A Decision Procedure
for
Program Analysis and Bug Finding

Vijay Ganesh
Affiliation: CSAIL, MIT
Supported by Lincoln Labis
Eebruary: 71, 2008

SAT/UNSAT

In Theory, Symbolic Execution + DP' + Verification Conditions - Unbounded Loops, Gives Verification

Decision
Procedure

Input Formula

Examples: Boolean SAT, Real Arithmetic, Bit-vectors

Reduction easy for many problems

Approach better than coming up with special purpose algorithms:
¢ More efficient and saves work

Al program analysis, bug finding, verification,...

1. Design and Architecture of STP (CAV ‘07,
CCS ‘06)

Bug Finders

¢+ EXE by Dawson Engler, Cristian Cadar and others (Stanford)
MINESWEEPER by Dawn Song and her group (CMU)
CATCHCONV by David Molnar and David Wagner (Berkeley)
Backward Path Sensitive Analysis by Tim Leek (MIT Lincoln)

Security Tools
+ BEPLAYER: Security analysis thru protocol replay (CMU)
¢+ Smart Fuzzer by Roberto Paleari (University of Milan, ltaly)

Program Analysis
¢ by Rupak Majumdar (UCLA)

Hardware verification
¢ Cache coherence protocols by Dill group (Stanford)
¢ By a chip company

Software verification of crypto algorithms by Dill group (Stanford)

¢+ Smart Fuzzer by Roberto Paleari (University of Milan, Italy)

¢+ Do dynamic analysis to determine dependency between input and control
transfer (if conditional)

Collect path conditions
Feed to STP to find values that drive a path

Feed to STP to find values that drive the ‘other’ path

¢ Eric Smith and David Dill

¢+ Technique

¢+ Annotate code with Invariants

Symbolically execute the Java implementation of the Crypto Algo

Plug the symbolically executed terms into the invariants
Feed invariants into ACL2 + STP

ACL2 handles any induction + integer related stuff, and STP handles
(in)equalities over bit-vector terms

¢ Cross Checking: EXE : Dawson Engler, Cristian Cadar,...
Different implementations of grep... Do they match?
Symbolic-simulate Grep1
Symbolic-simulate Grep2
Equate the two and feed to STP

¢+ Model Checking Cache Coherence Protocols: Chang and Dill

¢ Does model satisfy property P?
¢ Convert to decision problem and feed to STP
¢ If you are using BDDs, try SAT or STP

Compiler Optimization/
Verilog Synthesis

Valid/lnvalia

Automatic discovery of deviations in binary implementations : error detection and
fingerprint generation

Protocol Replay: Try to reproduce a dialog between an initiator and a
network host

* Auto Generation of modules for honeypots so that they can correctly
respond to connection attempts by worms

Automatic patch based exploit generation: Using STP to reveal exploit
information from a windows patch

(x + mem[i] + 0b10 = 0) OR (q[3:1]*0b01 < 0b00)

¢ Expressions in STP correspond to

¢ C/Java... programming language expressions
¢ Microprocessor instruction set
¢+ Arrays represent program memory or array data structure in C/Java...

+ Except
¢ QOur bit-vectors are of any fixed length
¢+ No floating point
* No loops

¢ SAT problem for this theory is NP-complete

(x + mem[i] + 0b10 = 0) OR (q[3:1]*0b01 < 0b00)

¢ Bit-vector Terms

¢ Constants: Ob00O1 1

+ Variables

¢+ - * (signed) div, (signed) mod

¢ Concatenation, Extraction

s L eft/Right Shift, Sign-extend, bitwise-Booleans

(x + mem[i] + 0b10 = 0) OR (q[3:1]*0b01 < 0b00)

* Array Terms
¢ Read (Array, index)
* Write (Array, index, val)
¢ Example : RB(W(A, i, 0b00), i) = 0b00
¢ Conditional in programming/multiplexors in hardware
s jte (c, t1, t2) = if (c) then t1 else 12 endif

¢ Predicates:

