Reference Manual

Contents

Chapter 1

GDAL - Geospatial Data Abstraction
Library

Select language: [English] [Russian] [Portuguese] [French/Francais]

GDAL is a translator library for raster geospatial data formats that is released un-
der an X/MIT style Open Source license by the Open Source Geospatial
Foundation. As a library, it presents a single abstract data model to the calling ap-
plication for all supported formats. It also comes with a variety of useful commandline
utilities for data translation and processing. The NEWS page describes the November
2009 GDAL/OGR 1.6.3 release.

The related OGR library (which lives within the GDAL source tree) provides a similar
capability for simple features vector data.

Master: http://www.gdal.org

Download: ftp at remotesensing.org,http at download.osgeo.org

1.1 User Oriented Documentation

e Wiki - Various user and developer contributed documentation and hints
* Downloads - Ready to use binaries (executables)

* Supported Formats : GeoTIFF, Erdas Imagine, SDTS, ECW, MrSID, JPEG2000,
DTED, NITF, ...

* GDAL Utility Programs : gdalinfo, gdal_translate, gdaladdo, gdalwarp, ...
« GDAL FAQ
* GDAL Data Model

* GDAL/OGR Governance and Community Participation

file:index_ru.html
file:index_br.html
http://georezo.net/wiki/main:logiciels:gdal_ogr
http://trac.osgeo.org/gdal/wiki/FAQGeneral#WhatlicensedoesGDALOGRuse
http://www.opensource.org/
http://www.osgeo.org/
http://www.osgeo.org/
http://trac.osgeo.org/gdal/wiki/Release/1.6.3-News
file:ogr/index.html
http://www.gdal.org
ftp://ftp.remotesensing.org/gdal
http://download.osgeo.org/gdal
http://trac.osgeo.org/gdal/
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
file:formats_list.html
file:gdal_utilities.html
http://trac.osgeo.org/gdal/wiki/FAQ
file:gdal_datamodel.html
http://trac.osgeo.org/gdal/wiki/GovernanceAndCommunity

2 GDAL - Geospatial Data Abstraction Library

* GDAL Service Provider Listings (not vetted)
* Sponsors, Acknowledgements and Credits

* Software Using GDAL

1.2 Developer Oriented Documentation

* Building GDAL From Source

» Downloads - source code

* API Reference Documentation
* GDAL API Tutorial

* GDAL Driver Implementation Tutorial
* GDAL Warp API Tutorial

* OGRSpatialReference Tutorial
* GDAL C API

* GDAL Algorithms C API

* GDALDataset C++ API

* GDALRasterBand C++ API

* GDAL for Windows CE

1.3 Conference

1.4 Mailing List

A gdal-announce mailing list subscription is a low volume way of keeping track of
major developments with the GDAL/OGR project.

The gdal-dev@lists.osgeo.org mailing list can be used for discussion of de-
velopment and user issues related to GDAL and related technologies. Subscriptions
can be done, and archives reviewed on the web. The mailing list is also available in
read-only formatby NNTP at news : //news .gmane.org/gmane.comp.gis.gdal.devel
andby HTTPathttp://news.gmane.org/gmane.comp.gis.gdal.devel.

Some GDAL/OGR users and developers can also often be found in the #gdal IRC
channel on irc.freenode.net.

1.5 Bug Reporting

GDAL bugs can be reported,and can be 1isted using Trac.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://www.osgeo.org/search_profile?SET=1&MUL_TECH[0]=00013
file:credits.html
http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal
http://trac.osgeo.org/gdal/wiki/BuildHints
http://trac.osgeo.org/gdal/wiki/DownloadSource
file:hierarchy.html
file:gdal_tutorial.html
file:gdal_drivertut.html
file:warptut.html
file:ogr/osr_tutorial.html
file:gdal_8h.html
file:gdal__alg_8h.html
file:classGDALDataset.html
file:classGDALRasterBand.html
file:wince.html
http://lists.osgeo.org/mailman/listinfo/gdal-announce/
mailto:gdal-dev@lists.osgeo.org
http://lists.osgeo.org/mailman/listinfo/gdal-dev/
news://news.gmane.org/gmane.comp.gis.gdal.devel
http://news.gmane.org/gmane.comp.gis.gdal.devel
irc://irc.freenode.net/#gdal
http://trac.osgeo.org/gdal
http://trac.osgeo.org/gdal/report/1?sort=ticket&asc=0

1.6 GDAL In Other Languages

1.6 GDAL In Other Languages

The following bindings of GDAL in other languages are available:

* Perl

* Python

* VB6 Bindings (not using SWIG)

* GDAL Bindings into R by Timothy H. Keitt.
* Ruby

* Java

« C# / .Net

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://map.hut.fi/gdal-perl/
http://trac.osgeo.org/gdal/wiki/GdalOgrInPython
file:vb6_tutorial.html
http://rgdal.sourceforge.net/
http://trac.osgeo.org/gdal/wiki/GdalOgrInRuby
http://trac.osgeo.org/gdal/wiki/GdalOgrInJava
http://trac.osgeo.org/gdal/wiki/GdalOgrInCsharp

GDAL - Geospatial Data Abstraction Library

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 2

Sponsors, Acknowledgements and
Credits

There are too many people who have helped since GDAL/OGR was launched in late
1998 for me to thank them all. | have received moral support, financial support, code
contributions, sample datasets, and bug reports from literally hundreds of people. How-
ever, below | would like to single out a few people and organizations who have supported
GDAL over the years. Forgive me for all those 1 left out.

Frank Warmerdam

2.1 Sponsorship

Sponsors help fund maintenance, development and promotion of GDAL/OGR. If your
organization depends on GDAL/OGR consider becoming a sponsor.

2.1.1 Silver Sponsors

2.1.2 Other Sponsors

* MicroImages Inc.

2.2 Personal

+ Andrey Kiselev: my right hand man on GDAL for several years. He is primarily
responsible for the HDF, MrSID, L1B, and PCIDSK drivers. He has also relieved
me of most libtiff maintenance work.

+ Daniel Morissette: for his key contributions to CPL library, and development of
the Mapinfo TAB translator.

file:sponsorship.html
http://www.microimages.com/

Sponsors, Acknowledgements and Credits

2.3

Howard Butler: for substantial improvements to the python bindings.
Ken Shih: for the bulk of the implementation of the OLE DB provider.

Markus Neteler: for various contributions to GDAL documentation and general
supportiveness.

Silke Reimer: for work on Debian, and RPM packaging as well as the GDAL man
pages.

Alessandro Amici: for work on configuration and build system, and for the initial
Debian packaging.

Stephane Villeneuve: for development of the Mapinfo MIF translator.

Marin Byrne: for producing the current GDAL icon set (based on the earlier
version by Martin Daly).

Darek Krawczyk: for producing design of the GDAL Team Member t-shirt
(based on Marin’s and Martin’s graphics).

Corporate

Applied Coherent Technologies: Supported implementation of the GDAL

contour generator, as well as various improvements to HDF drivers.

Atlantis Scientific: Supported the development of the CEQOS, and a
variety of other radar oriented format drivers as well as development of OpenEV,
my day-to-day GDAL image viewer.

A.U.G. Signals: Supported work on the HDF, NITF and ODBC drivers.

Avenza Systems: Supported development of dgnlib, the basis of OGR
dgn support, as well as preliminary work on image warping in GDAL.

Cadcorp: Supported development of the Virtual Warped Raster capability.

DM Solutions Group: Supported the development of the DGN driver, the
OGR Arc/Info Binary Coverage driver, OGR WCTS (Web Coordinate Transforma-
tion Server), OGR VRT driver, ODBC driver, MySQL driver, SQLite driver, OGR
JOIN and OGR C API.

ERMapper: provided primary sponsorship for GDAL from February 2005 to
November 2006 to support work on GDAL improvement efforts not focused on
any particular client project.

Geological Survey of Canada, Natural Resources Canada: Supported
the initial development of the ArcSDE raster driver.

OSGIS and the Geo-Information and ICT Department of the Ministry of Transport,
Public Works and Water Management: Funded the DWG/DXF writing driver in
OGR.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://www.darek.info.pl/
http://www.actgate.com/
http://www.atlantis-scientific.com/
http://www.augsignals.com
http://www.avenza.com
http://dgnlib.maptools.org/
http://www.cadcorp.com
http://www.dmsolutions.ca/
http://www.ermapper.com
http://gsc.nrcan.gc.ca
http://www.osgis.nl/

2.3 Corporate 7

* Geosoft: Supported improvements to libtiff (RGBA Strip/Tile access), and the
Arc/Info Binary Grid driver.

* Geospace Inc, Supported the development of write functionality for the OGR
ArcSDE driver.

* GeoTango: Supported OGR Memory driver, Virtual Raster Filtering, and NITF
RPC capabilities.

* i-cubed: Supported the MrSID driver.
* Intergraph: Supported development of the Erdas Imagine driver.

* Keyhole: Supported development of Erdas Imagine driver, and the GDAL Warp
APL.

* OPeNDAP: Supported development of the OGR OPeNDAP Driver.
* PCI Geomatics: Supported development of the JPEG2000 (JP2KAK) driver.
* Pixia: Supported NITF/JPEG2000 read support.

* UN FAO: Supported development of the IDA (WinDisp) driver, and GDAL VB6
bindings.

* SoftMap: Supported initial development of OGR as well as the OGR Maplnfo
integration.

* SRC: Supported development of the OGR OCI (Oracle Spatial) driver.

+ Safe Software: Supported development of the OGR OLE DB provider, TIGER/-
Line driver, S-57 driver, DTED driver, FMEQODbjects driver, SDTS driver and NTF
driver.

* Yukon Department of the Environment: Supported development of
CDED / USGS DEM Writer.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://www.geosoft.com/
http://www.geospaceinc.com/
http://www.geotango.com/
http://www.i3.com
http://www.intergraph.com
http://www.keyhole.com
http://www.opendap.org
http://www.pcigeomatics.com/
http://www.pixia.com
http://www.fao.org/
http://www.softmaptech.com
http://www.extendthereach.com/
http://www.safe.com/
http://www.environmentyukon.gov.yk.ca/

Sponsors, Acknowledgements and Credits

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 3

GDAL Downloads

This page has been moved to the wiki with a topic on downloading binaries (pre-built
executables and a topic on downloading source.

http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
http://trac.osgeo.org/gdal/wiki/DownloadSource

10

GDAL Downloads

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 4

Simple C Example: gdalinfo.c

12

Simple C Example: gdalinfo.c

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 5

Standard Driver Registration:
gdalallregister.cpp

14

Standard Driver Registration: gdalallregister.cpp

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 6

Sample Driver: jdemdataset.cpp

16

Sample Driver: jdemdataset.cpp

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 7

NEWS

18

NEWS

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 8

Building GDAL From Source

This topicis now lives inthe wikiat: http://trac.osgeo.org/gdal/wiki/BuildHints

http://trac.osgeo.org/gdal/wiki/BuildHints

20

Building GDAL From Source

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 9

GDAL Data Model

This document attempts to describe the GDAL data model. That is the types of infor-
mation that a GDAL data store can contain, and their semantics.

9.1 Dataset

A dataset (represented by the GDALDataset class) is an assembly of related raster
bands and some information common to them all. In particular the dataset has a con-
cept of the raster size (in pixels and lines) that applies to all the bands. The dataset is
also responsible for the georeferencing transform and coordinate system definition of all
bands. The dataset itself can also have associated metadata, a list of name/value pairs
in string form.

Note that the GDAL dataset, and raster band data model is loosely based on the
OpenGIS Grid Coverages specification.

9.1.1 Coordinate System

Dataset coordinate systems are represented as OpenGIS Well Known Text strings. This
can contain:

 An overall coordinate system name.

» A geographic coordinate system name.

+ A datum identifier.

» An ellipsoid name, semi-major axis, and inverse flattening.

+ A prime meridian name and offset from Greenwich.

» A projection method type (ie. Transverse Mercator).

« Alist of projection parameters (ie. central_meridian).

22 GDAL Data Model

A units name, and conversion factor to meters or radians.
» Names and ordering for the axes.

» Codes for most of the above in terms of predefined coordinate systems from
authorities such as EPSG.

For more information on OpenGIS WKT coordinate system definitions, and mechanisms
to manipulate them, refer to the osr_tutorial document and/or the OGRSpatial-
Reference class documentation.

The coordinate system returned by GDALDataset::GetProjectionRef() describes the

georeferenced coordinates implied by the affine georeferencing transform returned by
GDALDataset::GetGeoTransform(). The coordinate system returned by GDALDataset::GetGCPProjection()
describes the georeferenced coordinates of the GCPs returned by GDALDataset::GetGCPs().

Note that a returned coordinate system strings of "" indicates nothing is known about
the georeferencing coordinate system.

9.1.2 Affine GeoTransform

GDAL datasets have two ways of describing the relationship between raster positions (in
pixel/line coordinates) and georeferenced coordinates. The first, and most commonly
used is the affine transform (the other is GCPs).

