Xlib — C Language X Interface
X Consortium Standard

X Version 11, Release 6.7 DRAFT

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn Widener, Tektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Window System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation for any purpose. It is provided ‘“‘as is” without express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital Equipment Corporation and Ron Newman of MIT, both at MIT Project Athena. X version 11,
however, is the result of the efforts of dozens of individuals at almost as many locations and
organizations. At the risk of offending some of the players by exclusion, we would like to
acknowledge some of the people who deserve special credit and recognition for their work on
Xlib. Our apologies to anyone inadvertently overlooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from people everywhere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was “loaned” to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not have had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of Digital’s ULTRIX Documentation Group.
With good humor and cheer, they took a rough draft and made it an infinitely better and more use-
ful document. The work they have done will help many everywhere. We also would like to thank
Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the window manager properties; and to Dave Rosenthal (Sun Microsystems)
who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants deserve special recognition and thanks as well. It is signifi-
cant that the bug reports (and many fixes) during alpha and beta test came almost exclusively
from just a few of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors and universities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research at Digital, who
has remained committed to the widest public availability of X and who made it possible to greatly
supplement MIT’s resources with the Digital staff in order to make version 11 a reality. Many of
the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Smokey Wallace, who has been vital to the
project’s success. Others not mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and now of
Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly of Stanford
University and now of Digital WRL, who had much to do with W’s design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the new Xlib
functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Converse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Joloboff (Open Software Founda-
tion) and Bill McMahon (Hewlett-Packard). The principal author of the rest of the international-
ization facilities is Glenn Widener (Tektronix). Our thanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, many others have contributed substantially to the design and imple-
mentation. Tom McFarland (HP) and Frank Rojas (IBM) deserve particular recognition for their
contributions. Other contributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Dov (HP), Chih-Chung Ko (I1I), Vera Cheng (III), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Harvey (IBM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Waseda University), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masahiko (Fujitsu), Masato
Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhiro Kawai (Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (Sony Corporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Taylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna
Converse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consor-
tium), Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks also to Clive Feather (IXI) for proof-reading
and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, many others have contributed substantially to the design and imple-
mentation. They are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom McFar-
land (HP), Hiroyuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM),
Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Digital), Hiroyuki Miyamoto (Digital),
Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who have contributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makiko Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display servers run on computers with either monochrome or color bitmap display hardware. The
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in the network. Xlib is a C subroutine library that appli-
cation programs (clients) use to interface with the window system by means of a stream connec-
tion. Although a client usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C language interface to the X
Window System protocol. It is neither a tutorial nor a user’s guide to programming the X Win-
dow System. Rather, it provides a detailed description of each function in the library as well as a
discussion of the related background information. Xlib — C Language X Interface assumes a
basic understanding of a graphics window system and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
XIib library. For further information about these higher-level libraries, see the appropriate toolkit
documentation. The X Window System Protocol provides the definitive word on the behavior of
X. Although additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

. Overview of the X Window System

. Errors

. Standard header files

. Generic values and types

. Naming and argument conventions within Xlib
. Programming considerations

. Character sets and encodings

. Formatting conventions

1.1. Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems have different meanings in X. You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or subwin-
dows. A screen is a physical monitor and hardware that can be color, grayscale, or monochrome.
There can be multiple screens for each display or workstation. A single X server can provide dis-
play services for any number of screens. A set of screens for a single user with one keyboard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each hierarchy is a
root window, which covers each of the display screens. Each root window is partially or com-
pletely covered by child windows. All windows, except for root windows, have parents. There is
usually at least one window for each application program. Child windows may in turn have their

