session manager is defined as a connection to the session man-
ager. A client is typically, though not necessarily, a process running an application program connected to
an X display. However, a client may be connected to more than one X display or not be connected to any X
displays at all.

2. The Session Management Library

The Session Management Library (SMIib) is a low-level "C" language interface to XSMP. It is expected
that higher level toolkits, such as Xt, will hide many of the details of session management from clients.
Higher level toolkits might also be developed for session managers to use, but no such effort is currently
under way.

SMIib has two parts to it:
. One set of functions for clients that want to be part of a session
. One set of functions for session managers to call

Some applications will use both sets of functions and act as nested session managers. That is, they will be
both a session manager and a client of another session. An example is a mail program that could start a text
editor for editing the text of a mail message. The mail program is part of a regular session and, at the same
time, is also acting as a session manager to the editor.

Clients initialize by connecting to the session manager and obtaining a client-ID that uniquely identifies
them in the session. The session manager maintains a list of properties for each client in the session. These
properties describe the client’s environment and, most importantly, describe how the client can be restarted
(via an SmRestartCommand). Clients are expected to save their state in such a way as to allow multiple
instantiations of themselves to be managed independently. For example, clients may use their client-ID as
part of a filename in which to store the state for a particular instantiation. The client-ID should be saved as
part of the SmRestartCommand so that the client will retain the same ID after it is restarted.

Once the client initializes itself with the session manager, it must be ready to respond to messages from the
session manager. For example, it might be asked to save its state or to terminate. In the case of a shut-
down, the session manager might give each client a chance to interact with the user and cancel the shut-
down.

3. Understanding SMlib’s Dependence on ICE

The X Session Management Protocol is layered on top of the Inter-Client Exchange (ICE) Protocol. The
ICE protocol is designed to multiplex several protocols over a single connection. As a result, working with
SMIib requires a little knowledge of how the ICE library works.

The ICE library utilizes callbacks to process messages. When a client detects that there is data to read on
an ICE connection, it should call the IceProcessMessages function. IceProcessMessages will read the
message header and look at the major opcode in order to determine which protocol the message was
intended for. The appropriate protocol library will then be triggered to unpack the message and hand it off
to the client via a callback.

The main point to be aware of is that an application using SMIib must have some code that detects when
there is data to read on an ICE connection. This can be done via a select call on the file descriptor for the
ICE connection, but more typically, XtAppAddInput will be used to register a callback that will invoke
IceProcessMessages each time there is data to read on the ICE connection.

X Session Management Library X11, Release 6.4

To further complicate things, knowing which file descriptors to call select on requires an understanding of
how ICE connections are created. On the client side, a call must be made to SmcOpenConnection in
order to open a connection with a session manager. SmcOpenConnection will internally make a call into
IceOpenConnection, which will, in turn, determine if an ICE connection already exists between the client
and session manager. Most likely, a connection will not already exist and a new ICE connection will be
created. The main point to be aware of is that, on the client side, it is not obvious when ICE connections
get created or destroyed, because connections are shared when possible. To deal with this, the ICE library
lets the application register watch procedures that will be invoked each time an ICE connection is opened or
closed. These watch procedures could be used to add or remove ICE file descriptors from the list of
descriptors to call select on.

On the session manager side, things work a bit differently. The session manager has complete control over
the creation of ICE connections. The session manager has to first call IceListenForConnections in order
to start listening for connections from clients. Once a connection attempt is detected, IceAcceptConnec-
tion must be called, and the session manager can simply add the new ICE file descriptor to the list of
descriptors to call select on.

For further information on the library functions related to ICE connections, see the Inter-Client Exchange
Library standard.

4. Header Files and Library Name

Applications (both session managers and clients) should include the header file <X11/SM/SMlib.h>. This
header file defines all of the SMIib data structures and function prototypes. SMlib.h includes the header
file <X11/SM/SM.h>, which defines all of the SM1ib constants.

Because SMlib is dependent on ICE, applications should link against SMIib and ICElib by using -ISM
-IICE.

5. Session Management Client (Smc) Functions

This section discusses how Session Management clients:

. Connect to the Session Manager

. Close the connection

. Modify callbacks

. Set, delete, and retrieve Session Manager properties
. Interact with the user

. Request a “Save Yourself”

. Request a “Save Yourself Phase 2

. Complete a “Save Yourself”
. Use Smc informational functions
. Handle Errors

5.1. Connecting to the Session Manager

To open a connection with a session manager, use SmcOpenConnection.

