|
def | __init__ (self, solver=None, ctx=None, logFile=None) |
|
def | __del__ (self) |
|
def | set (self, *args, **keys) |
|
def | push (self) |
|
def | pop (self, num=1) |
|
def | num_scopes (self) |
|
def | reset (self) |
|
def | assert_exprs (self, *args) |
|
def | add (self, *args) |
|
def | __iadd__ (self, fml) |
|
def | append (self, *args) |
|
def | insert (self, *args) |
|
def | assert_and_track (self, a, p) |
|
def | check (self, *assumptions) |
|
def | model (self) |
|
def | import_model_converter (self, other) |
|
def | unsat_core (self) |
|
def | consequences (self, assumptions, variables) |
|
def | from_file (self, filename) |
|
def | from_string (self, s) |
|
def | cube (self, vars=None) |
|
def | cube_vars (self) |
|
def | proof (self) |
|
def | assertions (self) |
|
def | units (self) |
|
def | non_units (self) |
|
def | trail_levels (self) |
|
def | trail (self) |
|
def | statistics (self) |
|
def | reason_unknown (self) |
|
def | help (self) |
|
def | param_descrs (self) |
|
def | __repr__ (self) |
|
def | translate (self, target) |
|
def | __copy__ (self) |
|
def | __deepcopy__ (self, memo={}) |
|
def | sexpr (self) |
|
def | dimacs (self, include_names=True) |
|
def | to_smt2 (self) |
|
def | use_pp (self) |
|
Solver API provides methods for implementing the main SMT 2.0 commands: push, pop, check, get-model, etc.
Definition at line 6459 of file z3py.py.
◆ __init__()
def __init__ |
( |
|
self, |
|
|
|
solver = None , |
|
|
|
ctx = None , |
|
|
|
logFile = None |
|
) |
| |
Definition at line 6462 of file z3py.py.
6462 def __init__(self, solver=None, ctx=None, logFile=None):
6463 assert solver
is None or ctx
is not None
6464 self.ctx = _get_ctx(ctx)
6465 self.backtrack_level = 4000000000
6470 self.solver = solver
6472 if logFile
is not None:
6473 self.set(
"solver.smtlib2_log", logFile)
◆ __del__()
Definition at line 6475 of file z3py.py.
6476 if self.solver
is not None and self.ctx.ref()
is not None:
◆ __copy__()
Definition at line 6897 of file z3py.py.
6898 return self.translate(self.ctx)
◆ __deepcopy__()
def __deepcopy__ |
( |
|
self, |
|
|
|
memo = {} |
|
) |
| |
Definition at line 6900 of file z3py.py.
6900 def __deepcopy__(self, memo={}):
6901 return self.translate(self.ctx)
◆ __iadd__()
def __iadd__ |
( |
|
self, |
|
|
|
fml |
|
) |
| |
Definition at line 6597 of file z3py.py.
6597 def __iadd__(self, fml):
◆ __repr__()
Return a formatted string with all added constraints.
Definition at line 6880 of file z3py.py.
6881 """Return a formatted string with all added constraints."""
6882 return obj_to_string(self)
◆ add()
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6586 of file z3py.py.
6586 def add(self, *args):
6587 """Assert constraints into the solver.
6591 >>> s.add(x > 0, x < 2)
6595 self.assert_exprs(*args)
Referenced by Solver.__iadd__(), Fixedpoint.__iadd__(), and Optimize.__iadd__().
◆ append()
def append |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.append(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6601 of file z3py.py.
6601 def append(self, *args):
6602 """Assert constraints into the solver.
6606 >>> s.append(x > 0, x < 2)
6610 self.assert_exprs(*args)
◆ assert_and_track()
def assert_and_track |
( |
|
self, |
|
|
|
a, |
|
|
|
p |
|
) |
| |
Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
If `p` is a string, it will be automatically converted into a Boolean constant.
>>> x = Int('x')
>>> p3 = Bool('p3')
>>> s = Solver()
>>> s.set(unsat_core=True)
>>> s.assert_and_track(x > 0, 'p1')
>>> s.assert_and_track(x != 1, 'p2')
>>> s.assert_and_track(x < 0, p3)
>>> print(s.check())
unsat
>>> c = s.unsat_core()
>>> len(c)
2
>>> Bool('p1') in c
True
>>> Bool('p2') in c
False
>>> p3 in c
True
Definition at line 6623 of file z3py.py.