Xlib — C Library X11, Release 6.7 DRAFT

own children. In this way, an application program can create an arbitrarily deep tree on each
screen. X provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can extend
beyond the boundaries of the parent, but all output to a window is clipped by its parent. If several
children of a window have overlapping locations, one of the children is considered to be on top of
or raised over the others, thus obscuring them. Output to areas covered by other windows is sup-
pressed by the window system unless the window has backing store. If a window is obscured by
a second window, the second window obscures only those ancestors of the second window that
are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or solid
color you like. A window usually but not always has a background pattern, which will be
repainted by the window system when uncovered. Child windows obscure their parents, and
graphic operations in the parent window usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, O] at the upper-left corner. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. For a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or all of a window is hid-
den and then brought back onto the screen, its contents may be lost. The server then sends the
client program an Expose event to notify it that part or all of the window needs to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later execute
asynchronously on the X server. Functions that return values of information stored in the server
do not return (that is, they block) until an explicit reply is received or an error occurs. You can
provide an error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the request with a call
to XSync, which blocks until all previously buffered asynchronous events have been sent and
acted on. As an important side effect, the output buffer in Xlib is always flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource 1D, which allows you to refer to objects
stored on the X server. These can be of type Window, Font, Pixmap, Colormap, Cursor, and
GContext, as defined in the file <X11/X.h>. These resources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programs. Fonts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple clients. Fonts are often
cached in the server. Xlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed of events. Events may either be side effects of a request (for exam-
ple, restacking windows generates Expose events) or completely asynchronous (for example,
from the keyboard). A client program asks to be informed of events. Because other applications
can send events to your application, programs must be prepared to handle (or ignore) events of all

types.

Xlib — C Library X11, Release 6.7 DRAFT

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example, XNextEvent or
XWindowEvent). In addition, some library functions (for example, XRaiseWindow) generate
Expose and ConfigureRequest events. These events also arrive asynchronously, but the client
may wish to explicitly wait for them by calling XSync after calling a function that can cause the
server to generate events.

1.2. Errors

Some functions return Status, an integer error indication. If the function fails, it returns a zero.
If the function returns a status of zero, it has not updated the return arguments. Because C does
not provide multiple return values, many functions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functions that return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes, how-
ever, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you do
not provide an error handler, the error is printed, and your program terminates.

1.3. Standard Header Files
The following include files are part of the Xlib standard:
. <X11/Xlib.h>

This is the main header file for Xlib. The majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor symbol XlibSpecificationRe-
lease. This symbol is defined to have the 6 in this release of the standard. (Release 5 of
Xlib was the first release to have this symbol.)

. <X11/X.h>

This file declares types and constants for the X protocol that are to be used by applications.
It is included automatically from <X11/Xlib.h>, so application code should never need to
reference this file directly.

. <X11/Xcms.h>
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Color Conversion

Contexts macros, are declared in this file. <X11/Xlib.h> must be included before including
this file.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 and 16. <X11/Xlib.h>
must be included before including this file.

. <X11/Xresource.h>

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15. <X11/Xlib.h> must be included before including this

Xlib — C Library X11, Release 6.7 DRAFT

file.

<X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
<X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in
appendix B. All cursor symbols have the prefix “XC_".

<X11/keysymdef.h>

This file declares all standard KeySym values, which are symbols with the prefix “XK_".
The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. The preprocessor symbol must be defined prior to inclusion of the file to obtain the
associated values. The preprocessor symbols are XK_MISCELLANY, XK_XKB_KEYS,
XK 3270, XK_LATINI1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KATAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW, XK_THAI, and XK_KOREAN.

<X11/keysym.h>

This file defines the preprocessor symbols XK_MISCELLANY, XK_XKB_KEYS,
XK_LATINI1, XK_LATIN2, XK _LATIN3, XK _ILLATIN4, and XK_GREEK and then
includes <X11/keysymdef.h>.

<X11/Xlibint.h>

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includes <X11/Xlib.h>.

<X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xlibint.h>, so application and exten-
sion code should never need to reference this file directly.

<X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X11/Xproto.h>, so application and exten-
sion code should never need to reference this file directly.

<X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. Generic Values and Types

The following symbols are defined by Xlib and used throughout the manual:

Xlib defines the type Bool and the Boolean values True and False.
None is the universal null resource ID or atom.
The type XID is used for generic resource IDs.

The type XPointer is defined to be char* and is used as a generic opaque pointer to data.

1.5. Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given that you
remember what information the function requires, these conventions are intended to make the
syntax of the functions more predictable.

Xlib — C Library X11, Release 6.7 DRAFT

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaves lowercase for variables and all uppercase for user macros, as
per existing convention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More generally, anything that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lowercase. Compound words, where
needed, are constructed with underscores (_).

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a drawable), the graphics context occurs in the argument list after the other
resource. Drawables outrank all other resources.

Source arguments always precede the destination arguments in the argument list.
The x argument always precedes the y argument in the argument list.
The width argument always precedes the height argument in the argument list.