¢ Can handle very large formulas efficiently

¢+ Large number of array reads (10°)

* Deeply nested array writes (104 deep)
L 2

L 2

Very large number of linear equations (10°)
Very large number of variables (1085)

¢+ Enabled several software and hardware applications

+ Won the SMTCOMP 2006 competition in bit-vector category

Refinement Loop

Input Formula

Linear Solving

Array Abstraction

BitBlast

CNF Conversion

Boolean SAT

Result

SAT

Simplifier

DP.| |DP,| ... |DP

n

New Derived Constraints

SAT

Simplifier

DP,| | DP,

New Derived Constraints

2. Abstraction-Refinement based heuristics for

Deciding Arrays

Replace array reads
with fresh variables
and axioms

Read(A,i) =t

* Problem : O(n?®) axioms added, n is nhumber of read indices
o Lethal, if nis large: n = 10000, # of axioms: ~ 100 million
s Blowup seems hard to avoid (e.g. UCLID)

* This is “aliasing” from another perspective

s Key. Observation: Most indices don't alias

Array Transform

Refinement
Loop

To SAT Solver
without Axioms

SAT

Check Input
on Assignment

Incorrect

Assignment

Add False Axioms is Correct
to SAT Solver

sal UNSAT

Input
Read(A,i)=0| Abstraction v.=0

Read(A k)=1 Vv, =1 SAT Solver
i=k |=k
SAT
Assignment

1=0,k=0
Vi=0

Refinement Step: Check Input
False P

Add Axiom on Assignment :
(i=k) => vi = vk Read(A,0)=0
SAT Solver Read(A,0)=1

+ Heuristic is Robust # of Only No
e In Real SAT Tests: 8495 Read Read

assignment very Refinement Refinement
few indices (sec) (sec)

AEREE) Time for all 624 3378
Few axioms need

to be added 152165
during refinement # of 36
~10X speed-up timeouts

Important for (60 sec)
software analysis

3.2 GHz Pentium, 512Kb Cache, 32 bit machine

Examples courtesy Dawson Engler

R(W(W (A, ig,Vg),i1,V1)si) If(i,=j) v, elsif (iy=j) v, else R(A,])

R(W(W(A,i,v),i1,V4),K) If(i,=k) v, elsif (i,=k) v, else R(A,k)

¢ Sharing of sub-expression in DAG

¢ Array Writes are deeply nested, shared over many reads

¢ Problem: Standard translation breaks sharing & blowup
¢ O(n*m) blowup, n = # of levels of writes, m = # of reads
% n = 10,000, m = 1000 : blow-up ~ 10 million new nodes

¢ Key Observation: Not all read indices read from write term

If(i,=]) v, elsif (iy=j) v, else R(A,j)

If(i,=k) v, elsif (iy=k) v, else R(A,k)

=
ite ite
90, %0
® YO

[
0@‘0j0®%%

Axioms:
t, = ite (i;=),v q,ite (i;=j,v o, R(A,j))
t, = ite (i;=k,v ,ite (ip=k,v4,R(A k))

¢ Avoids O(n?) DAG blow-up

¢ Axioms are added only on a need basis

¢ Unfortunately, worst-case all axioms added

Array Transform

Refinement
Loop

To SAT Solver
without Axioms

SAT

Check Input
on Assignment

Incorrect

Assignment

Add False Axioms is Correct
to SAT Solver

sal UNSAT

; t.=0
Abstraction t;=1 SAT Solver

I=j#K,v #0

Refinement Step Check Input

_ Falsel on Assignment
Add Axiom to SAT R(W(A,0,v),0)=0
t =ite (i=j,v,R(A,})) V1
i=j=0,k=1

Experimental Results
Array Writes

Testcase (# of unique nodes) Result Write NO Write
Abstraction Abstraction

(sec) (sec)

610dd9dc (15k) Sat SV 101

Grep0084 (69K) Sat 18 506
Grep0106 (69K) Sat TO
Grep0117 (70K) Sat TO
Testcase20 (1.2M) Sat MO