6623 def assert_and_track(self, a, p):
6624 """Assert constraint `a` and track it in the unsat core using the Boolean constant `p`.
6626 If `p` is a string, it will be automatically converted into a Boolean constant.
6631 >>> s.set(unsat_core=True)
6632 >>> s.assert_and_track(x > 0, 'p1')
6633 >>> s.assert_and_track(x != 1, 'p2')
6634 >>> s.assert_and_track(x < 0, p3)
6635 >>> print(s.check())
6637 >>> c = s.unsat_core()
6647 if isinstance(p, str):
6648 p =
Bool(p, self.ctx)
6649 _z3_assert(isinstance(a, BoolRef),
"Boolean expression expected")
6650 _z3_assert(isinstance(p, BoolRef)
and is_const(p),
"Boolean expression expected")
◆ assert_exprs()
def assert_exprs |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.assert_exprs(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6567 of file z3py.py.
6567 def assert_exprs(self, *args):
6568 """Assert constraints into the solver.
6572 >>> s.assert_exprs(x > 0, x < 2)
6576 args = _get_args(args)
6579 if isinstance(arg, Goal)
or isinstance(arg, AstVector):
Referenced by Solver.add(), Fixedpoint.add(), Optimize.add(), Solver.append(), Fixedpoint.append(), Solver.insert(), and Fixedpoint.insert().
◆ assertions()
Return an AST vector containing all added constraints.
>>> s = Solver()
>>> s.assertions()
[]
>>> a = Int('a')
>>> s.add(a > 0)
>>> s.add(a < 10)
>>> s.assertions()
[a > 0, a < 10]
Definition at line 6804 of file z3py.py.
6804 def assertions(self):
6805 """Return an AST vector containing all added constraints.
Referenced by Solver.to_smt2().
◆ check()
def check |
( |
|
self, |
|
|
* |
assumptions |
|
) |
| |
Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
>>> x = Int('x')
>>> s = Solver()
>>> s.check()
sat
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> s.model().eval(x)
1
>>> s.add(x < 1)
>>> s.check()
unsat
>>> s.reset()
>>> s.add(2**x == 4)
>>> s.check()
unknown
Definition at line 6653 of file z3py.py.
6653 def check(self, *assumptions):
6654 """Check whether the assertions in the given solver plus the optional assumptions are consistent or not.
6660 >>> s.add(x > 0, x < 2)
6663 >>> s.model().eval(x)
6669 >>> s.add(2**x == 4)
6673 assumptions = _get_args(assumptions)
6674 num = len(assumptions)
6675 _assumptions = (Ast * num)()
6676 for i
in range(num):
6677 _assumptions[i] = assumptions[i].as_ast()
6679 return CheckSatResult(r)
◆ consequences()
def consequences |
( |
|
self, |
|
|
|
assumptions, |
|
|
|
variables |
|
) |
| |
Determine fixed values for the variables based on the solver state and assumptions.
>>> s = Solver()
>>> a, b, c, d = Bools('a b c d')
>>> s.add(Implies(a,b), Implies(b, c))
>>> s.consequences([a],[b,c,d])
(sat, [Implies(a, b), Implies(a, c)])
>>> s.consequences([Not(c),d],[a,b,c,d])
(sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
Definition at line 6736 of file z3py.py.
6736 def consequences(self, assumptions, variables):
6737 """Determine fixed values for the variables based on the solver state and assumptions.
6739 >>> a, b, c, d = Bools('a b c d')
6740 >>> s.add(Implies(a,b), Implies(b, c))
6741 >>> s.consequences([a],[b,c,d])
6742 (sat, [Implies(a, b), Implies(a, c)])
6743 >>> s.consequences([Not(c),d],[a,b,c,d])
6744 (sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
6746 if isinstance(assumptions, list):
6747 _asms = AstVector(
None, self.ctx)
6748 for a
in assumptions:
6751 if isinstance(variables, list):
6752 _vars = AstVector(
None, self.ctx)
6756 _z3_assert(isinstance(assumptions, AstVector),
"ast vector expected")
6757 _z3_assert(isinstance(variables, AstVector),
"ast vector expected")
6758 consequences = AstVector(
None, self.ctx)
6760 sz = len(consequences)
6761 consequences = [ consequences[i]
for i
in range(sz) ]
6762 return CheckSatResult(r), consequences
◆ cube()
def cube |
( |
|
self, |
|
|
|
vars = None |
|
) |
| |
Get set of cubes
The method takes an optional set of variables that restrict which
variables may be used as a starting point for cubing.