Where the x, y, width, and height arguments are used together, the x and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the mask always precedes the pointer to the
structure in the argument list.

1.6. Programming Considerations

The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for a given level of performance. Coordinates usually are
declared as an int in the interface. Values larger than 16 bits are truncated silently. Sizes
(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufacturers’ workstations. If you
want your program to be portable, you should be particularly conservative here.

Many display systems have limited amounts of off-screen memory. If you can, you should
minimize use of pixmaps and backing store.

The user should have control of his screen real estate. Therefore, you should write your
applications to react to window management rather than presume control of the entire
screen. What you do inside of your top-level window, however, is up to your application.
For further information, see chapter 14 and the Inter-Client Communication Conventions
Manual.

Xlib — C Library X11, Release 6.7 DRAFT

1.7. Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character encodings.
The following are the most common:

. X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a.ZzA.Z 0.9 "#$%&)*+,-./:;<=>?@[\]"_*{l}~ <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. It is also the set of graphic characters in 7-bit ASCII plus the same three control
characters. The actual encoding of these characters on the host is system dependent.

. Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

. Latin-1
The coded character set defined by the ISO 8859-1 standard.
. Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

. STRING Encoding

Latin-1, plus tab and newline.
. UTF-8 Encoding

The ASCII compatible character encoding scheme defined by the ISO 10646-1 standard.
. POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9. -

1.8. Formatting Conventions
Xlib — C Language X Interface uses the following conventions:

. Global symbols are printed in this special font. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed in italics. In the explanatory text that follows, they usually are printed in
regular type.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI C environments. General discussion of the

Xlib — C Library X11, Release 6.7 DRAFT

function, if any is required, follows the arguments. Where applicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can generate. For a
complete discussion of the Xlib error codes, see section 11.8.2.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for all arguments that you can pass and are
returned start with the words specifies and returns.

. Any pointer to a structure that is used to return a value is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using the _in_out suffix.

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the display. This chapter discusses how to:

. Open (connect to) the display

. Obtain information about the display, image formats, or screens
. Generate a NoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay .

Display *XOpenDisplay (display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISPLAY environment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. On POSIX-conformant systems, the display name or DISPLAY environment
variable can be a string in the format:

Xlib — C Library X11, Release 6.7 DRAFT

protocol/ hostname :number . screen_number

protocol Specifies a protocol family or an alias for a protocol family. Supported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-

ified.

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with either a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host machine. You may

optionally follow this display number with a period (.). A single CPU can have
more than one display. Multiple displays are usually numbered starting with
Zero.

screen_number
Specifies the screen to be used on that server. Multiple screens can be controlled
by a single X server. The screen_number sets an internal variable that can be
accessed by using the DefaultScreen macro or the XDefaultScreen function if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named ‘‘dual-
headed”:

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information about that X server. XOpenDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp”, "inet", or
"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hostname and display number, XOpenDisplay connects using TCP streams. (If
the protocol is specified as "inet", TCP over IPv4 is used. If the protocol is specified as "inet6",
TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib uses whatever it believes is the fastest
transport. If the hostname is a host machine name and a double colon (::) separates the hostname
and display number, XOpenDisplay connects using DECnet. A single X server can support any
or all of these transport mechanisms simultaneously. A particular Xlib implementation can sup-
port many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, all of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned by the DefaultScreen macro (or the XDe-
faultScreen function). You can access elements of the Display and Screen structures only by
using the information macros or functions. For information about using macros and functions to
obtain information from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

Xlib — C Library X11, Release 6.7 DRAFT

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. The macros are used for C programming, and their corresponding
function equivalents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of the Display structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications must never directly modify or inspect these
private members of the Display structure.

Note

The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes, XDis-
playWidthMM, and XDisplayHeightMM functions in the next sections are mis-
named. These functions really should be named Screenwhatever and XScreenwhat-
ever, not Displaywhatever or XDisplaywhatever. Our apologies for the resulting
confusion.

2.2.1. Display Macros

Applications should not directly modify any part of the Display and Screen structures. The
members should be considered read-only, although they may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens and, in any case, may not actually be
black or white. The names are intended to convey the expected relative intensity of the colors.

