next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: isDivGraded

isDivGraded -- Checks to see if the divisor is graded (homogeneous)

Synopsis

Description

Returns true if the divisor is graded (homogeneous), otherwise it returns false

i1 : R = QQ[x, y, z]

o1 = R

o1 : PolynomialRing
i2 : D = divisor({1, 2, 3}, {ideal(x * y - z^2), ideal(y * z - x^2), ideal(x * z - y^2)})

o2 = 3*Div(-y^2+x*z) + 2*Div(-x^2+y*z) + 1*Div(x*y-z^2) of R

o2 : WDiv
i3 : isDivGraded( D )

o3 = true
i4 : R = QQ[x, y, z]

o4 = R

o4 : PolynomialRing
i5 : D = divisor({1, 2}, {ideal(x * y - z^2), ideal(y^2 - z^3)})

o5 = 1*Div(x*y-z^2) + 2*Div(-z^3+y^2) of R

o5 : WDiv
i6 : isDivGraded( D )

o6 = false

Ways to use isDivGraded :