The affine transform consists of six coefficients returned by GDALDataset::GetGeoTransform()
which map pixel/line coordinates into georeferenced space using the following relation-
ship:

Xgeo = GT(0) + XpixelxGT (1) + Y1linexGT (2)
Ygeo GT (3) + XpixelxGT (4) + YlinexGT (5)

In case of north up images, the GT(2) and GT(4) coefficients are zero, and the GT(1) is
pixel width, and GT(5) is pixel height. The (GT(0),GT(3)) position is the top left corner
of the top left pixel of the raster.

Note that the pixel/line coordinates in the above are from (0.0,0.0) at the top left corner
of the top left pixel to (width_in_pixels,height_in_pixels) at the bottom right corner of
the bottom right pixel. The pixel/line location of the center of the top left pixel would
therefore be (0.5,0.5).

9.1.3 GCPs

A dataset can have a set of control points relating one or more positions on the raster
to georeferenced coordinates. All GCPs share a georeferencing coordinate system (re-
turned by GDALDataset::GetGCPProjection()). Each GCP (represented as the GDAL_-
GCP class) contains the following:

typedef struct
{

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

file:ogr/osr_tutorial.html

9.1 Dataset 23

char xpszId;
char *pszInfo;
double dfGCPPixel;
double dfGCPLine;
double dfGCPX;
double dfGCPY;
double dfGCPZ;

} GDAL_GCP;

The pszld string is intended to be a unique (and often, but not always numerical) identi-
fier for the GCP within the set of GCPs on this dataset. The pszinfo is usually an empty
string, but can contain any user defined text associated with the GCP. Potentially this
can also contain machine parsable information on GCP status though that isn’'t done at
this time.

The (Pixel,Line) position is the GCP location on the raster. The (X,Y,Z) position is the
associated georeferenced location with the Z often being zero.

The GDAL data model does not imply a transformation mechanism that must be gener-
ated from the GCPs ... this is left to the application. However 1st to 5th order polynomi-
als are common.

Normally a dataset will contain either an affine geotransform, GCPs or neither. It is
uncommon to have both, and it is undefined which is authoritative.

9.1.4 Metadata

GDAL metadata is auxiliary format and application specific textual data kept as a list
of name/value pairs. The names are required to be well behaved tokens (no spaces,
or odd characters). The values can be of any length, and contain anything except an
embedded null (ASCII zero).

The metadata handling system is not well tuned to handling very large bodies of meta-
data. Handling of more than 100K of metadata for a dataset is likely to lead to perfor-
mance degradation.

Some formats will support generic (user defined) metadata, while other format drivers
will map specific format fields to metadata names. For instance the TIFF driver returns
a few information tags as metadata including the date/time field which is returned as:

TIFFTAG_DATETIME=1999:05:11 11:29:56

Metadata is split into named groups called domains, with the default domain having
no name (NULL or ""). Some specific domains exist for special purposes. Note that
currently there is no way to enumerate all the domains available for a given object, but
applications can "test" for any domains they know how to interprete.

The following metadata items have well defined semantics in the default domain:

* AREA_OR_POINT: May be either "Area" (the default) or "Point". Indicates whether
a pixel value should be assumed to represent a sampling over the region of the
pixel or a point sample at the center of the pixel. This is not intended to influence
interpretation of georeferencing which remains area oriented.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

24

GDAL Data Model

9.1.4.1

NODATA_VALUES: The value is a list of space separated pixel values matching
the number of bands in the dataset that can be collectively used to identify pixels
that are nodata in the dataset. With this style of nodata a pixel is considered
nodata in all bands if and only if all bands match the corresponding value in the
NODATA_VALUES tuple. This metadata is not widely honoured by GDAL drivers,
algorithms or utilities at this time.

MATRIX_REPRESENTATION: This value, used for Polarimetric SAR datasets,
contains the matrix representation that this data is provided in. The following are
acceptable values:

— SCATTERING

- SYMMETRIZED_SCATTERING
COVARIANCE
SYMMETRIZED_COVARIANCE
COHERENCY
SYMMETRIZED_COHERENCY
KENNAUGH
SYMMETRIZED_KENNAUGH

POLARMETRIC_INTERP: This metadata item is defined for Raster Bands for
polarimetric SAR data. This indicates which entry in the specified matrix repre-
sentation of the data this band represents. For a dataset provided as a scattering
matrix, for example, acceptable values for this metadata item are HH, HV, VH,
VV. When the dataset is a covariance matrix, for example, this metadata item
will be one of Covariance_11, Covariance_22, Covariance_33, Covariance_12,
Covariance_13, Covariance_23 (since the matrix itself is a hermitian matrix, that
is all the data that is required to describe the matrix).

SUBDATASETS Domain

The SUBDATASETS domain holds a list of child datasets. Normally this is used to
provide pointers to a list of images stored within a single multi image file (such as HDF
or NITF). For instance, an NITF with four images might have the following subdataset

list.

SUBDATASET_1_NAME=NITF_IM:0:multi_1lb.ntf
SUBDATASET_1_DESC=Image 1 of multi_lb.ntf
SUBDATASET_2_NAME=NITF_IM:1l:multi_lb.ntf
SUBDATASET_2_DESC=Image 2 of multi_lb.ntf
SUBDATASET_3_NAME=NITF_IM:2:multi_lb.ntf
SUBDATASET_3_DESC=Image 3 of multi_lb.ntf
SUBDATASET_4_NAME=NITF_IM:3:multi_lb.ntf
SUBDATASET_4_DESC=Image 4 of multi_lb.ntf
SUBDATASET_5_NAME=NITF_IM:4:multi_lb.ntf
SUBDATASET_5_DESC=Image 5 of multi_lb.ntf

The value of the _NAME is the string that can be passed to GDALOpen() to access the
file. The _DESC value is intended to be a more user friendly string that can be displayed
to the user in a selector.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

9.1 Dataset 25

9.1.4.2 IMAGE_STRUCTURE Domain

Metadata in the default domain is intended to be related to the image, and not particu-
larly related to the way the image is stored on disk. That is, it is suitable for copying with
the dataset when it is copied to a new format. Some information of interest is closely
tied to a particular file format and storage mechanism. In order to prevent this getting
copied along with datasets it is placed in a special domain called IMAGE_STRUCTURE
that should not normally be copied to new formats.

Currently the following items are defined by REC 14 as having specific semantics in
the IMAGE_STRUCTURE domain.

+ COMPRESSION: The compression type used for this dataset or band. There is
no fixed catalog of compression type names, but where a given format includes a
COMPRESSION creation option, the same list of values should be used here as
there.

« NBITS: The actual number of bits used for this band, or the bands of this dataset.
Normally only present when the number of bits is non-standard for the datatype,
such as when a 1 bit TIFF is represented through GDAL as GDT_Byte.

« INTERLEAVE: This only applies on datasets, and the value should be one of
PIXEL, LINE or BAND. It can be used as a data access hint.

» PIXELTYPE: This may appear on a GDT_Byte band (or the corresponding dataset)
and have the value SIGNEDBYTE to indicate the unsigned byte values between
128 and 255 should be interpreted as being values between -128 and -1 for ap-
plications that recognise the SIGNEDBYTE type.

9.1.4.3 RPC Domain

The RPC metadata domain holds metadata describing the Rational Polynomial Coef-
ficient geometry model for the image if present. This geometry model can be used to
transform between pixel/line and georeferenced locations. The items defining the model
are:

+ ERR_BIAS: Error - Bias. The RMS bias error in meters per horizontal axis of all
points in the image (-1.0 if unknown)

« ERR_RAND: Error - Random. RMS random error in meters per horizontal axis of
each point in the image (-1.0 if unknown)

* LINE_OFF: Line Offset

+ SAMP_OFF: Sample Offset

+ LAT_OFF: Geodetic Latitude Offset

* LONG_OFF: Geodetic Longitude Offset
» HEIGHT_OFF: Geodetic Height Offset
+ LINE_SCALE: Line Scale

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://trac.osgeo.org/gdal/wiki/rfc14_imagestructure

26 GDAL Data Model

* SAMP_SCALE: Sample Scale

» LAT_SCALE: Geodetic Latitude Scale

+ LONG_SCALE: Geodetic Longitude Scale
» HEIGHT_SCALE: Geodetic Height Scale

« LINE_NUM_COEFF (1-20): Line Numerator Coefficients. Twenty coefficients for
the polynomial in the Numerator of the rn equation. (space separated)

« LINE_DEN_COEFF (1-20): Line Denominator Coefficients. Twenty coefficients
for the polynomial in the Denominator of the rn equation. (space separated)

* SAMP_NUM_COEFF (1-20): Sample Numerator Coefficients. Twenty coeffi-
cients for the polynomial in the Numerator of the cn equation. (space separated)

+ SAMP_DEN_COEFF (1-20): Sample Denominator Coefficients. Twenty coeffi-
cients for the polynomial in the Denominator of the cn equation. (space sepa-
rated)

These fields are directly derived from the document prospective GeoTIFF RPC doc-
ument (http://geotiff.maptools.org/rpc_prop.html) which in turnis
closely modelled on the NITF RPCO0B definition.

9.1.4.4 xml: Domains

Any domain name prefixed with "xml:" is not normal name/value metadata. It is a single
XML document stored in one big string.

9.2 Raster Band

A raster band is represented in GDAL with the GDALRasterBand class. It represents a
single raster band/channel/layer. It does not necessarily represent a whole image. For
instance, a 24bit RGB image would normally be represented as a dataset with three
bands, one for red, one for green and one for blue.

A raster band has the following properties:
» A width and height in pixels and lines. This is the same as that defined for the
dataset, if this is a full resolution band.

» A datatype (GDALDataType). One of Byte, UInt16, Int16, UInt32, Int32, Float32,
Float64, and the complex types CInt16, CInt32, CFloat32, and CFloat64.

» Ablock size. This is a preferred (efficient) access chunk size. For tiled images this
will be one tile. For scanline oriented images this will normally be one scanline.

+ A list of name/value pair metadata in the same format as the dataset, but of
information that is potentially specific to this band.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://geotiff.maptools.org/rpc_prop.html

9.3 Color Table 27

9.3

An optional description string.

An optional single nodata pixel value (see also NODATA_VALUES metadata on
the dataset for multi-band style nodata values).

An optional nodata mask band marking pixels as nodata or in some cases trans-
parency as discussed in REC 15: Band Masks.

An optional list of category names (effectively class names in a thematic image).
An optional minimum and maximum value.

An optional offset and scale for transforming raster values into meaning full values
(ie translate height to meters)

An optional raster unit name. For instance, this might indicate linear units for
elevation data.

A color interpretation for the band. This is one of:

— GCI_Undefined: the default, nothing is known.

— GCI_GraylIndex: this is an independent grayscale image

— GCI_Palettelndex: this raster acts as an index into a color table

— GCI_RedBand: this raster is the red portion of an RGB or RGBA image
— GCI_GreenBand: this raster is the green portion of an RGB or RGBA image
— GCI_BlueBand: this raster is the blue portion of an RGB or RGBA image
— GCI_AlphaBand: this raster is the alpha portion of an RGBA image

— GCI_HueBand: this raster is the hue of an HLS image

— GCI_SaturationBand: this raster is the saturation of an HLS image

— GCI_LightnessBand: this raster is the hue of an HLS image

— GCI_CyanBand: this band is the cyan portion of a CMY or CMYK image

— GCI_MagentaBand: this band is the magenta portion of a CMY or CMYK
image

— GCI_YellowBand: this band is the yellow portion of a CMY or CMYK image

— GCI_BlackBand: this band is the black portion of a CMYK image.

A color table, described in more detail later.

Knowledge of reduced resolution overviews (pyramids) if available.

Color Table

A color table consists of zero or more color entries described in C by the following
structure:

typedef struct

{

/- gray, red, cyan or hue -/
short cl;

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://trac.osgeo.org/gdal/wiki/rfc15_nodatabitmask

28 GDAL Data Model

/- green, magenta, or lightness -/
short c2;

/— blue, yellow, or saturation -/
short c3;

/- alpha or blackband -/
short c4;
} GDALColorEntry;

The color table also has a palette interpretation value (GDALPalettelnterp) which is one
of the following values, and indicates how the c1/c2/c3/c4 values of a color entry should
be interpreted.

» GPI_Gray: Use c1 as grayscale value.

GPI_RGB: Use c1 as red, c2 as green, c3 as blue and c4 as alpha.
+ GPI_CMYK: Use c1 as cyan, c2 as magenta, c3 as yellow and c4 as black.

» GPI_HLS: Use c1 as hue, c2 as lightness, and ¢3 as saturation.

To associate a color with a raster pixel, the pixel value is used as a subscript into the
color table. That means that the colors are always applied starting at zero and ascend-
ing. There is no provision for indicating a prescaling mechanism before looking up in
the color table.

9.4 Overviews

A band may have zero or more overviews. Each overview is represented as a "free
standing" GDALRasterBand. The size (in pixels and lines) of the overview will be dif-
ferent than the underlying raster, but the geographic region covered by overviews is the
same as the full resolution band.

The overviews are used to display reduced resolution overviews more quickly than could
be done by reading all the full resolution data and downsampling.