If vars is not None, then the first case split is based on a variable in
this set.
Definition at line 6772 of file z3py.py.
6772 def cube(self, vars = None):
6774 The method takes an optional set of variables that restrict which
6775 variables may be used as a starting point for cubing.
6776 If vars is not None, then the first case split is based on a variable in
6779 self.cube_vs = AstVector(
None, self.ctx)
6780 if vars
is not None:
6782 self.cube_vs.push(v)
6784 lvl = self.backtrack_level
6785 self.backtrack_level = 4000000000
6786 r = AstVector(
Z3_solver_cube(self.ctx.ref(), self.solver, self.cube_vs.vector, lvl), self.ctx)
6787 if (len(r) == 1
and is_false(r[0])):
◆ cube_vars()
Access the set of variables that were touched by the most recently generated cube.
This set of variables can be used as a starting point for additional cubes.
The idea is that variables that appear in clauses that are reduced by the most recent
cube are likely more useful to cube on.
Definition at line 6793 of file z3py.py.
6793 def cube_vars(self):
6794 """Access the set of variables that were touched by the most recently generated cube.
6795 This set of variables can be used as a starting point for additional cubes.
6796 The idea is that variables that appear in clauses that are reduced by the most recent
6797 cube are likely more useful to cube on."""
◆ dimacs()
def dimacs |
( |
|
self, |
|
|
|
include_names = True |
|
) |
| |
Return a textual representation of the solver in DIMACS format.
Definition at line 6914 of file z3py.py.
6914 def dimacs(self, include_names=True):
6915 """Return a textual representation of the solver in DIMACS format."""
◆ from_file()
def from_file |
( |
|
self, |
|
|
|
filename |
|
) |
| |
Parse assertions from a file
Definition at line 6764 of file z3py.py.
6764 def from_file(self, filename):
6765 """Parse assertions from a file"""
◆ from_string()
def from_string |
( |
|
self, |
|
|
|
s |
|
) |
| |
Parse assertions from a string
Definition at line 6768 of file z3py.py.
6768 def from_string(self, s):
6769 """Parse assertions from a string"""
◆ help()
Display a string describing all available options.
Definition at line 6872 of file z3py.py.
6873 """Display a string describing all available options."""
◆ import_model_converter()
def import_model_converter |
( |
|
self, |
|
|
|
other |
|
) |
| |
Import model converter from other into the current solver
Definition at line 6700 of file z3py.py.
6700 def import_model_converter(self, other):
6701 """Import model converter from other into the current solver"""
◆ insert()
def insert |
( |
|
self, |
|
|
* |
args |
|
) |
| |
Assert constraints into the solver.
>>> x = Int('x')
>>> s = Solver()
>>> s.insert(x > 0, x < 2)
>>> s
[x > 0, x < 2]
Definition at line 6612 of file z3py.py.
6612 def insert(self, *args):
6613 """Assert constraints into the solver.
6617 >>> s.insert(x > 0, x < 2)
6621 self.assert_exprs(*args)
◆ model()
Return a model for the last `check()`.
This function raises an exception if
a model is not available (e.g., last `check()` returned unsat).
>>> s = Solver()
>>> a = Int('a')
>>> s.add(a + 2 == 0)
>>> s.check()
sat
>>> s.model()
[a = -2]
Definition at line 6681 of file z3py.py.
6682 """Return a model for the last `check()`.
6684 This function raises an exception if
6685 a model is not available (e.g., last `check()` returned unsat).
6689 >>> s.add(a + 2 == 0)
6698 raise Z3Exception(
"model is not available")
Referenced by FuncInterp.translate().
◆ non_units()
Return an AST vector containing all atomic formulas in solver state that are not units.
Definition at line 6823 of file z3py.py.