X Session Management Library X11, Release 6.4

SmcConn SmcOpenConnection(network_ids_list, context, xsmp_major_rev , Xsmp_minor_rev,
mask, callbacks, previous_id, client_id_ret, error_length, error_string_ret)
char *network_ids_list;
SmPointer context;
int xsmp_major_rev;
int xsmp_minor_rev;
unsigned long mask;
SmcCallbacks *callbacks;
char *previous_id,;
char **client_id_ret;
int error_length;
char *error_string_ret;

network_ids_list Specifies the network ID(s) of the session manager.

context A pointer to an opaque object or NULL. Used to determine if an ICE connection can be
shared (see below).

xsmp_major_rev The highest major version of the XSMP the application supports.

xsmp_minor_rev The highest minor version of the XSMP the application supports (for the specified
XSmp_major_rev).

mask A mask indicating which callbacks to register.

callbacks The callbacks to register. These callbacks are used to respond to messages from the ses-
sion manager.

previous_id The client ID from the previous session.

client_id_ret The client ID for the current session is returned.

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argument points to
user supplied memory. No more than error_length bytes are used.

The network_ids_list argument is a null-terminated string containing a list of network IDs for the session
manager, separated by commas. If network_ids_list is NULL, the value of the SESSION_MANAGER
environment variable will be used. Each network ID has the following format:

tcp/<hostname>:<portnumber> or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

An attempt will be made to use the first network ID. If that fails, an attempt will be made using the second
network ID, and so on.

After the connection is established, SmcOpenConnection registers the client with the session manager. If
the client is being restarted from a previous session, previous_id should contain a null terminated string rep-
resenting the client ID from the previous session. If the client is first joining the session, previous_id
should be set to NULL. If previous_id is specified but is determined to be invalid by the session manager,
SMIib will re-register the client with previous_id set to NULL.

If SmcOpenConnection succeeds, it returns an opaque connection pointer of type SmcConn and the
client_id_ret argument contains the client ID to be used for this session. The client_id_ret should be freed
with a call to free when no longer needed. On failure, SmcOpenConnection returns NULL, and the rea-
son for failure is returned in error_string_ret.

Note that SMlib uses the ICE protocol to establish a connection with the session manager. If an ICE con-
nection already exists between the client and session manager, it might be possible for the same ICE con-
nection to be used for session management.

-

X Session Management Library X11, Release 6.4

The context argument indicates how willing the client is to share the ICE connection with other protocols.
If context is NULL, then the caller is always willing to share the connection. If context is not NULL, then
the caller is not willing to use a previously opened ICE connection that has a different non-NULL context
associated with it.

As previously discussed (section 3, “Understanding SMIib’s Dependence on ICE”), the client will have to
keep track of when ICE connections are created or destroyed (using IceAddConnectionWatch and IceRe-
moveConnectionWatch), and will have to call IceProcessMessages each time a select shows that there is
data to read on an ICE connection. For further information, see the Inter-Client Exchange Library stan-
dard.

The callbacks argument contains a set of callbacks used to respond to session manager events. The mask
argument specifies which callbacks are set. All of the callbacks specified in this version of SMlib are
mandatory. The mask argument is necessary in order to maintain backwards compatibility in future ver-
sions of the library.

The following values may be ORed together to obtain a mask value:

SmcSaveYourselfProcMask
SmcDieProcMask
SmcSaveCompleteProcMask
SmcShutdownCancelledProcMask

For each callback, the client can register a pointer to client data. When SMlib invokes the callback, it will
pass the client data pointer.

typedef struct {

struct {
SmcSave YourselfProc callback;
SmPointer client_data;

} save_yourself;

struct {
SmcDieProc callback;
SmPointer client_data;
} die;

struct {
SmcSaveCompleteProc callback;
SmPointer client_data;

} save_complete;

struct {
SmcShutdownCancelledProc callback;
SmPointer client_data;

} shutdown_cancelled;

} SmcCallbacks;

5.1.1. The Save Yourself Callback

X Session Management Library X11, Release 6.4

The Save Yourself callback is of type SmcSave YourselfProc.

typedef void (*SmcSave YourselfProc)();

void SaveYourselfProc (smc_conn, client_data, save_type, shutdown, interact_style, fast)
SmcConn smc_conn;
SmPointer client_data;
int save_type;
Bool shutdown;
int interact_style;

Bool fast;
smc_conn The session management connection object.
client_data Client data specified when the callback was registered.
save_type Specifies the type of information that should be saved.
shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True, the client should save its state as quickly as possible.