Bands also have a HasArbitraryOverviews property which is TRUE if the raster can
be read at any resolution efficiently but with no distinct overview levels. This applies
to some FFT encoded images, or images pulled through gateways (like OGDI) where
downsampling can be done efficiently at the remote point.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 10

GDAL Driver Implementation Tutorial

10.1 Overall Approach

In general new formats are added to GDAL by implementing format specific drivers
as subclasses of GDALDataset, and band accessors as subclasses of GDALRaster-
Band. As well, a GDALDriver instance is created for the format, and registered with the
GDALDriverManager, to ensure that the system knows about the format.

This tutorial will start with implementing a simple read-only driver (based on the JDEM
driver), and then proceed to utilizing the RawRasterBand helper class, implementing
creatable and updatable formats, and some esoteric issues.

It is strongly advised that the GDAL Data Model description be reviewed and un-
derstood before attempting to implement a GDAL driver.

10.2 Contents

1. Implementing the Dataset

2. Implementing the RasterBand

3. The Driver

4. Adding Driver to GDAL Tree

5. Adding Georeferencing

6. Overviews

7. File Creation

8. RawDataset/RawRasterBand Helper Classes

9. Metadata, and Other Exotic Extensions

file:gdal_datamodel.html

30 GDAL Driver Implementation Tutorial

10.3 Implementing the Dataset

We will start showing minimal implementation of a read-only driver for the Japanese
DEM format (jdemdataset .cpp). First we declare a format specific dataset class,
JDEMDataset in this case.

class JDEMDataset : public GDALPamDataset
{
friend class JDEMRasterBand;

FILE *fp;
GByte abyHeader[1012];
public:

~JDEMDataset () ;
static GDALDataset =*Open(GDALOpenInfo =*);

CPLErr GetGeoTransform(double » padfTransform);
const char xGetProjectionRef ();
bi

In general we provide capabilities for a driver, by overriding the various virtual methods
on the GDALDataset base class. However, the Open() method is special. This is not
a virtual method on the base class, and we will need a freestanding function for this
operation, so we declare it static. Implementing it as a method in the JDEMDataset
class is convenient because we have privileged access to modify the contents of the
database object.

The open method itself may look something like this:

GDALDataset *JDEMDataset::0pen(GDALOpenInfo * poOpenInfo)

f
// Confirm that the header has what appears to be dates in the

// expected locations. Sadly this is a relatively weak test.

/] -

if(poOpenInfo->nHeaderBytes < 50

return NULL;
// check if century values seem reasonable //
if((!EQUALN((char =)poOpenInfo->pabyHeader+11,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+11,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+19,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+19,"20",2)))
{
return NULL;

}
T
// Confirm the requested access is supported.

[

if (poOpenInfo->eAccess == GA_Update)
{
CPLError (CE_Failure, CPLE_NotSupported,

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

file:jdemdataset.cpp.html

10.3 Implementing the Dataset 31

"The JDEM driver does not support update access to existing"
" datasets.\n");
return NULL;

[//
// Create a corresponding GDALDataset. //
[//

poDS = new JDEMDataset () ;

poDS—->fp = VSIFOpenL(poOpenInfo->pszFilename, "rb");

/) e //
// Read the header. //
[//
VSIFReadL (poDS->abyHeader, 1, 1012, poDS->fp);
poDS->nRasterXSize = JDEMGetField((char %) poDS->abyHeader + 23, 3);
poDS->nRasterYSize = JDEMGetField((char %) poDS->abyHeader + 26, 3);
if (poDS->nRasterXSize <= 0 || poDS->nRasterY¥YSize <= 0)
{
CPLError (CE_Failure, CPLE_AppDefined,
"Invalid dimensions : %d x %d",
poDS->nRasterXSize, poDS->nRasterYSize);
delete poDS;
return NULL;
}
[//
// Create band information objects. //
[//
poDS->SetBand(1, new JDEMRasterBand(poDS, 1));
[//
// Initialize any PAM information. //
B //
poDS—->SetDescription(poOpenInfo->pszFilename);
poDS—>TryLoadXML () ;
/) //
// Initialize default overviews. //
T //

poDS—->o0OvManager.Initialize(poDS, poOpenInfo->pszFilename);
return(poDS);

The first step in any database Open function is to verify that the file being passed is in
fact of the type this driver is for. It is important to realize that each driver’s Open function
is called in turn till one succeeds. Drivers must quietly return NULL if the passed file is
not of their format. They should only produce an error if the file does appear to be of
their supported format, but is for some reason unsupported or corrupt.

The information on the file to be opened is passed in contained in a GDALOpeninfo
object. The GDALOpeninfo includes the following public data members:

char *pszFilename;
char *xpapszSiblingFiles;

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

32 GDAL Driver Implementation Tutorial

GDALAccess eAccess; // GA_ReadOnly or GA_Update

int bStatOK;

int bIsDirectory;
FILE ~fp;

int nHeaderBytes;
GByte xpabyHeader;

The driver can inspect these to establish if the file is supported. If the pszFilename refers
to an object in the file system, the bStatOK flag will be set to TRUE. As well, if the file
was successfully opened, the first kilobyte or so is read in, and put in pabyHeader, with
the exact size in nHeaderBytes.

In this typical testing example it is verified that the file was successfully opened, that we
have at least enough header information to perform our test, and that various parts of
the header are as expected for this format. In this case, there are no magic numbers for
JDEM format so we check various date fields to ensure they have reasonable century
values. If the test fails, we quietly return NULL indicating this file isn’t of our supported
format.

if (poOpenInfo->nHeaderBytes < 50
return NULL;

/+ check if century values seem reasonable x/
if((!EQUALN((char «)poOpenInfo->pabyHeader+11,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+11l,"20",2))
|| (!EQUALN ((char)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char)poOpenInfo->pabyHeader+19,"19",2)
&& !'EQUALN ((char «)poOpenInfo->pabyHeader+19,"20",2)))

return NULL;

It is important to make the is this my format test as stringent as possible. In this particu-
lar case the test is weak, and a file that happened to have 19s or 20s at a few locations
could be erroneously recognized as JDEM format, causing it to not be handled properly.

Once we are satisfied that the file is of our format, we can do any other tests that are
necessary to validate the file is usable, and in particular that we can provide the level of
access desired. Since the JDEM driver

if (poOpenInfo->eAccess == GA_Update)
{
CPLError(CE_Failure, CPLE_NotSupported,
"The JDEM driver does not support update access to existing"
" datasets.\n");
return NULL;

Next we need to create an instance of the database class in which we will set various
information of interest.

JDEMDataset *poDS;

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.4 Implementing the RasterBand 33

poDS = new JDEMDataset () ;

poDS—->fp = VSIFOpenL(poOpenInfo->pszFilename, "rb");

At this point we open the file, to acquire a file handle for the dataset. Whenever possible,
we try to use the VSIxL GDAL API to access files on disk. This virtualized POSIX-style
API allows some special capabilities like supporting large files, in-memory files and
zipped files.

Next the X and Y size are extracted from the header. The nRasterXSize and nRasterY-
Size are data fields inherited from the GDALDataset base class, and must be set by the
Open() method.

VSIFReadL (poDS->abyHeader, 1, 1012, poDS->fp);

poDS->nRasterXSize = JDEMGetField((char %) poDS->abyHeader + 23,
poDS->nRasterYSize = JDEMGetField((char %) poDS->abyHeader + 26,

3);
3);
if (poDS->nRasterXSize <= 0 || poDS->nRasterY¥YSize <= 0)
{
CPLError (CE_Failure, CPLE_AppDefined,
"Invalid dimensions : %d x %d",
poDS->nRasterXSize, poDS->nRasterYSize);
delete poDS;
return NULL;

All the bands related to this dataset must be created and attached using the SetBand()
method. We will explore the JDEMRasterBand() class shortly.

e //
// Create band information objects. //
[//

poDS—->SetBand(1, new JDEMRasterBand(poDS, 1));

Finally we assign a name to the dataset object, and call the GDALPamDataset TryLoad-
XML() method which can initialize auxilary information from an .aux.xml file if available.
For more details on these services review the GDALPamDataset and related classes.

ettt //
// Initialize any PAM information. //
ettt //

poDS—>SetDescription(poOpenInfo->pszFilename);
poDS->TryLoadXML () ;

return(poDS);

10.4 Implementing the RasterBand

Similar to the customized JDEMDataset class subclassed from GDALDataset, we also
need to declare and implement a customized JDEMRasterBand derived from GDAL-
RasterBand for access to the band(s) of the JDEM file. For JDEMRasterBand the dec-
laration looks like this:

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

34 GDAL Driver Implementation Tutorial

class JDEMRasterBand : public GDALPamRasterBand
{
public:
JDEMRasterBand(JDEMDataset *, int);
virtual CPLErr IReadBlock(int, int, wvoid *);
}i

The constructor may have any signature, and is only called from the Open() method.
Other virtual methods, such as IReadBlock() must be exactly matched to the method
signature in gdal_priv.h.

The constructor implementation looks like this:

JDEMRasterBand: : JDEMRasterBand (JDEMDataset *poDS, int nBand)
{

this->poDS = poDS;

this->nBand = nBand;

eDataType = GDT_Float32;

nBlockXSize = poDS—->GetRasterXSize();
nBlockYSize 1;

The following data members are inherited from GDALRasterBand, and should generally
be set in the band constructor.

» poDS: Pointer to the parent GDALDataset.

» nBand: The band number within the dataset.

» eDataType: The data type of pixels in this band.

» nBlockXSize: The width of one block in this band.

» nBlockYSize: The height of one block in this band.
The full set of possible GDALDataType values are declared in gdal.h, and include GDT_-
Byte, GDT_UInt16, GDT_Int16, and GDT_Float32. The block size is used to establish

a natural or efficient block size to access the data with. For tiled datasets this will be the
size of a tile, while for most other datasets it will be one scanline, as in this case.

Next we see the implementation of the code that actually reads the image data, IRead-
Block().

CPLErr JDEMRasterBand::IReadBlock(int nBlockXOff, int nBlockYOff,
void % pImage)

JDEMDataset xpoGDS = (JDEMDataset x) poDS;

char *pszRecord;

int nRecordSize = nBlockXSizex5 + 9 + 2;
int i;

VSIFSeekL(poGDS->fp, 1011 + nRecordSizexnBlockYOff, SEEK_SET);

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.5 The Driver 35

pszRecord = (char) CPLMalloc (nRecordSize);
VSIFReadL (pszRecord, 1, nRecordSize, poGDS->fp);

if (!'EQUALN((char %) poGDS->abyHeader,pszRecord, 6))
{
CPLFree(pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM Scanline corrupt. Perhaps file was not transferred\n"
"in binary mode?");

return CE_Failure;

if (JDEMGetField(pszRecord + 6, 3) != nBlockYOff + 1)
CPLFree (pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM scanline out of order, JDEM driver does not\n"
"currently support partial datasets.");

return CE_Failure;

}

for(i1 = 0; 1 < nBlockXSize; i++)
((float) pImage) [i] = JDEMGetField(pszRecord + 9 + 5 % i, 5) » 0.1;

return CE_None;

Key items to note are:

* It is typical to cast the GDALRasterBand::;poDS member to the derived type of
the owning dataset. If your RasterBand class will need privileged access to the
owning dataset object, ensure it is declared as a friend (omitted above for brevity).

« If an error occurs, report it with CPLError(), and return CE_Failure. Otherwise
return CE_None.

« The plmage buffer should be filled with one block of data. The block is the size
declared in nBlockXSize and nBlockYSize for the raster band. The type of the
data within plmage should match the type declared in eDataType in the raster
band object.

* The nBlockXOff and nBlockYOff are block offsets, so with 128x128 tiled datasets
values of 1 and 1 would indicate the block going from (128,128) to (255,255)
should be loaded.

10.5 The Driver

While the JDEMDataset and JDEMRasterBand are now ready to use to read image
data, it still isn’t clear how the GDAL system knows about the new driver. This is accom-
plished via the GDALDriverManager. To register our format we implement a registration
function:

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

36 GDAL Driver Implementation Tutorial

CPL_C_START
void CPL_DLL GDALRegister_JDEM(void) ;
CPL_C_END

void GDALRegister_JDEM()

{

GDALDriver =*poDriver;

if (! GDAL_CHECK_VERSION ("JDEM"))
return;
if (GDALGetDriverByName ("JDEM") == NULL)

{

poDriver = new GDALDriver();

poDriver->SetDescription("JDEM") ;
poDriver->SetMetadataltem(GDAL_DMD_LONGNAME,
"Japanese DEM (.mem)");

poDriver->SetMetadataltem(GDAL_DMD_HELPTOPIC,
"frmt_various.html#JDEM");
poDriver—->SetMetadataltem(GDAL_DMD_EXTENSION, "mem");

poDriver->pfnOpen = JDEMDataset: :0pen;
GetGDALDriverManager () ->RegisterDriver (poDriver);

}

Note the use of GDAL_CHECK_VERSION macro (starting with GDAL 1.5.0). This is
an optional macro for drivers inside GDAL tree that don’t depend on external libraries,
but that can be very usefull if you compile your driver as a plugin (that is to say, an out-
of-tree driver). As the GDAL C++ ABI may, and will, change between GDAL releases
(for example from GDAL 1.5.0 to 1.6.0), it may be necessary to recompile your driver
against the header files of the GDAL version with which you want to make it work. The
GDAL_CHECK_VERSION macro will check that the GDAL version with which the driver
was compiled and the version against which it is running are compatible.