10

Xlib — C Library X11, Release 6.7 DRAFT

BlackPixel (display, screen_number)

unsigned long XBlackPixel (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number)

unsigned long XWhitePixel (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int XConnectionNumber (display)
Display *display;

display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormap (display, screen_number)

Colormap XDefaultColormap(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11

Xlib — C Library X11, Release 6.7 DRAFT

allocations of color should be made out of this colormap.

DefaultDepth (display, screen_number)

int XDefaultDepth (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (see XMatchVisuallnfo).

To determine the number of depths that are available on a given screen, use XListDepths.

int *XListDepths (display, screen_number, count_return)
Display *display;
int screen_number;
int *count_return;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number of available depths. Otherwise, it does not set
count_return and returns NULL. To release the memory allocated for the array of depths, use
XFree.

DefaultGC (display, screen_number)

GC XDefaultGC (display, screen_number)
Display *display;
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. This GC is
created for the convenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12

Xlib — C Library X11, Release 6.7 DRAFT

screen, respectively. You can modify its contents freely because it is not used in any Xlib func-
tion. This GC should never be freed.

DefaultRootWindow (display)

Window XDefaultRootWindow (display)
Display *display;

display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay (display)

Screen *XDefaultScreenOfDisplay (display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)

Screen *XScreenOfDisplay (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreen (display)

int XDefaultScreen (display)
Display *display;

display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This macro or
function should be used to retrieve the screen number in applications that will use only a single
screen.

13

Xlib — C Library X11, Release 6.7 DRAFT

DefaultVisual (display, screen_number)

Visual *XDefaultVisual (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information about visual
types, see section 3.1.

DisplayCells (display, screen_number)

int XDisplayCells (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number)

int XDisplayPlanes (display, screen_number)
Display *display;
int screen_number;
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of depth, see
the glossary.

14

Xlib — C Library X11, Release 6.7 DRAFT

DisplayString (display)

char *XDisplayString (display)
Display *display;

display Specifies the connection to the X server.

Both return the string that was passed to XOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that invoke the fork system call and want to open a new connection to the same display
from the child process as well as for printing error messages.

long XExtendedMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSize function returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib functions XDraw-
Lines, XDrawArcs, XFillPolygon, XChangeProperty, XSetClipRectangles, and XSetRe-
gion will use the extended-length encoding as necessary, if supported by the server. Use of the
extended-length encoding in other Xlib functions (for example, XDrawPoints, XDrawRectan-
gles, XDrawSegments, XFillArcs, XFillRectangles, XPutImage) is permitted but not
required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XMaxRequestSize function returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server. The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles, XDrawSegments, XFillArcs, XFillRectangles, and
XPutImage.

15

Xlib — C Library X11, Release 6.7 DRAFT

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequestProcessed (display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed by
the X server. Xlib automatically sets this number when replies, events, and errors are received.

NextRequest(display)

unsigned long XNextRequest(display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

Protocol Version (display)

int XProtocol Version (display)
Display *display;

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the connected dis-

play.

ProtocolRevision (display)

int XProtocolRevision(display)
Display *display;

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

16

Xlib — C Library X11, Release 6.7 DRAFT

QLength (display)
int XQLength (display)
Display *display;
display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be more
events that have not been read into the queue yet (see XEventsQueued).

RootWindow (display, screen_number)

Window XRootWindow (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a particular
screen and for creating top-level windows.

ScreenCount(display)

int XScreenCount(display)
Display *display;

display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor (display)

char *XServerVendor (display)
Display *display;

display Specifies the connection to the X server.
Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character

Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

17

Xlib — C Library X11, Release 6.7 DRAFT

VendorRelease (display)

int XVendorRelease (display)
Display *display;

display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

2.2.2. Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server demands. To
help simplify applications, most of the work required to convert the data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;
} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmapFormats (display, count_return)
Display *display;
int *count_return;

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues structures that
describe the types of Z format images supported by the specified display. If insufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

18

Xlib — C Library X11, Release 6.7 DRAFT

ImageByteOrder (display)

int XImageByteOrder (display)
Display *display;

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format (bitmap) or
for each pixel value in Z format. The macro or function can return either LSBFirst or MSB-
First.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder (display)

int XBitmapBitOrder (display)
Display *display;

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can return LSBFirst or
MSBFirst.