6823 def non_units(self):
6824 """Return an AST vector containing all atomic formulas in solver state that are not units.
◆ num_scopes()
Return the current number of backtracking points.
>>> s = Solver()
>>> s.num_scopes()
0L
>>> s.push()
>>> s.num_scopes()
1L
>>> s.push()
>>> s.num_scopes()
2L
>>> s.pop()
>>> s.num_scopes()
1L
Definition at line 6535 of file z3py.py.
6535 def num_scopes(self):
6536 """Return the current number of backtracking points.
◆ param_descrs()
Return the parameter description set.
Definition at line 6876 of file z3py.py.
6876 def param_descrs(self):
6877 """Return the parameter description set."""
◆ pop()
def pop |
( |
|
self, |
|
|
|
num = 1 |
|
) |
| |
Backtrack \c num backtracking points.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.push()
>>> s.add(x < 1)
>>> s
[x > 0, x < 1]
>>> s.check()
unsat
>>> s.pop()
>>> s.check()
sat
>>> s
[x > 0]
Definition at line 6513 of file z3py.py.
6513 def pop(self, num=1):
6514 """Backtrack \c num backtracking points.
◆ proof()
Return a proof for the last `check()`. Proof construction must be enabled.
Definition at line 6800 of file z3py.py.
6801 """Return a proof for the last `check()`. Proof construction must be enabled."""
◆ push()
Create a backtracking point.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.push()
>>> s.add(x < 1)
>>> s
[x > 0, x < 1]
>>> s.check()
unsat
>>> s.pop()
>>> s.check()
sat
>>> s
[x > 0]
Definition at line 6491 of file z3py.py.
6492 """Create a backtracking point.
◆ reason_unknown()
def reason_unknown |
( |
|
self | ) |
|
Return a string describing why the last `check()` returned `unknown`.
>>> x = Int('x')
>>> s = SimpleSolver()
>>> s.add(2**x == 4)
>>> s.check()
unknown
>>> s.reason_unknown()
'(incomplete (theory arithmetic))'
Definition at line 6859 of file z3py.py.
6859 def reason_unknown(self):
6860 """Return a string describing why the last `check()` returned `unknown`.
6863 >>> s = SimpleSolver()
6864 >>> s.add(2**x == 4)
6867 >>> s.reason_unknown()
6868 '(incomplete (theory arithmetic))'
◆ reset()
Remove all asserted constraints and backtracking points created using `push()`.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s
[x > 0]
>>> s.reset()
>>> s
[]
Definition at line 6553 of file z3py.py.
6554 """Remove all asserted constraints and backtracking points created using `push()`.
◆ set()
def set |
( |
|
self, |
|
|
* |
args, |
|
|
** |
keys |
|
) |
| |
Set a configuration option. The method `help()` return a string containing all available options.
>>> s = Solver()
>>> # The option MBQI can be set using three different approaches.
>>> s.set(mbqi=True)
>>> s.set('MBQI', True)
>>> s.set(':mbqi', True)
Definition at line 6479 of file z3py.py.
6479 def set(self, *args, **keys):
6480 """Set a configuration option. The method `help()` return a string containing all available options.
6483 >>> # The option MBQI can be set using three different approaches.
6484 >>> s.set(mbqi=True)
6485 >>> s.set('MBQI', True)
6486 >>> s.set(':mbqi', True)
◆ sexpr()
Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0)
>>> s.add(x < 2)
>>> r = s.sexpr()
Definition at line 6903 of file z3py.py.
6904 """Return a formatted string (in Lisp-like format) with all added constraints. We say the string is in s-expression format.
Referenced by Fixedpoint.__repr__(), and Optimize.__repr__().
◆ statistics()
Return statistics for the last `check()`.
>>> s = SimpleSolver()
>>> x = Int('x')
>>> s.add(x > 0)
>>> s.check()
sat
>>> st = s.statistics()
>>> st.get_key_value('final checks')
1
>>> len(st) > 0
True
>>> st[0] != 0
True
Definition at line 6841 of file z3py.py.
6841 def statistics(self):
6842 """Return statistics for the last `check()`.