The registration function will create an instance of a GDALDriver object when first called,
and register it with the GDALDriverManager. The following fields can be set in the driver
before registering it with the GDALDriverManager().

» The description is the short name for the format. This is a unique name for this
format, often used to identity the driver in scripts and commandline programs.
Normally 3-5 characters in length, and matching the prefix of the format classes.
(mandatory)

+ GDAL_DMD_LONGNAME: A longer descriptive name for the file format, but still
no longer than 50-60 characters. (mandatory)

+ GDAL_DMD_HELPTOPIC: The name of a help topic to display for this driver, if
any. In this case JDEM format is contained within the various format web page
held in gdal/html. (optional)

+ GDAL_DMD_EXTENSION: The extension used for files of this type. If more than
one pick the primary extension, or none at all. (optional)

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.6 Adding Driver to GDAL Tree 37

+ GDAL_DMD_MIMETYPE: The standard mime type for this file format, such as
"image/png". (optional)

+ GDAL_DMD_CREATIONOPTIONLIST: There is evolving work on mechanisms to
describe creation options. See the geotiff driver for an example of this. (optional)

+ GDAL_DMD_CREATIONDATATYPES: A list of space separated data types sup-
ported by this create when creating new datasets. If a Create() method exists,
these will be will supported. If a CreateCopy() method exists, this will be a list
of types that can be losslessly exported but it may include weaker data types
than the type eventually written. For instance, a format with a CreateCopy()
method, and that always writes Float32 might also list Byte, Int16, and UlInt16
since they can losslessly translated to Float32. An example value might be "Byte
Int16 UlInt16". (required - if creation supported)

» pfnOpen: The function to call to try opening files of this format. (optional)

+ pfnCreate: The function to call to create new updatable datasets of this format.
(optional)

» pfnCreateCopy: The function to call to create a new dataset of this format copied
from another source, but not necessary updatable. (optional)

» pfnDelete: The function to call to delete a dataset of this format. (optional)

+ pfnUnloadDriver: A function called only when the driver is destroyed. Could be
used to cleanup data at the driver level. Rarely used. (optional)

10.6 Adding Driver to GDAL Tree

Note that the GDALRegister_JDEM() method must be called by the higher level program
in order to have access to the JDEM driver. Normal practice when writing new drivers
is to:

1. Add a driver directory under gdal/frmts, with the directory name the same as the
short name.

2. Add a GNUmakefile and makefile.vc in that directory modelled on those from
other similar directories (ie. the jdem directory).

3. Add the module with the dataset, and rasterband implementation. Generally this
is called <short_name>dataset.cpp, with all the GDAL specific code in one file,
though that is not required.

4. Add the registration entry point declaration (ie. GDALRegister_JDEM()) to gdal/gcore/gdal_-
frmts.h.

5. Add a call to the registration function to frmts/gdalallregister.c, protected by an
appropriate #ifdef.

6. Add the format short name to the GDAL_FORMATS macro in GDALmake.opt.in
(and to GDALmake.opt).

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

38 GDAL Driver Implementation Tutorial

7. Add a format specific item to the EXTRAFLAGS macro in frmts/makefile.vc.

Once this is all done, it should be possible to rebuild GDAL, and have the new format
available in all the utilities. The gdalinfo utility can be used to test that opening and
reporting on the format is working, and the gdal_translate utility can be used to test
image reading.

10.7 Adding Georeferencing

Now we will take the example a step forward, adding georeferencing support. We add
the following two virtual method overrides to JDEMDataset, taking care to exactly match
the signature of the method on the GDALRasterDataset base class.

CPLErr GetGeoTransform(double x padfTransform);
const char xGetProjectionRef ();

The implementation of GetGeoTransform() just copies the usual geotransform matrix
into the supplied buffer. Note that GetGeoTransform() may be called a lot, so it isn’t
generally wise to do a lot of computation in it. In many cases the Open() will collect the
geotransform, and this method will just copy it over. Also note that the geotransform
return is based on an anchor point at the top left corner of the top left pixel, not the
center of pixel approach used in some packages.

CPLErr JDEMDataset::GetGeoTransform(double x padfTransform)

{
double dfLLLat, dfLLLong, dfURLat, dfURLong;

dfLLLat = JDEMGetAngle((char x) abyHeader + 29);
dfLLLong = JDEMGetAngle((char) abyHeader + 36
dfURLat = JDEMGetAngle((char =x) abyHeader + 43);
dfURLong = JDEMGetAngle((char) abyHeader + 50

’

’

padfTransform[0] = dfLLLong;

padfTransform([3] = dfURLat;

padfTransform[l] = (dfURLong - dfLLLong) / GetRasterXSize();
padfTransform[2] = 0.0;

padfTransform[4] = 0.0;

padfTransform([5] = -1 % (dfURLat - dfLLLat) / GetRasterYSize();

return CE_None;

The GetProjectionRef() method returns a pointer to an internal string containing a co-
ordinate system definition in OGC WKT format. In this case the coordinate system is
fixed for all files of this format, but in more complex cases a definition may need to be
composed on the fly, in which case it may be helpful to use the OGRSpatialReference
class to help build the definition.

const char xJDEMDataset::GetProjectionRef ()

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.8 Overviews 39

return("GEOGCS[\"Tokyo\",DATUM[\"Tokyo\", SPHEROID[\"Bessel 1841\","
"6377397.155,299.1528128, AUTHORITY [\"EPSG\", 7004]], TOWGS84[-148,"
"507,685,0,0,0,0],AUTHORITY [\"EPSG\", 6301]],PRIMEM[\"Greenwich\","
"0,AUTHORITY [\"EPSG\",8901]],UNIT[\"DMSH\",0.0174532925199433,"
"AUTHORITY [\"EPSG\", 9108]],AXIS[\"Lat\",NORTH],AXIS[\"Long\", EAST],"
"AUTHORITY [\"EPSG\",4301]1");

This completes explanation of the features of the JDEM driver. The full source for
jdemdataset .cpp can be reviewed as needed.

10.8 Overviews

GDAL allows file formats to make pre-built overviews available to applications via the
GDALRasterBand::GetOverview() and related methods. However, implementing this is
pretty involved, and goes beyond the scope of this document for now. The GeoTIFF
driver (gdal/frmts/gtiff/geotiff.cpp) and related source can be reviewed for an example of
a file format implementing overview reporting and creation support.

Formats can also report that they have arbitrary overviews, by overriding the HasAr-
bitraryOverviews() method on the GDALRasterBand, returning TRUE. In this case the
raster band object is expected to override the RasterlO() method itself, to implement
efficient access to imagery with resampling. This is also involved, and there are a lot of
requirements for correct implementation of the RasterlO() method. An example of this
can be found in the OGDI and ECW formats.

However, by far the most common approach to implementing overviews is to use the de-
fault support in GDAL for external overviews stored in TIFF files with the same name as
the dataset, but the extension .ovr appended. In order to enable reading and creation of
this style of overviews it is necessary for the GDALDataset to initialize the oOvManager
object within itself. This is typically accomplished with a call like the following near the
end of the Open() method (after the PAM TryLoadXML()).

poDS->o0OvManager.Initialize(poDS, poOpenInfo->pszFilename);

This will enable default implementations for reading and creating overviews for the for-
mat. It is advised that this be enabled for all simple file system based formats unless
there is a custom overview mechanism to be tied into.

10.9 File Creation

There are two approaches to file creation. The first method is called the CreateCopy()
method, and involves implementing a function that can write a file in the output format,
pulling all imagery and other information needed from a source GDALDataset. The
second method, the dynamic creation method, involves implementing a Create method
to create the shell of the file, and then the application writes various information by calls
to set methods.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

file:jdemdataset.cpp.html

40 GDAL Driver Implementation Tutorial

The benefits of the first method are that that all the information is available at the point
the output file is being created. This can be especially important when implementing file
formats using external libraries which require information like colormaps, and georefer-
encing information at the point the file is created. The other advantage of this method
is that the CreateCopy() method can read some kinds of information, such as min/max,
scaling, description and GCPs for which there are no equivalent set methods.

The benefits of the second method are that applications can create an empty new file,
and write results to it as they become available. A complete image of the desired data
does not have to be available in advance.

For very important formats both methods may be implemented, otherwise do whichever
is simpler, or provides the required capabilities.

10.9.1 CreateCopy

The GDALDriver::CreateCopy() method call is passed through directly, so that method
should be consulted for details of arguments. However, some things to keep in mind
are:

« If the bStrict flag is FALSE the driver should try to do something reasonable when
it cannot exactly represent the source dataset, transforming data types on the fly,
dropping georeferencing and so forth.

» Implementing progress reporting correctly is somewhat involved. The return re-
sult of the progress function needs always to be checked for cancellation, and
progress should be reported at reasonable intervals. The JPEGCreateCopy()
method demonstrates good handling of the progress function.

+ Special creation options should be documented in the online help. If the op-
tions take the format "NAME=VALUE" the papszOptions list can be manipulated
with CPLFetchNameValue() as demonstrated in the handling of the QUALITY and
PROGRESSIVE flags for JPEGCreateCopy().

» The returned GDALDataset handle can be in ReadOnly or Update mode. Return
it in Update mode if practical, otherwise in ReadOnly mode is fine.

The full implementation of the CreateCopy function for JPEG (which is assigned to
pfnCreateCopy in the GDALDriver object) is here.

static GDALDataset =
JPEGCreateCopy (const char x pszFilename, GDALDataset *poSrcDS,
int bStrict, char ** papszOptions,
GDALProgressFunc pfnProgress, void x pProgressData)

int nBands = poSrcDS->GetRasterCount () ;
int nXSize = poSrcDS->GetRasterXSize();
int n¥YSize = poSrcDS->GetRaster¥YSize();
int nQuality = 75;

int DbProgressive = FALSE;

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.9 File Creation 4

Some some rudimentary checks

if(nBands != 1 && nBands != 3)

CPLError (CE_Failure, CPLE_NotSupported,
"JPEG driver doesn’t support %d bands. Must be 1 (grey) "
"or 3 (RGB) bands.\n", nBands);

return NULL;

if (poSrcDS->GetRasterBand (l)->GetRasterDataType () != GDT_Byte && bStrict

CPLError (CE_Failure, CPLE_NotSupported,
"JPEG driver doesn’t support data type %s. "
"Only eight bit byte bands supported.\n",
GDALGetDataTypeName (
poSrcDS—->GetRasterBand (1) ->GetRasterDataType()));

return NULL;

if (CSLFetchNameValue (papszOptions, "QUALITY") != NULL)

nQuality = atoi (CSLFetchNameValue (papszOptions, "QUALITY"));
if(nQuality < 10 || nQuality > 100)
{
CPLError(CE_Failure, CPLE_IllegalArg,
"QUALITY=%s 1is not a legal value in the range 10-100.",
CSLFetchNameValue (papszOptions, "QUALITY"));
return NULL;

if (CSLFetchNameValue (papszOptions, "PROGRESSIVE") != NULL)

bProgressive = TRUE;

FILE *fpImage;

fpImage = VSIFOpen(pszFilename, "wb");
if (fpImage == NULL)
{

CPLError (CE_Failure, CPLE_OpenFailed,
"Unable to create jpeg file %s.\n",
pszFilename);

return NULL;

struct jpeg_compress_struct sCInfo;
struct jpeg_error_mgr sJErr;

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

42

GDAL Driver Implementation Tutorial

sCIn

fo.err = jpeg_std_error(&sJErr);

jpeg_create_compress (&sCInfo);

jpeg
sCIn
sCIn
sCIn

if(
{
}

else

{

jpeg
jpeg

if(

jpeg
GByt

CPLE

paby

for (

{

CPLF

_stdio_dest (&sCInfo, fpImage);

fo.image_width = nXSize;
fo.image_height = n¥Size;
fo.input_components = nBands;
nBands == 1)

sCInfo.in_color_space = JCS_GRAYSCALE;

sCInfo.in_color_space = JCS_RGB;

_set_defaults(&sCInfo);
_set_quality(&sCInfo, nQuality, TRUE);
bProgressive)

jpeg_simple_progression(&sCInfo);
_start_compress(&sCInfo, TRUE);

Loop over image, copying image data.

e xpabyScanline;

rr eErr;

Scanline = (GByte =x) CPLMalloc(nBands * nXSize);
int iLine = 0; iLine < nYSize; iLine++)

JSAMPLE *ppSamples;

for(int iBand = 0; iBand < nBands; iBand++)

{
GDALRasterBand * poBand = poSrcDS->GetRasterBand(iBand+1l);
eErr = poBand->RasterIO(GF_Read, 0, iLine, nXSize, 1,

pabyScanline + iBand, nXSize, 1, GDT_Byte,

nBands, nBands * nXSize);

ppSamples = pabyScanline;
jpeg_write_scanlines(&sCInfo, &ppSamples, 1);

ree (pabyScanline);

jpeg_finish_compress(&sCInfo);

jpeg
VSIF

retu

_destroy_compress (&sCInfo);

Close(fpImage);

rn (GDALDataset =) GDALOpen (pszFilename, GA_ReadOnly);

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.9 File Creation 43

10.9.2 Dynamic Creation

In the case of dynamic creation, there is no source dataset. Instead the size, number
of bands, and pixel data type of the desired file is provided but other information (such
as georeferencing, and imagery data) would be supplied later via other method calls on
the resulting GDALDataset.