BitmapPad (display)

int XBitmapPad (display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

19

Xlib — C Library X11, Release 6.7 DRAFT

DisplayHeight(display, screen_number)

int XDisplayHeight(display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)

int XDisplayHeightMM (display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen_number)

int XDisplayWidth(display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

20

Xlib — C Library X11, Release 6.7 DRAFT

DisplayWidthMM (display, screen_number)

int XDisplayWidthMM (display, screen_number)
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all take a
pointer to the appropriate screen structure.

BlackPixelOfScreen(screen)

unsigned long XBlackPixelOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen (screen)

unsigned long XWhitePixelOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen(screen)

int XCellsOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the number of colormap cells in the default colormap of the specified screen.

21

Xlib - C Library

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen (screen)

int XDefaultDepthOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScreen (screen)

GC XDefaultGCOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

X11, Release 6.7 DRAFT

Both return a default graphics context (GC) of the specified screen, which has the same depth as

the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen (screen)

Visual *XDefaultVisualOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types, see section

3.1.

22

Xlib — C Library X11, Release 6.7 DRAFT

DoesBackingStore (screen)

int XDoesBackingStore (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders (screen)

Bool XDoesSaveUnders (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. If True, the
screen supports save unders. If False, the screen does not support save unders (see section 3.2.5).

DisplayOfScreen (screen)

Display *XDisplayOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

int XScreenNumberOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the specified screen.

EventMaskOfScreen (screen)

long XEventMaskOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connection setup time.

23

Xlib - C Library

WidthOfScreen (screen)

int XWidthOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen (screen)

int XHeightOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen (screen)

int XWidthMMOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen (screen)

int XHeightMMOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen (screen)

int XMaxCmapsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

X11, Release 6.7 DRAFT

Both return the maximum number of installed colormaps supported by the specified screen (see

24

Xlib — C Library X11, Release 6.7 DRAFT

section 9.3).

MinCmapsOfScreen(screen)

int XMinCmapsOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreen (screen)

int XPlanesOfScreen (screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen (screen)

Window XRootWindowOfScreen (screen)
Screen *screen;;

screen Specifies the appropriate Screen structure.
Both return the root window of the specified screen.

2.3. Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp(display)
Display *display;

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby exercising
the connection.

2.4. Freeing Client-Created Data

To free in-memory data that was created by an Xlib function, use XFree.

25

Xlib — C Library X11, Release 6.7 DRAFT

XFree(data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You must use
it to free any objects that were allocated by Xlib, unless an alternate function is explicitly speci-
fied for the object. A NULL pointer cannot be passed to this function.

2.5. Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font, Pixmap, Colormap,
Cursor, and GContext), or other resources that the client has created on this display, unless the
close-down mode of the resource has been changed (see XSetCloseDownMode). Therefore,
these windows, resource IDs, and other resources should never be referenced again or an error
will be generated. Before exiting, you should call XCloseDisplay explicitly so that any pending
errors are reported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed. To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode (display, close_mode)
Display *display;
int close_mode;
display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass DestroyAll, RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connection
close. A connection starts in DestroyAll mode. For information on what happens to the client’s
resources when the close_mode argument is RetainPermanent or RetainTemporary, see sec-
tion 2.6.

XSetCloseDownMode can generate a BadValue error.

2.6. Using X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to XCloseDisplay
or by a process that exits, the X server performs the following automatic operations:

26

Xlib — C Library X11, Release 6.7 DRAFT

. It disowns all selections owned by the client (see XSetSelectionOwner).

. It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

. It performs an XUngrabServer if the client has grabbed the server.
. It releases all passive grabs made by the client.
. It marks all resources (including colormap entries) allocated by the client either as perma-

nent or temporary, depending on whether the close-down mode is RetainPermanent or
RetainTemporary. However, this does not prevent other client applications from explic-
itly destroying the resources (see XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a client’s resources as fol-
lows:

. It examines each window in the client’s save-set to determine if it is an inferior (subwin-
dow) of a window created by the client. (The save-set is a list of other clients’ windows
that are referred to as save-set windows.) If so, the X server reparents the save-set window
to the closest ancestor so that the save-set window is not an inferior of a window created by
the client. The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window.

. It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of a
window created by the client.

. It destroys all windows created by the client.

. It performs the appropriate free request on each nonwindow resource created by the client
in the server (for example, Font, Pixmap, Cursor, Colormap, and GContext).

. It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close_mode of DestroyAll,
the X server does the following:

. It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients that have terminated in RetainPermanent or RetainTempo-
rary mode.