6844 >>> s = SimpleSolver()
6849 >>> st = s.statistics()
6850 >>> st.get_key_value('final checks')
◆ to_smt2()
return SMTLIB2 formatted benchmark for solver's assertions
Definition at line 6918 of file z3py.py.
6919 """return SMTLIB2 formatted benchmark for solver's assertions"""
6920 es = self.assertions()
6926 for i
in range(sz1):
6927 v[i] = es[i].as_ast()
6929 e = es[sz1].as_ast()
6931 e =
BoolVal(
True, self.ctx).as_ast()
◆ trail()
Return trail of the solver state after a check() call.
Definition at line 6836 of file z3py.py.
6837 """Return trail of the solver state after a check() call.
Referenced by Solver.trail_levels().
◆ trail_levels()
Return trail and decision levels of the solver state after a check() call.
Definition at line 6828 of file z3py.py.
6828 def trail_levels(self):
6829 """Return trail and decision levels of the solver state after a check() call.
6831 trail = self.trail()
6832 levels = (ctypes.c_uint * len(trail))()
6834 return trail, levels
◆ translate()
def translate |
( |
|
self, |
|
|
|
target |
|
) |
| |
Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
>>> c1 = Context()
>>> c2 = Context()
>>> s1 = Solver(ctx=c1)
>>> s2 = s1.translate(c2)
Definition at line 6884 of file z3py.py.
6884 def translate(self, target):
6885 """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6889 >>> s1 = Solver(ctx=c1)
6890 >>> s2 = s1.translate(c2)
6893 _z3_assert(isinstance(target, Context),
"argument must be a Z3 context")
6895 return Solver(solver, target)
Referenced by Solver.__copy__(), and Solver.__deepcopy__().
◆ units()
Return an AST vector containing all currently inferred units.
Definition at line 6818 of file z3py.py.
6819 """Return an AST vector containing all currently inferred units.
◆ unsat_core()
Return a subset (as an AST vector) of the assumptions provided to the last check().
These are the assumptions Z3 used in the unsatisfiability proof.
Assumptions are available in Z3. They are used to extract unsatisfiable cores.
They may be also used to "retract" assumptions. Note that, assumptions are not really
"soft constraints", but they can be used to implement them.
>>> p1, p2, p3 = Bools('p1 p2 p3')
>>> x, y = Ints('x y')
>>> s = Solver()
>>> s.add(Implies(p1, x > 0))
>>> s.add(Implies(p2, y > x))
>>> s.add(Implies(p2, y < 1))
>>> s.add(Implies(p3, y > -3))
>>> s.check(p1, p2, p3)
unsat
>>> core = s.unsat_core()
>>> len(core)
2
>>> p1 in core
True
>>> p2 in core
True
>>> p3 in core
False
>>> # "Retracting" p2
>>> s.check(p1, p3)
sat
Definition at line 6704 of file z3py.py.
6704 def unsat_core(self):
6705 """Return a subset (as an AST vector) of the assumptions provided to the last check().
6707 These are the assumptions Z3 used in the unsatisfiability proof.
6708 Assumptions are available in Z3. They are used to extract unsatisfiable cores.
6709 They may be also used to "retract" assumptions. Note that, assumptions are not really
6710 "soft constraints", but they can be used to implement them.
6712 >>> p1, p2, p3 = Bools('p1 p2 p3')
6713 >>> x, y = Ints('x y')
6715 >>> s.add(Implies(p1, x > 0))
6716 >>> s.add(Implies(p2, y > x))
6717 >>> s.add(Implies(p2, y < 1))
6718 >>> s.add(Implies(p3, y > -3))
6719 >>> s.check(p1, p2, p3)
6721 >>> core = s.unsat_core()
6730 >>> # "Retracting" p2
◆ backtrack_level
◆ ctx
Definition at line 6464 of file z3py.py.