The following sample implement PCI .aux labelled raw raster creation. It follows a com-
mon approach of creating a blank, but valid file using non-GDAL calls, and then calling
GDALOpen(,GA_Update) at the end to return a writable file handle. This avoids having
to duplicate the various setup actions in the Open() function.

GDALDataset *PAuxDataset::Create(const char » pszFilename,
int nXSize, int nYSize, int nBands,
GDALDataType eType,
char *+ // papszParmList)

char xpszAuxFilename;

/)
// Verify input options.
T
if(eType != GDT_Byte && eType != GDT_Float32 && eType != GDT_UIntlé6
&& eType != GDT_Intlé6
{
CPLError (CE_Failure, CPLE_AppDefined,
"Attempt to create PCI .Aux labelled dataset with an illegall\n"
"data type (%s).\n",
GDALGetDataTypeName (eType));
return NULL;

}

[
// Try to create the file.
/)

FILE *fp;

fp = VSIFOpen(pszFilename, "w");

if(fp == NULL)

{

CPLError (CE_Failure, CPLE_OpenFailed,
"Attempt to create file ‘%s’ failed.\n",
pszFilename);

return NULL;

}

e
// Just write out a couple of bytes to establish the binary

// file, and then close it.
e

VSIFWrite ((void) "\O\O", 2, 1, fp);

VSIFClose(fp);
T
// Create the aux filename.

[

pszAuxFilename = (char %) CPLMalloc(strlen (pszFilename)+5);

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

44 GDAL Driver Implementation Tutorial
strcpy (pszAuxFilename, pszFilename);;

for(int i = strlen(pszAuxFilename)-1; i > 0; i--)

{

if(pszAuxFilename[i] == ".")
{
pszAuxFilename[i] = "\0’;
break;
}

}

strcat (pszAuxFilename, ".aux")
T
// Open the file.
e

fp VSIFOpen (pszAuxFilename, "wt")

if (fp == NULL)

{

CPLError(CE_Failure, CPLE_OpenFailed,
"Attempt to create file ‘%s’ failed.\n",
pszAuxFilename);

return NULL;

}
et
// We need to write out the original filename but without any
// path components in the AuxilaryTarget line. Do so now.

f]
int iStart;

iStart = strlen(pszFilename)-1;

while(iStart > 0 && pszFilename[iStart-1] != '/’

&& pszFilename[iStart-1] != "\\’)
iStart—-—;

VSIFPrintf(fp, "AuxilaryTarget: %s\n", pszFilename + iStart);
T
// Write out the raw definition for the dataset as a whole.

f

VSIFPrintf(fp, "RawDefinition: %d %d %d\n",

nXSize, nYSize, nBands);
f]
// Write out a definition for each band. We always write band
// sequential files for now as these are pretty efficiently
// handled by GDAL.
/) T

int nImgOffset = 0;

for(int iBand = 0; iBand < nBands; iBand++)

{

const char x pszTypeName;
int nPixelOffset;
int nLineOffset;

nPixelOffset = GDALGetDataTypeSize (eType)/8;
nLineOffset = nXSize % nPixelOffset;

if(eType == GDT_Float32)
pszTypeName = "32R";

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.10 RawDataset/RawRasterBand Helper Classes 45

else if(eType == GDT_Intl6)
pszTypeName = "16S";

else if(eType == GDT_UIntl6)
pszTypeName = "16U";

else
pszTypeName = "8U";

o

d

o°

VSIFPrintf(fp, "ChanDefinition-%d: %s
iBand+1l, pszTypeName,
nImgOffset, nPixelOffset, nLineOffset,

d %d %s\n",

#ifdef CPL_LSB

"Swapped"
#else
"Unswapped"
#endif
)i
nImgOffset += n¥YSize » nLineOffset;
}
[
// Cleanup
J

VSIFClose(fp);

return (GDALDataset) GDALOpen(pszFilename, GA_Update);

File formats supporting dynamic creation, or even just update-in-place access also need
to implement an IWriteBlock() method on the raster band class. It has semantics similar
to IReadBlock(). As well, for various esoteric reasons, it is critical that a FlushCache()
method be implemented in the raster band destructor. This is to ensure that any write
cache blocks for the band be flushed out before the destructor is called.

10.10 RawDataset/RawRasterBand Helper Classes

Many file formats have the actual imagery data stored in a regular, binary, scanline ori-
ented format. Rather than re-implement the access semantics for this for each formats,
there are provided RawDataset and RawRasterBand classes declared in gdal/frmts/raw
that can be utilized to implement efficient and convenient access.

In these cases the format specific band class may not be required, or if required it can be
derived from RawRasterBand. The dataset class should be derived from RawDataset.

The Open() method for the dataset then instantiates raster bands passing all the layout
information to the constructor. For instance, the PNM driver uses the following calls to
create it’s raster bands.

if (poOpenInfo->pabyHeader([l] == 5")
{
poDS—->SetBand (
1, new RawRasterBand(poDS, 1, poDS->fpImage,
iIn, 1, nWidth, GDT_Byte, TRUE));

else

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

46

GDAL Driver Implementation Tutorial

poDS—>SetBand (
1, new RawRasterBand(poDS, 1, poDS->fpImage,
iIn, 3, nWidthx3, GDT_Byte, TRUE));
poDS—->SetBand (
2, new RawRasterBand(poDS, 2, poDS->fplImage,
iIn+l, 3, nWidth+3, GDT_Byte, TRUE));
poDS—->SetBand (
3, new RawRasterBand(poDS, 3, poDS->fplImage,
iIn+2, 3, nWidth%3, GDT_Byte, TRUE));

The RawRasterBand takes the following arguments.

poDS: The GDALDataset this band will be a child of. This dataset must be of a
class derived from RawRasterDataset.

nBand: The band it is on that dataset, 1 based.
fpRaw: The FILE * handle to the file containing the raster data.
nimgOffset: The byte offset to the first pixel of raster data for the first scanline.

nPixelOffset: The byte offset from the start of one pixel to the start of the next
within the scanline.

nLineOffset: The byte offset from the start of one scanline to the start of the next.
eDataType: The GDALDataType code for the type of the data on disk.

bNativeOrder: FALSE if the data is not in the same endianness as the machine
GDAL is running on. The data will be automatically byte swapped.

Simple file formats utilizing the Raw services are normally placed all within one file in the
gdal/frmts/raw directory. There are numerous examples there of format implementation.

10.11 Metadata, and Other Exotic Extensions

There are various other items in the GDAL data model, for which virtual methods exist
on the GDALDataset and GDALRasterBand. They include:

Metadata: Name/value text values about a dataset or band. The GDALMa-
jorObject (base class for GDALRasterBand and GDALDataset) has built-in sup-
port for holding metadata, so for read access it only needs to be set with calls
to SetMetadataltem() during the Open(). The SAR_CEOS (frmts/ceos2/sar_-
ceosdataset.cpp) and GeoTIFF drivers are examples of drivers implementing
readable metadata.

ColorTables: GDT_Byte raster bands can have color tables associated with
them. The frmts/png/pngdataset.cpp driver contains an example of a format that
supports colortables.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

10.11 Metadata, and Other Exotic Extensions 47

+ Colorinterpretation: The PNG driver contains an example of a driver that returns
an indication of whether a band should be treated as a Red, Green, Blue, Alpha
or Greyscale band.

* GCPs: GDALDatasets can have a set of ground control points associated with
them (as opposed to an explicit affine transform returned by GetGeotransform())
relating the raster to georeferenced coordinates. The MFF2 (gdal/frmts/raw/hkv-
dataset.cpp) format is a simple example of a format supporting GCPs.

* NoDataValue: Bands with known "nodata" values can implement the GetNo-
DataValue() method. See the PAux (frmts/raw/pauxdataset.cpp) for an example
of this.

» Category Names: Classified images with names for each class can return them
using the GetCategoryNames() method though no formats currently implement
this.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

48

GDAL Driver Implementation Tutorial

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 11

gdal_polygonize.py

produces a polygon feature layer from a raster

11.1 SYNOPSIS

gdal_polygonize.py [-0 name=value] [-nomask] [-mask filename] raster_file [-b band]
[-g] [-f ogr_format] out_file [layer] [fieldname]

11.2 DESCRIPTION

This utility creates vector polygons for all connected regions of pixels in the raster shar-
ing a common pixel value. Each polygon is created with an attribute indicating the pixel
value of that polygon. A raster mask may also be provided to determine which pixels
are eligible for processing.

The utility will create the output vector datasource if it does not already exist, defaulting
to GML format.

The utility is based on the GDALPolygonize() function which has additional details on
the algorithm.

-nomask: Do not use the default validity mask for the input band (such as nodata, or
alpha masks).

-mask filename: Use the first band of the specified file as a validity mask (zero is
invalid, non-zero is valid).

raster_file The source raster file from which polygons are derived.
-b band: The band on raster _file to build the polygons from.
-f ogr_format Select the output format of the file to be created. Default is GML.

out_file The destination vector file to which the polygons will be written.

50 gdal_polygonize.py

layer The name of the layer created to hold the polygon features.
fieldname The name of the field to create (defaults to "DN").

-0 name=value: Specify a special argument to the algorithm. Currently none are sup-
ported.

-q: The script runs in quiet mode. The progress monitor is supressed and routine
messages are not displayed.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 12
gdal_proximity.py

produces a raster proximity map

12.1 SYNOPSIS

gdal_proximity.py srcfile dstfile [-srcband n] [-dstband n]
[-of format] [-co name=value]x*
[-ot Byte/Intl6/Int32/Float32/etc]
[-values n,n,n] [-distunits PIXEL/GEO]
[-maxdist n] [-nodata n] [-fixed-buf-val n]

12.2 DESCRIPTION

The gdal_proximity.py script generates a raster proximity map indicating the distance
from the center of each pixel to the center of the nearest pixel identified as a target
pixel. Target pixels are those in the source raster for which the raster pixel value is in
the set of target pixel values.

srcfile The source raster file used to identify target pixels.

dstfile The destination raster file to which the proximity map will be written. It may be
a pre-existing file of the same size as srcfile. If it does not exist it will be created.

-srcband n Identifies the band in the source file to use (default is 1).
-dstband n I|dentifies the band in the destination file to use (default is 1).

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

-co "NAME=VALUE": passes a creation option to the output format driver. Multiple
-co options may be listed. See format specific documentation for legal creation
options for each format.

52 gdal_proximity.py

-ot datatype: Force the output image bands to have a specific type. Use type names
(ie. Byte, Int186,...)

-values n,n,n: A list of target pixel values in the source image to be considered target
pixels. If not specified, all non-zero pixels will be considered target pixels.

-distunits PIXEL/GEO: Indicate whether distances generated should be in pixel or
georeferenced coordinates (default PIXEL).

-maxdist n: The maximum distance to be generated. All pixels beyond this distance
will be assigned either the nodata value, or 65535. Distance is interpreted in
pixels unless -distunits GEO is specified.

-nodata n: Specify a nodata value to use for the destination proximity raster.

-fixed-buf-val n: Specify a value to be applied to all pixels that are within the -maxdist
of target pixels (including the target pixels) instead of a distance value.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 13

GDAL API Tutorial

13.1 Opening the File

Before opening a GDAL supported raster datastore it is necessary to register drivers.
There is a driver for each supported format. Normally this is accomplished with the
GDALAIIRegister() function which attempts to register all known drivers, including those
auto-loaded from .so files using GDALDriverManager::AutoLoadDrivers(). If for some
applications it is necessary to limit the set of drivers it may be helpful to review the code
from gdalallregister.cpp.

Once the drivers are registered, the application should call the free standing GDALOpen()
function to open a dataset, passing the name of the dataset and the access desired
(GA_ReadOnly or GA_Update).

In C++:

#include "gdal_priv.h"
int main ()
{
GDALDataset *poDataset;
GDALAllRegister();
poDataset = (GDALDataset =) GDALOpen (pszFilename, GA_ReadOnly);
if (poDataset == NULL)
{

}

In C:

#include "gdal.h"
int main ()
{
GDALDatasetH hDataset;

GDALAllRegister();

file:gdalallregister.cpp.html

54 GDAL API Tutorial
hDataset = GDALOpen(pszFilename, GA_ReadOnly);
if (hDataset == NULL)
{
}
In Python:

import gdal

from gdalconst import =

dataset = gdal.Open (

if dataset is None:

filename, GA_ReadOnly)

Note that if GDALOpen() returns NULL it means the open failed, and that an error mes-
sages will already have been emitted via CPLError(). If you want to control how errors
are reported to the user review the CPLError() documentation. Generally speaking all
of GDAL uses CPLError() for error reporting. Also, note that pszFilename need not

actually be the name of a physical file (though it usually is). It's interpretation is driver

dependent, and it might be an URL, a filename with additional parameters added at the
end controlling the open or almost anything. Please try not to limit GDAL file selection
dialogs to only selecting physical files.

