C-XSC - A C++ Class Library for Extended Scientific Computing 2.5.4
l_rmath.hpp
1/*
2** CXSC is a C++ library for eXtended Scientific Computing (V 2.5.4)
3**
4** Copyright (C) 1990-2000 Institut fuer Angewandte Mathematik,
5** Universitaet Karlsruhe, Germany
6** (C) 2000-2014 Wiss. Rechnen/Softwaretechnologie
7** Universitaet Wuppertal, Germany
8**
9** This library is free software; you can redistribute it and/or
10** modify it under the terms of the GNU Library General Public
11** License as published by the Free Software Foundation; either
12** version 2 of the License, or (at your option) any later version.
13**
14** This library is distributed in the hope that it will be useful,
15** but WITHOUT ANY WARRANTY; without even the implied warranty of
16** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17** Library General Public License for more details.
18**
19** You should have received a copy of the GNU Library General Public
20** License along with this library; if not, write to the Free
21** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22*/
23
24/* CVS $Id: l_rmath.hpp,v 1.32 2014/01/30 17:23:46 cxsc Exp $ */
25
26#ifndef _CXSC_L_RMATH_HPP_INCLUDED
27#define _CXSC_L_RMATH_HPP_INCLUDED
28
29#include "l_real.hpp"
30
31namespace cxsc {
32
34inline l_real sqr (const l_real&) noexcept; // Sqr(x)
36 l_real sqrt (const l_real&);
37 // Sqrt(x)
39 l_real sqrtx2y2(const l_real&, const l_real&) noexcept;
40 // Sqrt(x^2+y^2)
42 l_real sqrt1px2(const l_real&) noexcept; // Sqrt(1+x^2)
44inline l_real sqrtp1m1(const l_real &) noexcept;
46inline l_real sqrtx2m1(const l_real &) noexcept;
48inline l_real sqrt1mx2(const l_real &) noexcept;
50inline l_real expm1 (const l_real &x) noexcept;
52inline l_real expmx2 (const l_real&) noexcept;
54inline l_real ln_sqrtx2y2(const l_real& x, const l_real& y) noexcept;
56inline l_real acoshp1 (const l_real& x);
57
58// inline l_real sqrt (const l_real &, int); // Sqrt(x, n)
59// inline l_real sin (const l_real&) noexcept; // Sin(x)
60// inline l_real cos (const l_real&) noexcept; // Cos(x)
61// inline l_real tan (const l_real&) noexcept; // Tan(x)
62// inline l_real cot (const l_real&) noexcept; // Cot(x)
63// inline l_real asin (const l_real&); // ASin(x)
64// inline l_real acos (const l_real&); // ACos(x)
65// inline l_real atan (const l_real&); // ATan(x)
66// inline l_real acot (const l_real&); // ACot(x)
67// inline l_real exp (const l_real&) noexcept; // Exp(x)
68// inline l_real ln (const l_real&); // Ln(x)
69// inline l_real sinh (const l_real&) noexcept; // Sinh(x)
70// inline l_real cosh (const l_real&) noexcept; // Cosh(x)
71// inline l_real tanh (const l_real&) noexcept; // Tanh(x)
72// inline l_real coth (const l_real&) noexcept; // Coth(x)
73// inline l_real asinh (const l_real&); // ASinh(x)
74// inline l_real acosh (const l_real&); // ACosh(x)
75// inline l_real atanh (const l_real&); // ATanh(x)
76// inline l_real acoth (const l_real&); // ACoth(x)
77
79inline l_real pow (const l_real&, const l_real&); // Pow(x,y)
81l_real power (const l_real&, const int); // Power(x,n)
82
83// real staggered constants (the same as in l_interval.hpp):
84l_real Ln2_l_real() noexcept; // ln(2)
85l_real Ln10_l_real() noexcept; // ln(10)
86l_real Ln10r_l_real() noexcept; // 1/ln(10)
87l_real Pid4_l_real() noexcept; // Pi/4
88l_real Sqrt2_l_real() noexcept; // sqrt(2)
89l_real Sqrt5_l_real() noexcept; // sqrt(5)
90l_real Sqrt7_l_real() noexcept; // sqrt(7)
91l_real Ln2r_l_real() noexcept; // 1/ln(2)
92l_real Pi_l_real() noexcept; // Pi
93l_real Pid2_l_real() noexcept; // Pi/2
94l_real Pi2_l_real() noexcept; // 2*Pi
95l_real Pid3_l_real() noexcept; // Pi/3
96l_real Pir_l_real() noexcept; // 1/Pi
97l_real Pi2r_l_real() noexcept; // 1/(2*Pi)
98l_real SqrtPi_l_real() noexcept; // sqrt(Pi)
99l_real Sqrt2Pi_l_real() noexcept; // sqrt(2*Pi)
100l_real SqrtPir_l_real() noexcept; // 1/sqrt(Pi)
101l_real Sqrt2Pir_l_real() noexcept; // 1/sqrt(2*Pi)
102l_real Pip2_l_real() noexcept; // Pi^2
103l_real Sqrt2r_l_real() noexcept; // 1/sqrt(2)
104l_real Sqrt3_l_real() noexcept; // sqrt(3)
105l_real Sqrt3d2_l_real() noexcept; // sqrt(3)/2
106l_real Sqrt3r_l_real() noexcept; // 1/sqrt(3)
107l_real LnPi_l_real() noexcept; // ln(Pi)
108l_real Ln2Pi_l_real() noexcept; // ln(2*Pi)