Referenced by Probe.__call__(), Solver.__copy__(), Solver.__deepcopy__(), Fixedpoint.__deepcopy__(), Optimize.__deepcopy__(), ApplyResult.__deepcopy__(), Tactic.__deepcopy__(), Probe.__deepcopy__(), Solver.__del__(), Fixedpoint.__del__(), Optimize.__del__(), ApplyResult.__del__(), Tactic.__del__(), Probe.__del__(), Probe.__eq__(), Probe.__ge__(), ApplyResult.__getitem__(), Probe.__gt__(), Probe.__le__(), ApplyResult.__len__(), Probe.__lt__(), Probe.__ne__(), Fixedpoint.add_cover(), Fixedpoint.add_rule(), Optimize.add_soft(), Tactic.apply(), ApplyResult.as_expr(), Solver.assert_and_track(), Optimize.assert_and_track(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Solver.assertions(), Optimize.assertions(), Solver.check(), Optimize.check(), Solver.consequences(), Solver.dimacs(), Solver.from_file(), Optimize.from_file(), Solver.from_string(), Optimize.from_string(), Fixedpoint.get_answer(), Fixedpoint.get_assertions(), Fixedpoint.get_cover_delta(), Fixedpoint.get_ground_sat_answer(), Fixedpoint.get_num_levels(), Fixedpoint.get_rule_names_along_trace(), Fixedpoint.get_rules(), Fixedpoint.get_rules_along_trace(), Solver.help(), Fixedpoint.help(), Optimize.help(), Tactic.help(), Solver.import_model_converter(), Optimize.maximize(), Optimize.minimize(), Solver.model(), Optimize.model(), Solver.non_units(), Solver.num_scopes(), Optimize.objectives(), Solver.param_descrs(), Fixedpoint.param_descrs(), Optimize.param_descrs(), Tactic.param_descrs(), Fixedpoint.parse_file(), Fixedpoint.parse_string(), Solver.pop(), Optimize.pop(), Solver.proof(), Solver.push(), Optimize.push(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), Solver.reason_unknown(), Fixedpoint.reason_unknown(), Optimize.reason_unknown(), Fixedpoint.register_relation(), Solver.reset(), Solver.set(), Fixedpoint.set(), Optimize.set(), Fixedpoint.set_predicate_representation(), Solver.sexpr(), Fixedpoint.sexpr(), Optimize.sexpr(), ApplyResult.sexpr(), Tactic.solver(), Solver.statistics(), Fixedpoint.statistics(), Optimize.statistics(), Solver.to_smt2(), Fixedpoint.to_string(), Solver.trail(), Solver.trail_levels(), Solver.translate(), Solver.units(), Solver.unsat_core(), Optimize.unsat_core(), and Fixedpoint.update_rule().
◆ cube_vs
◆ solver
Definition at line 6466 of file z3py.py.
Referenced by Solver.__del__(), Solver.assert_and_track(), Solver.assert_exprs(), Solver.assertions(), Solver.check(), Solver.consequences(), Solver.dimacs(), Solver.from_file(), Solver.from_string(), Solver.help(), Solver.import_model_converter(), Solver.model(), Solver.non_units(), Solver.num_scopes(), Solver.param_descrs(), Solver.pop(), Solver.proof(), Solver.push(), Solver.reason_unknown(), Solver.reset(), Solver.set(), Solver.sexpr(), Solver.statistics(), Solver.trail(), Solver.trail_levels(), Solver.translate(), Solver.units(), and Solver.unsat_core().
void Z3_API Z3_solver_import_model_converter(Z3_context ctx, Z3_solver src, Z3_solver dst)
Ad-hoc method for importing model conversion from solver.
Z3_string Z3_API Z3_solver_to_string(Z3_context c, Z3_solver s)
Convert a solver into a string.
void Z3_API Z3_solver_get_levels(Z3_context c, Z3_solver s, Z3_ast_vector literals, unsigned sz, unsigned levels[])
retrieve the decision depth of Boolean literals (variables or their negations). Assumes a check-sat c...
void Z3_API Z3_solver_reset(Z3_context c, Z3_solver s)
Remove all assertions from the solver.
Z3_ast Z3_API Z3_solver_get_proof(Z3_context c, Z3_solver s)
Retrieve the proof for the last Z3_solver_check or Z3_solver_check_assumptions.
expr range(expr const &lo, expr const &hi)
Z3_string Z3_API Z3_solver_get_reason_unknown(Z3_context c, Z3_solver s)
Return a brief justification for an "unknown" result (i.e., Z3_L_UNDEF) for the commands Z3_solver_ch...
void Z3_API Z3_solver_pop(Z3_context c, Z3_solver s, unsigned n)
Backtrack n backtracking points.