13.2 Getting Dataset Information

As described in the GDAL Data Model, a GDALDataset contains a list of raster

bands, all pertaining to the same area, and having the same resolution. It also has
metadata, a coordinate system, a georeferencing transform, size of raster and various

other information.

adfGeoTransform
adfGeoTransform
adfGeoTransform
adfGeoTransform
adfGeoTransform
adfGeoTransform

/ *
/
/ *
/
/%
/ *

top left x x/

w-e pixel resolution =/

rotation, 0 if image is "north up" x/
top left y «/

rotation, 0 if image is "north up" x/
n-s pixel resolution */

If we wanted to print some general information about the dataset we might do the fol-

lowing:

In C++:

double adfGeoTransform[6];

printf("Driver: %s/%s\n",
poDataset—->GetDriver () ->GetDescription (),
poDataset—->GetDriver () ->GetMetadataItem(GDAL_DMD_LONGNAME)

printf("Size is %dx%dx%d\n",
poDataset->GetRasterXSize (), poDataset->GetRasterYSize(),
poDataset—->GetRasterCount ());

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

)i

file:gdal_datamodel.html

13.3 Fetching a Raster Band 55

if (poDataset->GetProjectionRef () != NULL)
printf ("Projection is ‘%s’\n", poDataset->GetProjectionRef ());

if (poDataset->GetGeoTransform(adfGeoTransform) == CE_None)
{
printf("Origin = (%.6f,%.6f)\n",

’
adfGeoTransform[0], adfGeoTransform[3]);
printf("Pixel Size = (%.6f,%.6£f)\n",

adfGeoTransform[1l], adfGeoTransform[5]);

InC:

GDALDriverH hDriver;
double adfGeoTransform[6];

hDriver = GDALGetDatasetDriver (hDataset);

printf("Driver: %s/%s\n",
GDALGetDriverShortName (hDriver),
GDALGetDriverLongName (hDriver));

printf("Size is %dx%dx%d\n",

GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset),
GDALGetRasterCount (hDataset));

if (GDALGetProjectionRef (hDataset) != NULL)
printf("Projection is ‘%s’\n", GDALGetProjectionRef (hDataset)

if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)
{
printf("Origin = (%.6f,%.6f)\n",

4
adfGeoTransform[0], adfGeoTransform[3]);

printf("Pixel Size = (%.6f,%.6f)\n",
adfGeoTransform[1l], adfGeoTransform[5]);

In Python:

print ’Driver: ’, dataset.GetDriver ().ShortName,’/’, \
dataset.GetDriver () .LongName

print ’Size is ’,dataset.RasterXSize,’x’,dataset.RasterYSize, \
'x’ ,dataset.RasterCount

print ’Projection is ’,dataset.GetProjection()

geotransform = dataset.GetGeoTransform()

if not geotransform is None:
print ’Origin = (’,geotransform[0], ’,’,geotransform[3],")’
print ’'Pixel Size = (’,geotransform[l], ’,’,geotransform([5],’)"’

13.3 Fetching a Raster Band

At this time access to raster data via GDAL is done one band at a time. Also, there is
metadata, blocksizes, color tables, and various other information available on a band by
band basis. The following codes fetches a GDALRasterBand object from the dataset
(numbered 1 through GetRasterCount()) and displays a little information about it.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

56

GDAL API Tutorial

In C++:

InC:

GDALRasterBand =*poBand;

int nBlockXSize, nBlockYSize;
int bGotMin, bGotMax;

double adfMinMax[2];

poBand = poDataset->GetRasterBand(1);
poBand->GetBlockSize (&nBlockXSize, &nBlockYSize);
printf ("Block=%dx%d Type=%s, ColorInterp=%s\n",
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (poBand—->GetRasterDataType()),
GDALGetColorInterpretationName (
poBand->GetColorInterpretation()));

adfMinMax [0] = poBand->GetMinimum(&bGotMin);
adfMinMax[1l] = poBand->GetMaximum(&bGotMax);
if(! (bGotMin && bGotMax))

GDALComputeRasterMinMax ((GDALRasterBandH) poBand, TRUE, adfMinMax);

printf ("Min=%.3fd, Max=%.3f\n", adfMinMax[0], adfMinMax[1l]);

if (poBand->GetOverviewCount () > 0)
printf ("Band has %d overviews.\n", poBand->GetOverviewCount ()

if (poBand->GetColorTable() != NULL)

printf("Band has a color table with %d entries.\n",
poBand->GetColorTable () ->GetColorEntryCount ());

GDALRasterBandH hBand;

int nBlockXSize, nBlockYSize;
int bGotMin, bGotMax;
double adfMinMax[2];

hBand = GDALGetRasterBand(hDataset, 1);
GDALGetBlockSize (hBand, &nBlockXSize, &nBlockYSize);
printf ("Block=%dx%d Type=%s, ColorInterp=%s\n",
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (GDALGetRasterDataType (hBand)),
GDALGetColorInterpretationName (
GDALGetRasterColorInterpretation (hBand)));

adfMinMax [0] = GDALGetRasterMinimum(hBand, &bGotMin);
adfMinMax[1] = GDALGetRasterMaximum(hBand, &bGotMax);
if(! (bGotMin && bGotMax))

GDALComputeRasterMinMax (hBand, TRUE, adfMinMax);
printf("Min=%.3fd, Max=%.3f\n", adfMinMax[0], adfMinMax[1l]);

if (GDALGetOverviewCount (hBand) > 0)

)i

printf ("Band has %d overviews.\n", GDALGetOverviewCount (hBand));

if (GDALGetRasterColorTable(hBand) != NULL)
printf ("Band has a color table with %d entries.\n",
GDALGetColorEntryCount (
GDALGetRasterColorTable(hBand)));

In Python (note several bindings are missing):

band = dataset.GetRasterBand (1)

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

13.4 Reading Raster Data 57

print ’'Band Type=',gdal.GetDataTypeName (band.DataType)

min = band.GetMinimum ()
max = band.GetMaximum ()
if min is None or max is None:
(min, max) = band.ComputeRasterMinMax (1)
print 'Min=%.3f, Max=%.3f’ % (min,max)

if band.GetOverviewCount () > O:
print ’Band has ’, band.GetOverviewCount (), ' overviews.’
if not band.GetRasterColorTable() is None:

print ’Band has a color table with ', \
band.GetRasterColorTable () .GetCount (), ’ entries.’

13.4 Reading Raster Data

There are a few ways to read raster data, but the most common is via the GDALRaster-
Band::RasterlO() method. This method will automatically take care of data type conver-
sion, up/down sampling and windowing. The following code will read the first scanline
of data into a similarly sized buffer, converting it to floating point as part of the operation.

In C++:
float *pafScanline;
int nXSize = poBand->GetXSize();
pafScanline = (float x) CPLMalloc(sizeof (float)«nXSize);
poBand->RasterIO(GF_Read, 0, 0, nXSize, 1,
pafScanline, nXSize, 1, GDT_Float32,
0, 0);
In C:
float *pafScanline;
int nXSize = GDALGetRasterBandXSize (hBand);
pafScanline = (float *) CPLMalloc(sizeof (float) *nXSize);
GDALRasterIO(hBand, GF_Read, 0, 0, nXSize, 1,
pafScanline, nXSize, 1, GDT_Float32,
0, 0);
In Python:

scanline = band.ReadRaster(0, 0, band.XSize, 1, \
band.XSize, 1, GDT_Float32)

Note that the returned scanline is of type string, and contains xsizex4 bytes of raw
binary floating point data. This can be converted to Python values using the struct
module from the standard library:

import struct

tuple_of_floats = struct.unpack(’f’ x b2.XSize, scanline)

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

58 GDAL API Tutorial

The RasterlO call takes the following arguments.

CPLErr GDALRasterBand::RasterIO(GDALRWFlag eRWFlag,
int nXOff, int nYOff, int nXSize, int nYSize,
void % pData, int nBufXSize, int nBufYSize,
GDALDataType eBufType,
int nPixelSpace,
int nLineSpace)

Note that the same RasterlO() call is used to read, or write based on the setting of
eRWFlag (either GF_Read or GF_Write). The nXOff, nYOff, nXSize, nYSize argument
describe the window of raster data on disk to read (or write). It doesn’t have to fall on
tile boundaries though access may be more efficient if it does.

The pData is the memory buffer the data is read into, or written from. It's real type
must be whatever is passed as eBufType, such as GDT_Float32, or GDT_Byte. The
RasterlO() call will take care of converting between the buffer’s data type and the data
type of the band. Note that when converting floating point data to integer RasterlO()
rounds down, and when converting source values outside the legal range of the output
the nearest legal value is used. This implies, for instance, that 16bit data read into a
GDT_Byte buffer will map all values greater than 255 to 255, the data is not scaled!

The nBufXSize and nBufYSize values describe the size of the buffer. When loading
data at full resolution this would be the same as the window size. However, to load a
reduced resolution overview this could be set to smaller than the window on disk. In this
case the RasterlO() will utilize overviews to do the IO more efficiently if the overviews
are suitable.

The nPixelSpace, and nLineSpace are normally zero indicating that default values should
be used. However, they can be used to control access to the memory data buffer, al-
lowing reading into a buffer containing other pixel interleaved data for instance.

13.5 Closing the Dataset

Please keep in mind that GDALRasterBand objects are owned by their dataset, and
they should never be destroyed with the C++ delete operator. GDALDataset’s can be
closed by calling GDALClose() (it is NOT recommended to use the delete operator on a
GDALDataset for Windows users because of known issues when allocating and freeing
memory across module boundaries. See the relevant topic on the FAQ). Calling
GDALCIlose will result in proper cleanup, and flushing of any pending writes. Forgetting
to call GDALClose on a dataset opened in update mode in a popular format like GTiff
will likely result in being unable to open it afterwards.

13.6 Techniques for Creating Files

New files in GDAL supported formats may be created if the format driver supports cre-
ation. There are two general techniques for creating files, using CreateCopy() and Cre-
ate(). The CreateCopy method involves calling the CreateCopy() method on the format
driver, and passing in a source dataset that should be copied. The Create method

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://trac.osgeo.org/gdal/wiki/FAQMiscellaneous#HowshouldIdeallocateresourcesacquaintedfromGDALonWindows

13.6 Techniques for Creating Files 59

involves calling the Create() method on the driver, and then explicitly writing all the
metadata, and raster data with separate calls. All drivers that support creating new files
support the CreateCopy() method, but only a few support the Create() method.

To determine if a particular format supports Create or CreateCopy it is possible to check
the DCAP_CREATE and DCAP_CREATECOPY metadata on the format driver object.
Ensure that GDALAIIRegister() has been called before calling GetDriverByName(). In
this example we fetch a driver, and determine whether it supports Create() and/or Cre-

ateCopy().
In C++:

#include "cpl_string.h"

const char xpszFormat = "GTiff";
GDALDriver xpoDriver;
char xxpapszMetadata;

poDriver = GetGDALDriverManager () —->GetDriverByName (pszFormat) ;

if (poDriver == NULL)
exit (1);

papszMetadata = poDriver->GetMetadatal();

if (CSLFetchBoolean (papszMetadata, GDAL_DCAP_CREATE, FALSE))
printf("Driver %s supports Create() method.\n", pszFormat);

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATECOPY, FALSE))
printf("Driver %s supports CreateCopy () method.\n", pszFormat);

In C:

#include "cpl_string.h"

const char xpszFormat = "GTiff";
GDALDriverH hDriver = GDALGetDriverByName (pszFormat);
char xxpapszMetadata;

if (hDriver == NULL)
exit (1);

papszMetadata = GDALGetMetadata(hDriver, NULL);

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATE, FALSE))
printf ("Driver %s supports Create() method.\n", pszFormat);

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATECOPY, FALSE))
printf("Driver %s supports CreateCopy() method.\n", pszFormat);

In Python:

format = "GTiff"
driver = gdal.GetDriverByName (format)
metadata = driver.GetMetadata (
if metadata.has_key (gdal.DCAP_CREATE) \
and metadata[gdal.DCAP_CREATE] == ’'YES’:
print ’Driver $%s supports Create() method.’ % format
if metadata.has_key (gdal.DCAP_CREATECOPY) \
and metadata[gdal.DCAP_CREATECOPY] == 'YES’:
print ’Driver %s supports CreateCopy () method.’ % format

Note that a number of drivers are read-only and won'’t support Create() or CreateCopy().