. It deletes all but the predefined atom identifiers.
. It deletes all properties on all root windows (see section 4.3).

. It resets all device maps and attributes (for example, key click, bell volume, and accelera-
tion) as well as the access control list.

. It restores the standard root tiles and cursors.
. It restores the default font path.
. It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanent or RetainTemporary.

2.7. Using Xlib with Threads

On systems that have threads, support may be provided to permit multiple threads to use Xlib
concurrently.

27

Xlib — C Library X11, Release 6.7 DRAFT

To initialize support for concurrent threads, use XInitThreads.

Status XInitThreads();

The XInitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete before any other
Xlib call is made. This function returns a nonzero status if initialization was successful; other-
wise, it returns zero. On systems that do not support threads, this function always returns zero.

It is only necessary to call this function if multiple threads might use Xlib concurrently. If all
calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

To lock a display across several Xlib calls, use XLockDisplay.

void XLockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified display. Other
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls to XLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of times as XLockDisplay. This function
has no effect unless Xlib was successfully initialized for threads using XInitThreads.

To unlock a display, use XUnlockDisplay .

void XUnlockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified display again. Any
threads that have blocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, then XUnlockDisplay must be
called an equal number of times before the display is actually unlocked. This function has no
effect unless Xlib was successfully initialized for threads using XInitThreads.

2.8. Using Internal Connections

In addition to the connection to the X server, an Xlib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapter 13). Toolkits
and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until input is available and need to pro-
cess that input when it is available. Simple clients that use a single display and block for input in
an Xlib event function do not need to use these facilities.

28

Xlib — C Library X11, Release 6.7 DRAFT

To track internal connections for a display, use XAddConnectionWatch.

typedef void (*XConnectionWatchProc) (display, client_data, fd, opening, watch_data)
Display *display;
XPointer client_data;
int fd;
Bool opening;
XPointer *watch_data;

Status XAddConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or
closes an internal connection for the specified display. The procedure is passed the display, the
specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a location for private watch data. If opening is
True, the procedure can store a pointer to private data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opening is False, the location
pointed to by watch_data will hold this same private data pointer.

This function can be called at any time after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, before XAddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure directly or indi-
rectly causes the state of internal connections or watch procedures to change, the result is not
defined. If Xlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure to any Xlib function that locks the display is not defined
unless the executing thread has externally locked the display using XLockDisplay.

To stop tracking internal connections for a display, use XRemoveConnectionWatch.

Status XRemoveConnectionWatch (display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XRemoveConnectionWatch function removes a previously registered connection watch
procedure. The client_data must match the client_data used when the procedure was initially

29

Xlib — C Library X11, Release 6.7 DRAFT

registered.

To process input on an internal connection, use XProcessInternalConnection.

void XProcessInternalConnection (display, fd)
Display *display;
int fd;

display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcessInternalConnection function processes input available on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example, select or poll) has indicated that input is available; otherwise, the effect is not
defined.

To obtain all of the current internal connections for a display, use XInternalConnectionNum-
bers.

Status XInternalConnectionNumbers (display, fd_return, count_return)
Display *display;
int **fd_return;
int *count_return;

display Specifies the connection to the X server.

fd_return Returns the file descriptors.

count_return Returns the number of file descriptors.

The XInternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified display. When the allocated list is no longer needed,
free it by using XFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

30

Xlib — C Library X11, Release 6.7 DRAFT

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you view graphic
output. Client applications can display overlapping and nested windows on one or more screens
that are driven by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by calling XOpenDisplay. This chapter begins with a
discussion of visual types and window attributes. The chapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destroy windows

. Map windows

. Unmap windows

. Configure windows

. Change window stacking order
. Change window attributes

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for communicat-
ing with window managers for it to work well with the various window managers in use (see sec-
tion 14.1). Toolkits generally adhere to these conventions for you, relieving you of the burden.
Toolkits also often supersede many functions in this chapter with versions of their own. For more
information, refer to the documentation for the toolkit that you are using.

3.1. Visual Types

On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complexity. Xlib provides macros and
functions that return the default root window, the default depth of the default root window, and
the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) use an XVisuallnfo structure to return this infor-
mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and can be StaticGray, StaticColor, True-
Color, GrayScale, PseudoColor, o