The session manager sends a ‘““Save Yourself” message to a client either to checkpoint it or just before ter-
mination so that it can save its state. The client responds with zero or more calls to SmcSetProperties to
update the properties indicating how to restart the client. When all the properties have been set, the client
calls SmcSaveYourselfDone.

If interact_style is SmInteractStyleNone, the client must not interact with the user while saving state. If
interact_style is SmInteractStyleErrors, the client may interact with the user only if an error condition
arises. If interact_style is SmInteractStyleAny, then the client may interact with the user for any purpose.
Because only one client can interact with the user at a time, the client must call SmcInteractRequest and
wait for an ““Interact” message from the session manager. When the client is done interacting with the
user, it calls SmcInteractDone. The client may only call SmcInteractRequest after it receives a ““Save
Yourself” message and before it calls SmcSaveYourselfDone.

If save_type is SmSaveLocal, the client must update the properties to reflect its current state. Specifically,
it should save enough information to restore the state as seen by the user of this client. It should not affect
the state as seen by other users. If save_type is SmSaveGlobal, the user wants the client to commit all of
its data to permanent, globally accessible storage. If save_type is SmSaveBoth, the client should do both
of these (it should first commit the data to permanent storage before updating its properties).

Some examples are as follows:

. If a word processor were sent a ““Save Yourself” with a type of SmSaveLocal, it could create a tem-
porary file that included the current contents of the file, the location of the cursor, and other aspects
of the current editing session. It would then update its SmRestartCommand property with enough
information to find this temporary file.

. If a word processor were sent a “Save Yourself”” with a type of SmSaveGlobal, it would simply
save the currently edited file.

. If a word processor were sent a ““Save Yourself” with a type of SmSaveBoth, it would first save the
currently edited file. It would then create a temporary file with information such as the current posi-
tion of the cursor and what file is being edited. Finally, it would update its SmRestartCommand
property with enough information to find the temporary file.

The shutdown argument specifies whether the system is being shut down. The interaction is different
depending on whether or not shutdown is set. If not shutting down, the client should save its state and wait
for a “Save Complete” message. If shutting down, the client must save state and then prevent interaction
until it receives either a “Die” or a *“‘Shutdown Cancelled.”

X Session Management Library X11, Release 6.4

The fast argument specifies that the client should save its state as quickly as possible. For example, if the
session manager knows that power is about to fail, it would set fast to True.

5.1.2. The Die Callback
The Die callback is of type SmcDieProc.

typedef void (*SmcDieProc)();

void DieProc (smc_conn, client_data)
SmcConn smc_conn;
SmPointer client_data;
smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

The session manager sends a “Die”” message to a client when it wants it to die. The client should respond
by calling SmcCloseConnection. A session manager that behaves properly will send a “Save Yourself”
message before the “Die” message.

5.1.3. The Save Complete Callback
The Save Complete callback is of type SmcSaveCompleteProc.

typedef void (*SmcSaveCompleteProc)();

void SaveCompleteProc (smc_conn, client_data)
SmcConn smc_conn;
SmPointer client_data;
smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

When the session manager is done with a checkpoint, it will send each of the clients a “Save Complete”
message. The client is then free to change its state.

5.1.4. The Shutdown Cancelled Callback
The Shutdown Cancelled callback is of type SmcShutdownCancelledProc.

typedef void (*SmcShutdownCancelledProc)();

void ShutdownCancelledProc (smc_conn, client_data)
SmcConn smc_conn;
SmPointer client_data;

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

The session manager sends a “Shutdown Cancelled” message when the user cancelled the shutdown during
an interaction (see section 5.5, “Interacting With the User”). The client can now continue as if the shut-
down had never happened. If the client has not called SmcSaveYourselfDone yet, it can either abort the
save and then call SmcSaveYourselfDone with the success argument set to False, or it can continue with
the save and then call SmcSaveYourselfDone with the success argument set to reflect the outcome of the
save.