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

60 GDAL API Tutorial

13.7 Using CreateCopy()

The GDALDriver::CreateCopy() method can be used fairly simply as most information
is collected from the source dataset. However, it includes options for passing format
specific creation options, and for reporting progress to the user as a long dataset copy
takes place. A simple copy from the a file named pszSrcFilename, to a new file named
pszDstFilename using default options on a format whose driver was previously fetched
might look like this:

In C++:

GDALDataset #*poSrcDS =
(GDALDataset =) GDALOpen(pszSrcFilename, GA_ReadOnly);
GDALDataset xpoDstDS;

poDstDS = poDriver->CreateCopy(pszDstFilename, poSrcDS, FALSE,
NULL, NULL, NULL);

/* Once we’re done, close properly the dataset =/
if (poDstDS != NULL)

GDALClose ((GDALDatasetH) poDstDS);
GDALClose ((GDALDatasetH) poSrcDS);

In C:
GDALDatasetH hSrcDS = GDALOpen(pszSrcFilename, GA_ReadOnly);
GDALDatasetH hDstDS;
hDstDS = GDALCreateCopy(hDriver, pszDstFilename, hSrcDS, FALSE,
NULL, NULL, NULL);
/* Once we’re done, close properly the dataset =/
if(hDstDS != NULL)
GDALClose(hDstDS);
GDALClose (hSrcDS) ;
In Python:
src_ds = gdal.Open(src_filename)
dst_ds = driver.CreateCopy(dst_filename, src_ds, 0)

Once we’re done, close properly the dataset
dst_ds = None
src_ds = None

Note that the CreateCopy() method returns a writeable dataset, and that it must be
closed properly to complete writing and flushing the dataset to disk. In the Python case
this occurs automatically when "dst_ds" goes out of scope. The FALSE (or 0) value
used for the bStrict option just after the destination filename in the CreateCopy() call
indicates that the CreateCopy() call should proceed without a fatal error even if the
destination dataset cannot be created to exactly match the input dataset. This might be
because the output format does not support the pixel datatype of the input dataset, or
because the destination cannot support writing georeferencing for instance.

A more complex case might involve passing creation options, and using a predefined
progress monitor like this:

In C++:

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

13.8 Using Create() 61

#include "cpl_string.h"
char x*papszOptions = NULL;

papszOptions = CSLSetNameValue (papszOptions, "TILED", "YES");

papszOptions = CSLSetNameValue (papszOptions, "COMPRESS", "PACKBITS");

poDstDS = poDriver->CreateCopy(pszDstFilename, poSrcDS, FALSE,
papszOptions, GDALTermProgress, NULL);

/* Once we’re done, close properly the dataset =/
if (poDstDS != NULL)

GDALClose ((GDALDatasetH) poDstDS);
CSLDestroy (papszOptions);

In C:

#include "cpl_string.h"
char x*papszOptions = NULL;

papszOptions = CSLSetNameValue (papszOptions, "TILED", "YES");

papszOptions = CSLSetNameValue (papszOptions, "COMPRESS", "PACKBITS");

hDstDS = GDALCreateCopy(hDriver, pszDstFilename, hSrcDS, FALSE,
papszOptions, GDALTermProgres, NULL);

/* Once we’'re done, close properly the dataset =/
if (hDstDS != NULL)

GDALClose (hDstDS);
CSLDestroy (papszOptions);

In Python:
src_ds = gdal.Open(src_filename)
dst_ds = driver.CreateCopy(dst_filename, src_ds, O,

["TILED=YES’, ’'COMPRESS=PACKBITS’])

Once we’re done, close properly the dataset
dst_ds = None
src_ds = None

13.8 Using Create()

For situations in which you are not just exporting an existing file to a new file, it is
generally necessary to use the GDALDriver::Create() method (though some interesting
options are possible through use of virtual files or in-memory files). The Create() method
takes an options list much like CreateCopy(), but the image size, number of bands and
band type must be provided explicitly.

In C++:

GDALDataset *poDstDS;
char x*papszOptions = NULL;

poDstDS = poDriver->Create(pszDstFilename, 512, 512, 1, GDT_Byte,
papszOptions);

In C:

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

62 GDAL API Tutorial

GDALDatasetH hDstDS;
char x*papszOptions = NULL;

hDstDS = GDALCreate(hDriver, pszDstFilename, 512, 512, 1, GDT_Byte,
papszOptions);

In Python:

dst_ds = driver.Create(dst_filename, 512, 512, 1, gdal.GDT_Byte)

Once the dataset is successfully created, all appropriate metadata and raster data must
be written to the file. What this is will vary according to usage, but a simple case with a
projection, geotransform and raster data is covered here.

In C++:

double adfGeoTransform[6] = { 444720, 30, 0, 3751320, 0, =30 };
OGRSpatialReference oSRS;

char xpszSRS_WKT = NULL;

GDALRasterBand *poBand;

GByte abyRaster[512%512];

poDstDS—->SetGeoTransform(adfGeoTransform);

OSRS.SetUTM(11, TRUE);
OSRS.SetWellKnownGeogCS ("NAD27");
OoSRS.exportToWkt (&pszSRS_WKT) ;
poDstDS—->SetProjection(pszSRS_WKT);
CPLFree(pszSRS_WKT);

poBand = poDstDS->GetRasterBand (1) ;
poBand->RasterIO(GF_Write, 0, 0, 512, 512,
abyRaster, 512, 512, GDT_Byte, 0, 0);

/* Once we’re done, close properly the dataset =/
GDALClose ((GDALDatasetH) poDstDS);

InC:

double adfGeoTransform[6] = { 444720, 30, 0, 3751320, 0, -30 };
OGRSpatialReferenceH hSRS;

char *pszSRS_WKT = NULL;

GDALRasterBandH hBand;

GByte abyRaster[512x512];

GDALSetGeoTransform(hDstDS, adfGeoTransform);

hSRS = OSRNewSpatialReference(NULL);
OSRSetUTM(hSRS, 11, TRUE);
OSRSetWellKnownGeogCS (hSRS, "NAD27");
OSRExportToWkt (hSRS, &pszSRS_WKT);
OSRDestroySpatialReference (hSRS);

GDALSetProjection(hDstDS, pszSRS_WKT);
CPLFree(pszSRS_WKT);

hBand = GDALGetRasterBand(hDstDS, 1);
GDALRasterIO(hBand, GF_Write, 0, 0, 512, 512,
abyRaster, 512, 512, GDT_Byte, 0, 0);

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

13.8 Using Create()

63

/* Once we’re done, close properly the dataset =/
GDALClose(hDstDS);

In Python:

import osr
import numpy

dst_ds.SetGeoTransform([444720, 30, 0, 3751320, O,

srs = osr.SpatialReference ()

srs.SetUTM(11, 1)
srs.SetWellKnownGeogCS ('NAD27’)
dst_ds.SetProjection(srs.ExportToWkt ())

raster = numpy.zeros((512, 512), dtype=numpy.uint8
dst_ds.GetRasterBand(1l) .WriteArray(raster)

Once we’re done, close properly the dataset
dst_ds = None

)

-30

]

)

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

64

GDAL API Tutorial

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 14

GDAL Grid Tutorial

14.1 Introduction to Gridding

Gridding is a process of creating a regular grid (or call it a raster image) from the scat-
tered data. Typically you have a set of arbitrary scattered over the region of survey
measurements and you would like to convert them into the regular grid for further pro-
cessing and combining with other grids.

Figure 14.1: Scattered data gridding

This problem can be solved using data interpolation or approximation algorithms. But
you are not limited by interpolation here. Sometimes you don’t need to interpolate
your data but rather compute some statistics or data metrics over the region. Statistics
is valuable itself or could be used for better choosing the interpolation algorithm and
parameters.

That is what GDAL Grid APl is about. It helps you to interpolate your data (see Interpo-
lation of the Scattered Data) or compute data metrics (see Data Metrics Computation).

There are two ways of using this interface. Programmatically it is available through the
GDALGridCreate C function; for end users there is a gdal_grid utility. The rest of this
document discusses details on algorithms and their parameters implemented in GDAL
Grid API.

14.2 Interpolation of the Scattered Data

14.2.1 Inverse Distance to a Power

The Inverse Distance to a Power gridding method is a weighted average interpolator.
You should supply the input arrays with the scattered data values including coordinates

66 GDAL Grid Tutorial

of every data point and output grid geometry. The function will compute interpolated
value for the given position in output grid.

For every grid node the resulting value Z will be calculated using formula:

n Z

i=1 77
l

n 1
i=1 77
1

where

» Z; is a known value at point i,
+ ris a distance from the grid node to point i,
+ pis a weighting power,

+ nis a number of points in search ellipse".

In this method the weighting factor w is

See GDALGridInverseDistanceToAPowerOptions for the list of GDALGridCreate param-
eters and gdal_grid_algorithms_invdist for the list of gdal_grid options.

14.2.2 Moving Average

The Moving Average is a simple data averaging algorithm. It uses a moving window of
elliptic form to search values and averages all data points within the window. Search
ellipse can be rotated by specified angle, the center of ellipse located at the grid node.
Also the minimum number of data points to average can be set, if there are not enough
points in window, the grid node considered empty and will be filled with specified NO-
DATA value.

Mathematically it can be expressed with the formula:

n
iz1Zi
n

7 =

where

« Zis aresulting value at the grid node,
» Z;is a known value at point i,

 nis a number of points in search search ellipse.

See GDALGridMovingAverageOptions for the list of GDALGridCreate parameters and
gdal_grid_algorithms_average for the list of gdal_grid options.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

14.3 Data Metrics Computation 67

14.2.3 Nearest Neighbor

The Nearest Neighbor method doesn’t perform any interpolation or smoothing, it just
takes the value of nearest point found in grid node search ellipse and returns it as a
result. If there are no points found, the specified NODATA value will be returned.

See GDALGridNearestNeighborOptions for the list of GDALGridCreate parameters and
gdal_grid_algorithms_nearest for the list of gdal_grid options.

14.3 Data Metrics Computation

All the metrics have the same set controlling options. See the GDALGridDataMetric-
sOptions.

14.3.1 Minimum Data Value

Minimum value found in grid node search ellipse. If there are no points found, the
specified NODATA value will be returned.

Z = min (Zth, cen 7Zn)

where

» Z is aresulting value at the grid node,
» Z; is a known value at point i,

 nis a number of points in search ellipse".

14.3.2 Maximum Data Value

Maximum value found in grid node search ellipse. If there are no points found, the
specified NODATA value will be returned.

Z = max(Zl,Zz,...,Zn)

where

» Z is aresulting value at the grid node,
» Z; is a known value at point i,

 nis a number of points in search ellipse".

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

68 GDAL Grid Tutorial

14.3.3 Data Range

A difference between the minimum and maximum values found in grid node search
ellipse. If there are no points found, the specified NODATA value will be returned.

Z =max (Z,2y,...,Z,) —min(Zy,2Zy,...,Zy)
where

« Zis aresulting value at the grid node,
+ Z;is a known value at point i,

+ nis a number of points in search ellipse".

14.4 Search Ellipse

Search window in gridding algorithms specified in the form of rotated ellipse. It is de-
scribed by the three parameters:

« radius is the first radius (x axis if rotation angle is 0),
« radius; is the second radius (y axis if rotation angle is 0),

« angle is a search ellipse rotation angle (rotated counter clockwise).

Figure 14.2: Search ellipse

Only points located inside the search ellipse (including its border line) will be used for
computation.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 15

Sponsoring GDAL/OGR

Development and maintenance of GDAL/OGR is supported by organizations contracting
developers, organizations contributing improvements, users contributing improvements,
and volunteers. Generally speaking this works well, and GDAL/OGR has improved
substantially over the years.

However, there are still many tasks which do not receive the attention they should.
Processing bug reports, writing documentation, writing test scripts, evaluating test script
failures and user support often receive less attention than would be desired. Some new
features of broad interest are not implemented because they aren’t important enough
to any one person or organization.

In order to provide sustained funding to support the maintenance, improvement and
promotion of the GDAL/OGR project, the project seeks project sponsors to provide
financial support. Sponsorship would be accomplished via the 0SGeo Project
Sponsorship program. Funds are held by OSGeo for disposition on behalf of the
project, and dispersed at the discretion of the GDAL/OGR Project Steering Committee.

15.1 Sponsorship Uses

The primary intended use of the sponsorship funds is to hire a maintainer on a contract
basis. The responsibilities would include:

» Addressing bug reports - reproducing then fixing or passing on to another devel-
oper.

« Extending, and running the test suite.

* Improving documentation.

+ Other improvements to the software.

» General user support on the mailing list.

Sponsorship funds may also be used to contract for specific improvements to GDAL,
provision of resources such as web hosting, funding code sprints, or funding project

http://wiki.osgeo.org/index.php/Project_Sponsorship
http://wiki.osgeo.org/index.php/Project_Sponsorship

70 Sponsoring GDAL/OGR

promotion. Decisions on spending of sponsorship funds will be made by the GDAL/OGR
Project Steering Committee.

15.2 Sponsorship Benefits
Sponsoring GDAL/OGR provides the following benefits:

1. Ensures the sustainability and health of the GDAL/OGR project.

2. All sponsors will be listed on the project Credit s page, ordered by contribution
class (Platinum, Gold, Silver) with a link back to the sponsor. Silver sponsors and
above may include a logo. Platinum sponsors may also have a logo appearing on
the OSGeo main page.

3. Sponsors will be permitted to indicate they are project sponsors in web and other
promotional materials, and use the GDAL/OGR logo.

4. Sponsor input on project focus and direction will be solicited via a survey.

5. Sponsors will received a degree of priority in processing of bug reports by any
maintainer hired with sponsorship funds.

