next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
DGAlgebras :: acyclicClosure(Ring)

acyclicClosure(Ring) -- Compute the acyclic closure of the residue field of a ring up to a certain degree

Synopsis

Description

This package always chooses the Koszul complex on a generating set for the maximal ideal as a starting point, and then computes from there, using the function acyclicClosure(DGAlgebra).

i1 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^4-d^3}

o1 = R

o1 : QuotientRing
i2 : A = acyclicClosure(R,EndDegree=>3)

o2 = {Ring => R                                            }
      Underlying algebra => R[T , T , T , T , T , T , T ]
                               1   2   3   4   5   6   7
                                    2     2     3      2
      Differential => {a, b, c, d, a T , b T , c T  - d T }
                                      1     2     3      4
      isHomogeneous => false

o2 : DGAlgebra
i3 : A.diff

                                                                                   2     2     3      2
o3 = map(R[T , T , T , T , T , T , T ],R[T , T , T , T , T , T , T ],{a, b, c, d, a T , b T , c T  - d T , a, b, c, d})
            1   2   3   4   5   6   7     1   2   3   4   5   6   7                  1     2     3      4

o3 : RingMap R[T , T , T , T , T , T , T ] <--- R[T , T , T , T , T , T , T ]
                1   2   3   4   5   6   7          1   2   3   4   5   6   7