X Session Management Library X11, Release 6.4

5.2. Closing the Connection

To close a connection with a session manager, use SmcCloseConnection.

SmcCloseStatus SmcCloseConnection (smc_conn, count, reason_msgs)
SmcConn smc_conn;
int count;
char **reason_msgs;

smc_conn The session management connection object.
count The number of reason messages.
reason_msgs The reasons for closing the connection.

The reason_msgs argument will most likely be NULL if resignation is expected by the client. Otherwise, it
contains a list of null-terminated Compound Text strings representing the reason for termination. The ses-
sion manager should display these reason messages to the user.

Note that SMlib used the ICE protocol to establish a connection with the session manager, and various pro-
tocols other than session management may be active on the ICE connection. When SmcCloseConnection
is called, the ICE connection will be closed only if all protocols have been shutdown on the connection.
Check the ICElib standard for IceAddConnectionWatch and IceRemoveConnectionWatch to learn how
to set up a callback to be invoked each time an ICE connection is opened or closed. Typically this callback
adds/removes the ICE file descriptor from the list of active descriptors to call select on (or calls XtAp-
pAddInput or XtRemovelnput).

SmcCloseConnection returns one of the following values:

. SmcClosedNow — the ICE connection was closed at this time, the watch procedures were invoked,
and the connection was freed.

. SmcClosedASAP — an IO error had occurred on the connection, but SmeCloseConnection is being
called within a nested IceProcessMessages. The watch procedures have been invoked at this time,
but the connection will be freed as soon as possible (when the nesting level reaches zero and IcePro-
cessMessages returns a status of IceProcessMessagesConnectionClosed).

. SmcConnectionInUse — the connection was not closed at this time, because it is being used by other
active protocols.

5.3. Modifying Callbacks
To modify callbacks set up in SmcOpenConnection, use SmcModifyCallbacks.

void SmcModifyCallbacks (smc_conn, mask, callbacks)
SmcConn smc_conn;
unsigned long mask;
SmcCallbacks *callbacks;

smc_conn The session management connection object.
mask A mask indicating which callbacks to modify.
callbacks The new callbacks.

When specifying a value for the mask argument, the following values may be ORed together:

SmcSaveYourselfProcMask
SmcDieProcMask
SmcSaveCompleteProcMask
SmcShutdownCancelledProcMask

X Session Management Library X11, Release 6.4

5.4. Setting, Deleting, and Retrieving Session Management Properties

To set session management properties for this client, use SmcSetProperties.

void SmcSetProperties (smc_conn, num_props, props)
SmcConn smc_conn;
int num_props;
SmProp **props;

smc_conn The session management connection object.
num_props The number of properties.
props The list of properties to set.

The properties are specified as an array of property pointers. Previously set property values may be over-
written using the SmcSetProperties function. Note that the session manager is not expected to restore
property values when the session is restarted. Because of this, clients should not try to use the session man-
ager as a database for storing application specific state.

For a description of session management properties and the SmProp structure, see section 7, “Session
Management Properties.”

To delete properties previously set by the client, use SmcDeleteProperties.

void SmcDeleteProperties (smc_conn, num_props, prop_names)
SmcConn smc_conn;
int num_props;
char **prop_names;

smc_conn The session management connection object.
num_props The number of properties.
prop_names The list of properties to delete.

To get properties previously stored by the client, use SmcGetProperties.

Status SmcGetProperties (smc_conn, prop_reply_proc, client_data)
SmcConn smc_conn;
SmcPropReplyProc prop_reply_proc;
SmPointer client_data;
smc_conn The session management connection object.
prop_reply_proc The callback to be invoked when the properties reply comes back.

client_data This pointer to client data will be passed to the SmcPropReplyProc callback.

The return value of SmcGetProperties is zero for failure and a positive value for success.

Note that the library does not block until the properties reply comes back. Rather, a callback of type
SmcPropReplyProc is invoked when the data is ready.

X Session Management Library X11, Release 6.4

typedef void (*SmcPropReplyProc)();

void PropReplyProc (smc_conn, client_data, num_props, props)
SmcConn smc_conn;
SmPointer client_data;
int num_props;
SmProp **props;

smc_conn The session management connection object.
client_data Client data specified when the callback was registered.
num_props The number of properties returned.

props The list of properties returned.

