org.jmol.util
public class Eigen extends Object
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix. In this implementation, output is as a set of double[3] ROWS
Field Summary | |
---|---|
double[] | d |
double[] | e |
double[][] | Vo |
double[][] | Vx |
Constructor Summary | |
---|---|
Eigen(double[][] A) |
Method Summary | |
---|---|
void | dump() |
void | dump(int i) |
double[] | getEigenvalues() |
double[][] | getEigenvectors() |
static double | hypot(double a, double b) |
static float[] | toFloat(double[] d) |
static float[][] | toFloat3x3(double[][] d) |
void | tql2() |
void | tred2() |