This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6] o1 = Q o1 : PolynomialRing |
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6) o2 = ideal (x x , x x , x x , x x , x x ) 3 5 4 5 1 6 3 6 4 6 o2 : Ideal of Q |
i3 : R = Q/I o3 = R o3 : QuotientRing |
i4 : A = koszulComplexDGA(R) o4 = {Ring => R } Underlying algebra => R[T , T , T , T , T , T ] 1 2 3 4 5 6 Differential => {x , x , x , x , x , x } 1 2 3 4 5 6 isHomogeneous => true o4 : DGAlgebra |
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3) Computing generators in degree 1 : -- used 0.0101782 seconds Computing generators in degree 2 : -- used 0.0260967 seconds Computing generators in degree 3 : -- used 0.0255624 seconds o5 = true |
i6 : cycleList = getGenerators(A) Computing generators in degree 1 : -- used 0.00175605 seconds Computing generators in degree 2 : -- used 0.0151932 seconds Computing generators in degree 3 : -- used 0.0156052 seconds Computing generators in degree 4 : -- used 0.00761409 seconds Computing generators in degree 5 : -- used 0.00670878 seconds Computing generators in degree 6 : -- used 0.00614187 seconds o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , - 5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4 ------------------------------------------------------------------------ x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T } 6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6 o6 : List |
i7 : tmo = findTrivialMasseyOperation(A) Computing generators in degree 1 : -- used 0.00174795 seconds Computing generators in degree 2 : -- used 0.0154874 seconds Computing generators in degree 3 : -- used 0.0341923 seconds Computing generators in degree 4 : -- used 0.00143075 seconds Computing generators in degree 5 : -- used 0.00141891 seconds Computing generators in degree 6 : -- used 0.00142196 seconds o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0 {3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0 {3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0 {3} | 0 0 0 0 0 0 0 0 0 0 | {3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 | {3} | 0 0 0 0 0 -x_6 0 0 0 0 | {3} | 0 0 0 0 0 0 0 0 0 0 | {3} | 0 0 0 0 0 0 0 0 0 0 | ------------------------------------------------------------------------ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0 ------------------------------------------------------------------------ 0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |, 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 | 0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | x_6 | 0 | 0 | 0 | 0 | 0 | 0 | ------------------------------------------------------------------------ 0, 0} o7 : List |
i8 : assert(tmo =!= null) |
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z] o9 = Q o9 : PolynomialRing |
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2) 3 3 3 2 2 2 o10 = ideal (x , y , z , x y z ) o10 : Ideal of Q |
i11 : R = Q/I o11 = R o11 : QuotientRing |
i12 : A = koszulComplexDGA(R) o12 = {Ring => R } Underlying algebra => R[T , T , T ] 1 2 3 Differential => {x, y, z} isHomogeneous => true o12 : DGAlgebra |
i13 : isHomologyAlgebraTrivial(A) Computing generators in degree 1 : -- used 0.00761037 seconds Computing generators in degree 2 : -- used 0.015962 seconds Computing generators in degree 3 : -- used 0.0147077 seconds o13 = false |
i14 : cycleList = getGenerators(A) Computing generators in degree 1 : -- used 0.00131121 seconds Computing generators in degree 2 : -- used 0.00993779 seconds Computing generators in degree 3 : -- used 0.00987359 seconds 2 2 2 2 2 2 2 2 2 2 2 o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T , 1 2 3 1 1 2 1 2 1 3 ----------------------------------------------------------------------- 2 2 2 2 2 2 x*y z T T T , x y*z T T T , x y z*T T T } 1 2 3 1 2 3 1 2 3 o14 : List |
i15 : assert(findTrivialMasseyOperation(A) === null) Computing generators in degree 1 : -- used 0.00131582 seconds Computing generators in degree 2 : -- used 0.00996928 seconds Computing generators in degree 3 : -- used 0.00989864 seconds |