Z3_lbool Z3_API Z3_solver_check_assumptions(Z3_context c, Z3_solver s, unsigned num_assumptions, Z3_ast const assumptions[])
Check whether the assertions in the given solver and optional assumptions are consistent or not.
void Z3_API Z3_solver_push(Z3_context c, Z3_solver s)
Create a backtracking point.
Z3_ast_vector Z3_API Z3_solver_get_assertions(Z3_context c, Z3_solver s)
Return the set of asserted formulas on the solver.
Z3_string Z3_API Z3_solver_to_dimacs_string(Z3_context c, Z3_solver s, bool include_names)
Convert a solver into a DIMACS formatted string.
Z3_param_descrs Z3_API Z3_solver_get_param_descrs(Z3_context c, Z3_solver s)
Return the parameter description set for the given solver object.
unsigned Z3_API Z3_solver_get_num_scopes(Z3_context c, Z3_solver s)
Return the number of backtracking points.
Z3_ast_vector Z3_API Z3_solver_get_trail(Z3_context c, Z3_solver s)
Return the trail modulo model conversion, in order of decision level The decision level can be retrie...
void Z3_API Z3_solver_dec_ref(Z3_context c, Z3_solver s)
Decrement the reference counter of the given solver.
void Z3_API Z3_solver_from_string(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a string.
Z3_ast_vector Z3_API Z3_solver_get_unsat_core(Z3_context c, Z3_solver s)
Retrieve the unsat core for the last Z3_solver_check_assumptions The unsat core is a subset of the as...
Z3_ast_vector Z3_API Z3_solver_get_units(Z3_context c, Z3_solver s)
Return the set of units modulo model conversion.
void Z3_API Z3_solver_assert_and_track(Z3_context c, Z3_solver s, Z3_ast a, Z3_ast p)
Assert a constraint a into the solver, and track it (in the unsat) core using the Boolean constant p.
Z3_stats Z3_API Z3_solver_get_statistics(Z3_context c, Z3_solver s)
Return statistics for the given solver.
void Z3_API Z3_solver_set_params(Z3_context c, Z3_solver s, Z3_params p)
Set the given solver using the given parameters.
Z3_ast_vector Z3_API Z3_solver_get_non_units(Z3_context c, Z3_solver s)
Return the set of non units in the solver state.
Z3_ast_vector Z3_API Z3_solver_cube(Z3_context c, Z3_solver s, Z3_ast_vector vars, unsigned backtrack_level)
extract a next cube for a solver. The last cube is the constant true or false. The number of (non-con...
void Z3_API Z3_solver_assert(Z3_context c, Z3_solver s, Z3_ast a)
Assert a constraint into the solver.
Z3_solver Z3_API Z3_solver_translate(Z3_context source, Z3_solver s, Z3_context target)
Copy a solver s from the context source to the context target.
def BoolVal(val, ctx=None)
Z3_solver Z3_API Z3_mk_solver(Z3_context c)
Create a new solver. This solver is a "combined solver" (see combined_solver module) that internally ...
void Z3_API Z3_solver_from_file(Z3_context c, Z3_solver s, Z3_string file_name)
load solver assertions from a file.
Z3_string Z3_API Z3_solver_get_help(Z3_context c, Z3_solver s)
Return a string describing all solver available parameters.
Z3_lbool Z3_API Z3_solver_get_consequences(Z3_context c, Z3_solver s, Z3_ast_vector assumptions, Z3_ast_vector variables, Z3_ast_vector consequences)
retrieve consequences from solver that determine values of the supplied function symbols.
def args2params(arguments, keywords, ctx=None)
Z3_string Z3_API Z3_benchmark_to_smtlib_string(Z3_context c, Z3_string name, Z3_string logic, Z3_string status, Z3_string attributes, unsigned num_assumptions, Z3_ast const assumptions[], Z3_ast formula)
Convert the given benchmark into SMT-LIB formatted string.
Z3_model Z3_API Z3_solver_get_model(Z3_context c, Z3_solver s)
Retrieve the model for the last Z3_solver_check or Z3_solver_check_assumptions.
void Z3_API Z3_solver_inc_ref(Z3_context c, Z3_solver s)
Increment the reference counter of the given solver.