We compute the equation and nonminimal resolution F of the carpet of type (a,b) where a ≥b over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5 o1 = (5, 5) o1 : Sequence |
i2 : elapsedTime T=carpetBettiTable(a,b,3) -- 0.00582495 seconds elapsed -- 0.0186022 seconds elapsed -- 0.0764009 seconds elapsed -- 0.0337997 seconds elapsed -- 0.00983414 seconds elapsed -- 0.645847 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o2 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o2 : BettiTally |
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); ZZ o3 : Ideal of --[x , x , x , x , x , x , y , y , y , y , y , y ] 3 0 1 2 3 4 5 0 1 2 3 4 5 |
i4 : elapsedTime T'=minimalBetti J -- 0.411151 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o4 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o4 : BettiTally |
i5 : T-T' 0 1 2 3 4 5 6 7 8 9 o5 = total: . . . . . . . . . . 1: . . . . . . . . . . 2: . . . . . . . . . . 3: . . . . . . . . . . o5 : BettiTally |
i6 : elapsedTime h=carpetBettiTables(6,6); -- 0.0129182 seconds elapsed -- 0.06018 seconds elapsed -- 0.326497 seconds elapsed -- 3.00049 seconds elapsed -- 1.55368 seconds elapsed -- 0.139609 seconds elapsed -- 0.0205036 seconds elapsed -- 12.3272 seconds elapsed |
i7 : carpetBettiTable(h,7) 0 1 2 3 4 5 6 7 8 9 10 11 o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 . . . . . . 2: . . . . . . 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o7 : BettiTally |
i8 : carpetBettiTable(h,5) 0 1 2 3 4 5 6 7 8 9 10 11 o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 120 . . . . . 2: . . . . . 120 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o8 : BettiTally |