To free each property, use SmFreeProperty (see section 8, “Freeing Data”). To free the actual array of
pointers, use free.

5.5. Interacting With the User

After receiving a ““‘Save Yourself”” message with an interact_style of SmInteractStyleErrors or SmInter-
actStyleAny, the client may choose to interact with the user. Because only one client can interact with the
user at a time, the client must call SmcInteractRequest and wait for an “Interact” message from the ses-
sion manager.

Status SmclnteractRequest(smc_conn, dialog_type, interact_proc, client_data)
SmcConn smc_conn;
int dialog_type;
SmclnteractProc interact_proc;
SmPointer client_data;

smc_conn The session management connection object.

dialog_type The type of dialog the client wishes to present to the user.

interact_proc The callback to be invoked when the “Interact” message arrives from the session man-
ager.

client_data This pointer to client data will be passed to the SmcInteractProc callback when the

“Interact” message arrives.

The return value of SmclInteractRequest is zero for failure and a positive value for success.

The dialog_type argument specifies either SmDialogError, indicating that the client wants to start an error
dialog, or SmDialogNormal, meaning that the client wishes to start a nonerror dialog.

Note that if a shutdown is in progress, the user may have the option of cancelling the shutdown. If the shut-
down is cancelled, the clients that have not interacted yet with the user will receive a “Shutdown Can-
celled” message instead of the ““Interact” message.

The SmclnteractProc callback will be invoked when the “Interact” message arrives from the session
manager.

typedef void (*SmclnteractProc)();

void InteractProc (smc_conn, client_data)
SmcConn smc_conn;
SmPointer client_data;

X Session Management Library X11, Release 6.4

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

After interacting with the user (in response to an “Interact’” message), you should call SmcInteractDone.

'* void SmclnteractDone (smc_conn, cancel_shutdown)
SmcConn smc_conn;
Bool cancel_shutdown;

smc_conn The session management connection object.

cancel_shutdown
If True, indicates that the user requests that the entire shutdown be cancelled.

The cancel_shutdown argument may only be True if the corresponding “Save Yourself™ specified True
for shutdown and SmInteractStyleErrors or SmInteractStyleAny for the interact_style.

5.6. Requesting a Save Yourself

To request a checkpoint from the session manager, use SmcRequestSaveYourself.

'* void SmcRequestSaveYourself (smc_conn, save_type, shutdown, interact_style, fast, global)
SmcConn smc_conn;
int save_type;
Bool shutdown;
int interact_style;

Bool fast;

Bool global;
smc_conn The session management connection object.
save_type Specifies the type of information that should be saved.
shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.
fast If True, the client should save its state as quickly as possible.

' global Controls who gets the “Save Yourself.”

The save_type, shutdown, interact_style, and fast arguments are discussed in more detail in section 5.1.1,
“The Save Yourself Callback.”

If global is set to True, then the resulting “Save Yourself” should be sent to all clients in the session. For
example, a vendor of a Uninterruptible Power Supply (UPS) might include a Session Management client
that would monitor the status of the UPS and generate a fast shutdown if the power is about to be lost.

If global is set to False, then the “Save Yourself” should only be sent to the client that requested it.

5.7. Requesting a Save Yourself Phase 2

In response to a “Save Yourself, the client may request to be informed when all the other clients are quies-
cent so that it can save their state. To do so, use SmcRequestSaveYourselfPhase2.

'* Status SmcRequestSave YourselfPhase2 (smc_conn, save_yourself phase2_proc, client_data)
SmcConn smc_conn;
SmcSaveYourselfPhase2Proc save_yourself phase2_proc;
SmPointer client_data;

—-10-

X Session Management Library X11, Release 6.4

smc_conn The session management connection object.

save_yourself _phase2_proc
The callback to be invoked when the “Save Yourself Phase 2" message arrives from the
session manager.

client_data This pointer to client data will be passed to the SmcSaveYourselfPhase2Proc callback
when the “Save Yourself Phase 2" message arrives.

The return value of SmcRequestSaveYourselfPhase2 is zero for failure and a positive value for success.

This request is needed by clients that manage other clients (for example, window managers, workspace
managers, and so on). The manager must make sure that all of the clients that are being managed are in an
idle state so that their state can be saved.