3.2 GHz Pentium, 512 Kb cache, 32 bit machine, MO @ 3.2 GB, TO @ 30 minutes
Examples courtesy Dawn Song (CMU) and David Molnar (Berkeley)

3. Solver Algorithm for deciding Linear Bit-vector
Arithmetic O(n>®)

¢ Previous Work
¢+ Mostly Variants of Gaussian Elimination
¢ Unsuitable for Online Decision Procedures

+ Basic Idea in STP
¢ Solve for a variable and substitute it away

¢+ Online Algorithm
* Enables other algebraic simplifications

¢ |f cannot isolate a whole variable,
* Then isolate part ofi bit-vector variable,
» Solve, and substitute it away

* Helps eliminate lots of redundant variables

* Makes problem much easier for SAT

¢ Essential for many real-word large examples

Online Solving
enables algebraic
Simplifications

Refinement Loop

Input Formula

Linear Solving
Array Abstraction

BitBlast

CNF Conversion

Boolean SAT

Result

Isolate 3x In
first equation:

Multiplicative
Inverse exists,
Solve for x

Substitute x
X =4y + 2z

(mod 4)

y[1:0] + 2z[1:0] + 1 =0

2y[1:0] + 3z[1:0]

=0

All Coeffs Even
No Inverse

Key ldea:
Solve for bits
of variables

Divide by 2

(mod 4)
y[1:0] + 2z[1:0] + 1 =0 Solve for y[1:0]
2y[1:0] + 3z[1:0] =0

(mod 4) Substitute y[1:0] (mod 4)
3z[1:0] + 2 =0 y[1:0]=22z[1:0] + 3

(mod 4)
3z[1:0] + 2 =0

Solution (mod8, 3 bits)

X =4(y’'@3) + 2(z'@2)
y=y @3
y[1:0] =3
z=z @2
z[1:0] = 2

Solve for z[1:0]

Experimental Results:
Solver for Linear Equations

Testcase Result Solver On Solver Off
(# of Unigue Nodes) (sec) (sec)

Test15 (0.9M) Sat 66 MO
Test16 (0.9M) Sat 67 MO
Thumbi1 (2.7M) Sat MO
Thumb2 (3.2M) Sat MO
Thumb3 (4.3M) Sat MO

3.2 GHz Pentium, 512 Kb cache, 32 bit machine, MO @ 3.2 GB, TO @ 35 minutes
Examples courtesy David Molnar (Berkeley)

4. Experimental Results

STP v. Existing Tools
(Hardest Examples: SMT Comp, 2007)

Testcase (# of Unigue Nodes) Result STP
(sec)

610dd9c (15k) 37
Grep65 4
Grep84 18
Grep106

Blaster4

Testcase20

Testcase?21

3.2 GHz Pentium, 512 Kb cache, 32 bit machine, MO @ 3.2 GB, TO @ 35 minutes
Examples courtesy Dawn Song (CMU) and David Molnar (Berkeley)

+ Abstraction Refinement will remain important
for DPs for many applications

+ Reduction to Boolean SAT

+ Identify polynomial pieces and nail them

+ Successful DPs highly application driven

Make STP more efficient for
¢ Disjunctions
* Non-linear Arithmetic (¥, /, %)

Quantifiers

Boolean SAT tuning for structured input

More theories
¢+ Uninterpreted Functions, Datatypes, Reals, Integers, ...

Software
¢ CVC

+ Decision Procedure for Mixed Real and Integer Linear
Arithmetic

+ CVC Lite

+ Decision Procedure for Bit-vectors
+ Collaborated on EXE

+ STP, Capturing C semantics in STP

+ Theory
+ Lifted Ghilardi's Combination Result to Many-Sorted Logic

+ Prof. David L. Dill, Stanford CS Department
(Ph.D. Advisor)

¢ STP users and Stanford community

+ Prof. Martin Rinard (Host)

+ Lincoln Labs and Tim Leek (Support)

http://people.csail.mit.edu/vganesh/stp.html

