next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NormalToricVarieties :: cl

cl -- make the class group

Synopsis

Description

The class group of a variety is the group of Weil divisors divided by the subgroup of principal divisors. For a normal toric variety, the class group has a presentation defined by the map from the group of torus-characters to group of torus-invariant Weil divisors induced by minimal nonzero lattice points on the rays of the associated fan.

The following examples illustrate various possible class groups.

i1 : cl projectiveSpace 2

       1
o1 = ZZ

o1 : ZZ-module, free
i2 : cl hirzebruchSurface 7

       2
o2 = ZZ

o2 : ZZ-module, free
i3 : AA3 = normalToricVariety({{1,0,0},{0,1,0},{0,0,1}},{{0,1,2}});
i4 : cl AA3

o4 = 0

o4 : ZZ-module
i5 : X = normalToricVariety({{4,-1},{0,1}},{{0,1}});
i6 : cl X

o6 = cokernel | 4 |

                              1
o6 : ZZ-module, quotient of ZZ
i7 : C = normalToricVariety({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}},{{0,1,2,3}});
i8 : cl C

       1
o8 = ZZ

o8 : ZZ-module, free
The total coordinate ring of a toric variety is graded by its class group.

See also

Ways to use cl :