5.8. Completing a Save Yourself

After saving state in response to a ““Save Yourself”” message, you should call SmcSaveYourselfDone.

void SmcSaveYourselfDone (smc_conn, success)
SmcConn smc_conn;
Bool success;

smc_conn The session management connection object.

success If True, the “Save Yourself” operation was completed successfully.

Before calling SmcSaveYourselfDone, the client must have set each required property at least once since
the client registered with the session manager.

5.9. Using Smc Informational Functions

int SmcProtocolVersion (smc_conn)
SmcConn smc_conn;

SmcProtocol Version returns the major version of the session management protocol associated with this
session.
int SmcProtocolRevision (smc_conn)

SmcConn smc_conn;
SmcProtocolRevision returns the minor version of the session management protocol associated with this
session.
char *SmcVendor (smc_conn)

SmcConn smc_conn;

SmcVendor returns a string that provides some identification of the owner of the session manager. The
string should be freed with a call to free.

—11 -

X Session Management Library X11, Release 6.4

char *SmcRelease (smc_conn)
SmcConn smc_conn;

SmcRelease returns a string that provides the release number of the session manager. The string should be
freed with a call to free.

char *SmcClientID (smc_conn)
SmcConn smc_conn;

SmcClientID returns a null-terminated string for the client ID associated with this connection. This infor-
mation was also returned in SmcOpenConnection (it is provided here for convenience). Call free on this
pointer when the client ID is no longer needed.

IceConn SmcGetlceConnection (smc_conn)
SmcConn smc_conn;

SmcGetlceConnection returns the ICE connection object associated with this session management con-
nection object. The ICE connection object can be used to get some additional information about the con-
nection. Some of the more useful functions which can be used on the IceConn are IceConnectionNum-
ber, IceConnectionString, IceLastSentSequenceNumber, IceLastReceivedSequenceNumber, and
IcePing. For further information, see the Inter-Client Exchange Library standard.

5.10. Error Handling

If the client receives an unexpected protocol error from the session manager, an error handler is invoked by
SMIib. A default error handler exists that simply prints the error message to stderr and exits if the severity
of the error is fatal. The client can change this error handler by calling the SmcSetErrorHandler func-
tion.

SmcErrorHandler SmcSetErrorHandler (handler)
SmcErrorHandler handler;

handler The error handler. You should pass NULL to restore the default handler.

SmcSetErrorHandler returns the previous error handler.

The SmcErrorHandler has the following type:

typedef void (*SmcErrorHandler)();

void ErrorHandler (smc_conn, swap, offending_minor_opcode, offending_sequence_num, error_class, severity, values)
SmcConn smc_conn;
Bool swap;
int offending_minor_opcode;
unsigned long offending_sequence_num;
int error_class;
int severity;
IcePointer values;

smc_conn The session management connection object.

- 12 -

X Session Management Library X11, Release 6.4

swap A flag that indicates if the specified values need byte swapping.
offending_minor_opcode

The minor opcode of the offending message.
offending_sequence_num

The sequence number of the offending message.

error_class The error class of the offending message.
severity IceCanContinue, IceFatalToProtocol, or IceFatalToConnection.
values Any additional error values specific to the minor opcode and class.

Note that this error handler is invoked for protocol related errors. To install an error handler to be invoked
when an IO error occurs, use IceSetlOErrorHandler. For further information, see the Inter-Client
Exchange Library standard.

6. Session Management Server (Sms) Functions

This section discusses how Session Management servers:

. Initialize the library

. Register the client

. Send a “Save Yourself”” message
. Send a “Save Yourself Phase 2’ message
. Send an ““Interact” message

. Send a “Save Complete” message
. Send a “Die” message

. Cancel a shutdown

. Return properties

. Ping a client

. Clean up after a client disconnects
. Use Sms informational functions

. Handle errors

6.1. Initializing the Library

Smslnitialize is the first SMlib function that should be called by a session manager. It provides informa-
tion about the session manager and registers a callback that will be invoked each time a new client connects
to the session manager.

Status Smslnitialize (vendor, release, new_client_proc, manager_data, host_based_auth_proc,
error_length, error_string_ret)
char *vendor;
char *release;
SmsNewClientProc new_client_proc;
SmPointer manager_data;
IceHostBased AuthProc host_based_auth_proc;
int error_length;
char *error_string_ret;

vendor A string specifying the session manager vendor.
release A string specifying the session manager release number.

new_client_proc Callback to be invoked each time