109l_real E_l_real() noexcept; // e = exp(1)
110l_real Er_l_real() noexcept; // 1/e
111l_real Ep2_l_real() noexcept; // e^2
112l_real Ep2r_l_real() noexcept; // 1/e^2
113l_real EpPi_l_real() noexcept; // e^Pi
114l_real Ep2Pi_l_real() noexcept; // e^(2*Pi)
115l_real EpPid2_l_real() noexcept; // e^(Pi/2)
116l_real EpPid4_l_real() noexcept; // e^(Pi/4)
117l_real EulerGa_l_real() noexcept; // EulerGamma
118l_real Catalan_l_real() noexcept; // Catalan
119
120} // namespace cxsc
121
122#include "l_rmath.inl"
123#endif // _CXSC_L_RMATH_HPP_INCLUDED
The namespace cxsc, providing all functionality of the class library C-XSC.
Definition cdot.cpp:29
cinterval sqrtp1m1(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:1054
cinterval sqrt1mx2(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:1140
l_real Sqrt3r_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:252
l_real Ln2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:208
l_real Pid3_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:230
l_real E_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:258
l_real Er_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:260
l_real SqrtPir_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:240
l_real LnPi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:254
cinterval power(const cinterval &z, int n) noexcept
Calculates .
Definition cimath.cpp:1941
l_real Pip2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:244
l_real Ln10r_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:212
l_real Ln10_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:210
cinterval pow(const cinterval &z, const interval &p) noexcept
Calculates .
Definition cimath.cpp:2074
l_real Catalan_l_real() noexcept
Approximation of Catalan Numbers.
Definition l_rmath.cpp:276
l_real EpPid2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:270
l_real SqrtPi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:236
l_real EulerGa_l_real() noexcept
Approximation of Euler Gamma.
Definition l_rmath.cpp:274
interval expmx2(const interval &x)
Calculates .
Definition imath.cpp:192
l_real Pi2r_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:234
interval acoshp1(const interval &x)
Calculates .
Definition imath.cpp:617
l_real Ln2Pi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:256
l_real Sqrt2Pir_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:242
l_real EpPi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:266
cinterval sqrtx2m1(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:1109
l_real Sqrt2Pi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:238
l_real Sqrt3_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:248
l_real Ep2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:262
l_real Pir_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:232
cinterval sqrt1px2(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:1071
l_real Sqrt5_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:218
l_real Ep2Pi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:268
interval ln_sqrtx2y2(const interval &x, const interval &y) noexcept
Calculates .
Definition imath.cpp:581
cinterval expm1(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:177
l_real Sqrt2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:216
l_real Ep2r_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:264
cinterval sqrt(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:1007
l_real Sqrt2r_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:246
cinterval sqr(const cinterval &z) noexcept
Calculates .
Definition cimath.cpp:3342
l_real Pi2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:228
l_real Sqrt7_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:220
l_real Sqrt3d2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:250
l_real Pi_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:224
l_real Pid4_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:214
l_real Pid2_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:226
interval sqrtx2y2(const interval &x, const interval &y) noexcept
Calculates .
Definition imath.cpp:80
l_real EpPid4_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:272
l_real Ln2r_l_real() noexcept
Approximation of .
Definition l_rmath.cpp:222