6. Sponsors will receive a detailed report annually on the use of sponsorship funds.

15.3 Sponsorship Process

Sponsors can sponsor GDAL for any amount of money of at least $500 USD. At or
above the following levels a sponsor will be designated as being one of the following
class:

1. $27000+ USD: Platinum Sponsor
2. $9000+ USD: Gold Sponsor
3. $3000+ USD: Silver Sponsor

Sponsorships last one year, after which they may be continuing with a new payment,
or allowed to lapse. OSGeo is planning to be US 501(c)3 charity and sponsorships will
be eligible as a charitable contribution for US taxpayers. Appropriate receipts can be
issued when needed.

Organizations or individuals interested in sponsoring the GDAL/OGR project should
contact Frank Warmerdam (warmerdam@pobox . com, +1 613 754 2041) with ques-
tions, or to make arrangements.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

file:credits.html
mailto:warmerdam@pobox.com

Chapter 16

GDAL VB6 Bindings Tutorial

16.1 Introduction

A partial set of Visual Basic 6 bindings have been build for GDAL. Internally these
bindings use Declare based calls into the GDAL DLL C API but a set of shadow classes
are also provided to provide object oriented access to GDAL services in VB6 similar to
those provided in C++.

Note that the VB6 bindings are nowhere near comprehensive, nor are they documented.
However, in combination with the corresponding C++ class documentation, and the
following docs, it should be possible to use GDAL to accomplish a variety of operations.
It is not believed that the VB6 bindings will be of any utility with earlier version of VB nor
with VB.Net.

The classes for which access has been implemented includes GDALDriver, GDAL-
Dataset, GDALRasterBand, GDALColorTable, OGRSpatialReference and OGRCoor-
dinateTransformation.

A mailing list specifically on VB6 GDAL topics has been setupathttp://groups.yahoo.com/group/gdal-vb6—ap

16.2 Using GDAL VB6 Classes

To use VB6 GDAL bindings it is necessary to ensure that GDAL has been built with
appropriate C entry points exported using the "stdcall" calling convention. This is the
current default, but was not as recently as GDAL 1.2.6. So ensure you get a version
more recent than 1.2.6.

Then add the GDAL VB6 class and module files to your VB6 project. These come from
the gdal/vb6 directory and include the following key files:

* GDAL.bas - The main user visible module.

* GDALCore.bas - This module is for internal use.

http://groups.yahoo.com/group/gdal-vb6-appdev
http://svn.osgeo.org/gdal/trunk/gdal/vb6

72 GDAL VB6 Bindings Tutorial

GDALDriver.cls - The GDALDriver class.

+ GDALDataset.cls - The GDALDataset class.

GDALRasterBand.cls - The GDALRasterBand class.
+ GDALColorTable.cls - The GDALColorTable class.

+ OGRSpatialReference.cls - The OGRSpatialReference class.

OGRCoordinateTransformation.cls - The OGRCoordinateTransformation class.

You may need to edit GDALCore.bas, and change occurrences of gdal12.dll to match
what your GDAL DLL is called. You can include a full path to the DLL if it can’'t be
guaranteed to be in the current working directory of the application (or the windows
system32 directory).

You should also be able to load the "test" project from the gdal\vb6\test directory. The
test project has test menu items roughly corresponding to the tasks in the following
tutorial topics.

16.3 Tutorial - Read Dataset

This brief tutorial will demonstrate open a GDAL file, and fetching out some information,
about the dataset, and the individual bands. The results are printed to the default from
in the following example for simplicity.

Before opening the file we need to register the GDAL format drivers. Normally we will
just register all the drivers with GDALAIIRegister().

Call GDAL.AllRegister ()

Then we need to try and open the dataset. The GDAL.OpenDS() function returns a
GDALDataset object, so we dimension an appropriate object for this. GDAL.OpenDS()
is the VB6 equivalent of the GDALDataset::GDALOpen() function.

Dim ds As GDALDataset

Set ds = GDAL.OpenDS("utm.tif", GDAL.GA_ReadOnly)

Then we need to check if the open succeeded, and if not report an error.

If not ds.IsValid() Then
Call MsgBox("Open failed: " & GDAL.GetLastErrorMsg())
Exit Sub

End If

If things succeeded, we query width of the image in pixels (XSize), Height of the image
in pixels (YSize) and number of bands (BandCount) from the dataset properties.

Print "Size: " & ds.XSize & "x" & ds.¥YSize & "x" & ds.BandCount

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

16.3 Tutorial - Read Dataset 73

Next we read metadata from the dataset using the VB6 equivalent of the GDALMajorOb-
ject::GetMetadata() method, and report it to the user. Metadata is returned as an array
of strings of "name=value" items. Array indices start at zero in the returned array. The
domain argument should normally be vbNullString though in specialized circumstances
other domains might apply.

Dim MD As Variant
MD = ds.GetMetadata (vbNullString)
If (UBound(MD) > 0) Then

Print "Metadata:"

For 1 = 1 To UBound (MD)

Print " " & MD (i)

Next 1

End If

Parsing the "name=value" strings from GetMetadata() can be a bit of a bother, so if
we were looking for specific values we could use GetMetadataltem() and provide a
specific item we want to extract. This would extract just the value if it is found, or an
empty string otherwise. The GetMetadataltem() is an analog of the C++ GDALMa-
jorObject::GetMetadataltem() method.

Dim MDValue As String

MDValue = ds.GetMetadataltem("TIFF_DATETIME", vbNullString)
if MDValue <> "" Then

Print "Creation Date: " & MDValue
End If

The GDALDataset::GetGeoTransform() method is used to get fetch the affine transfor-
mation used to relate pixel/line locations on the image to georeferenced locations in the
current coordinate system. In the most common case (image is not rotated or sheared)
you can just report the origin (upper left corner) and pixel size from these values. The
method returns 0 on success or an error class if it fails, so we only use the return result
(placed into the Geotransform array) on success.

Dim Geotransform(6) As Double

If ds.GetGeoTransform(Geotransform) = 0 Then
If Geotransform(2) = 0 and Geotransform(4) = 0 Then
Print "Origin: " & Geotransform(0) & "," & Geotransform(3)
Print "Pixel Size: " & Geotransform(l) & "x" & (-1 * Geotransform(5))
End If
End If

The coordinate system can be fetched using the GDALDataset::GetProjectionRef() ana-
log, GDALDataset.GetProjection(). The returned string is in OpenGIS Well Known Text
format. A later example will show how to use an OGRSpatialReference object to refor-
mat the WKT into more readable format and make other use of it.

Dim WKT As String

WKT = ds.GetProjection()
If Len(WKT) > 0 Then

Print "Projection: " & WKT
End If

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

74 GDAL VB6 Bindings Tutorial

GDALDataset objects have one or more raster bands associated with them. GDAL-
RasterBand objects can have metadata (accessed the same as on the GDALDataset)
as well as an array of pixel values, and various specialized metadata items like data
type, color interpretation, offset/scale. Here we report a few of the items.

First we loop over all the bands, fetching a band object for each band and report the
band number, and block size.

For 1 = 1 To ds.BandCount
Dim band As GDALRasterBand

Set band = ds.GetRasterBand(i)
Print "Band " & i & " BlockSize: " & band.BlockXSize & "x" & band.BlockYSize

The GDALRasterBand has a DataType property which has the value returned by the
C++ method GDALRasterBand::GetRasterDataType(). The returned value is an inte-
ger, but may be compared to the predefined constants GDAL.GDT_Byte, GDAL.GDT_-
Uint16, GDAL.GDT_Int16, GDAL.GDT_UInt32, GDAL.GDT_Int32, GDAL.GDT_Float32,
GDAL.GDT_Float64, GDAL.GDT_CInt16, GDAL.GDT_CInt32, GDAL.GDT_CFloat32 and
GDAL.GDT_CFloaté4. In this case we use the GDAL.GetDataTypeName() method to
convert the data type into a name we can show the user.

Print " DataType=" & GDAL.GetDataTypeName (band.DataType) _

We also report the offset, scale, minimum and maximum for the band.

Print " Offset=" & band.GetOffset () & " Scale=" & band.GetScale() _
& " Min=" & band.GetMinimum() & " Max=" & band.GetMaximum /()

GDALRasterBands can also have GDALColorTable objects associated with them. They
are read with the GDALRasterBand::GetColorTable() analog in VB6. Individual RGBA
entries should be read into a 4 Integer array.

Dim ct As GDALColorTable
Set ct = band.GetColorTable ()
If ct.IsValid() Then
Dim CEntry(4) As Integer
Print " Has Color Table, " & ct.EntryCount & " entries"
For iColor = 0 To ct.EntryCount - 1
Call ct.GetColorEntryAsRGB(iColor, CEntry)
Print " " & iColor & ": " & CEntry(0) & "," & CEntry(l) & "," & CEnt
ry(2) & "," & CEntry(3)
Next iColor
End If

But of course, the most important contents of a GDAL file is the raster pixel values
themselves. The C++ GDALRasterBand::RasterlO() method is provided in a somewhat
simplified form. A predimensioned 1D or 2D array of type Byte, Int, Long, Float or
Double is passed to the RasterlO() method along with the band and window to be read.
Internally the "buffer size" and datatype is extracted from the dimensions of the passed
in buffer.

This example dimensions the RawData array to be the size of one scanline of data
(XSize x 1) and reads the first whole scanline of data from the file, but only prints out
the second and tenth values (since the buffer indexes are zero based).

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

16.4 Tutorial - Creating Files 75

Dim err As Long
Dim RawData () As Double
ReDim RawData (ds.XSize) As Double

err = band.RasterIO(GDAL.GF_Read, 0, 0, ds.XSize, 1, RawData)

if err = 0 Then
Print " Data: " & RawbData(l) & " " & RawData (9
End If

Finally, when done accessing a GDALDataset we can explicitly close it using the CloseDS()
method, or just let it fall out of scope in which case it will be closed automatically.

Call ds.CloseDS ()

16.4 Tutorial - Creating Files

Next we address creating a new file from an existing file. To create a new file, you have
to select a GDALDriver to do the creating. The GDALDriver is essentially an object
representing a file format. We fetch it with the GetDriverByName() call from the GDAL
module using the driver name.

Dim Drv As GDALDriver

Call GDAL.AllRegister

Drv = GDALCore.GetDriverByName ("GTiff")

If Not Drv.IsValid() Then
Call MsgBox("GTiff driver not found ")
Exit Sub

End If

You could get a list of registered drivers, and identify which support creation something
like this:

drvCount = GDAL.GetDriverCount

For drvIndex = 0 To drvCount - 1
Set Drv = GDAL.GetDriver (drvIndex)
If Drv.GetMetadataltem (GDAL.DCAP_CREATE, "") = "YES" _
Or Drv.GetMetadataItem (GDAL.DCAP_CREATECOPY, "") = "YES" Then
xMsg = " (Read/Write)"
Else
xMsg = " (ReadOnly)"
End If
Print Drv.GetShortName() & ": " & Drv.GetMetadataItem (GDAL.DMD_LONGNAME,
" u) & stg

Next drvIndex

Once we have the driver object, the simplest way of creating a new file is to use Cre-
ateCopy(). This tries to create a copy of the input file in the new format. A complete
segment (without any error checking) would look like the following. The CreateCopy()
method corresponds to the C++ method GDALDriver::CreateCopy(). The VB6 imple-
mentation does not support the use of progress callbacks.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

76 GDAL VB6 Bindings Tutorial

Dim Drv As GDALDriver
Dim SrcDS As GDALDataset, DstDS As GDALDataset

Call GDAL.AllRegister
Set Drv = GDALCore.GetDriverByName ("GTiff")

Set SrcDS = GDAL.Open("in.tif", GDAL.GA_ReadOnly)
Set DstDS = Drv.CreateCopy("out.tif", SrcDS, True, Nothing)

This is nice and simple, but sometimes we need to create a file with more detailed con-
trol. So, next we show how to create a file and then copy pieces of data to it "manually”.
The GDALDriver::Create() analog is Create().

Set DstDS = Drv.Create("out.tif", SrcDS.XSize, SrcDS.Y¥YSize,
SrcDS.BandCount, GDAL.GDT_Byte, Nothing)

In some cases we may want to provide some creation options, which is demonstrated
here. Creation options (like metadata set through the SetMetadata() method) are arrays
of Strings.

Dim CreateOptions(l) As String

CreateOptions (1) = "PHOTOMETRIC=MINISWHITE"
Set DstDS = Drv.Create("out.tif", SrcDS.XSize, SrcDS.YSize, _
SrcDS.BandCount, GDAL.GDT_Byte, CreateOptions)

When copying the GeoTransform, we take care to check that reading the geotransform
actually worked. Most methods which return CPLErr in C++ also return it in VB6. A
return value of 0 will indicate success, and non-zero is failure.

Dim err As Long
Dim gt (6) As Double

err = SrcDS.GetGeoTransform(gt)
If err = 0 Then

Call DstDS.SetGeoTransform(gt)
End If

Copy the projection. Even if GetProjection() fails we get an empty string which is safe
enough to set on the target. Similarly for metadata.

Call DstDS.SetProjection (SrcDS.GetProjection())
Call DstDS.SetMetadata (SrcDS.GetMetadata (""), "")

Next we loop, processing bands, and copy some common data items.

For iBand = 1 To SrcDS.BandCount
Dim SrcBand As GDALRasterBand, DstBand As GDALRasterBand

Set SrcBand SrcDS.GetRasterBand (iBand)
Set DstBand = DstDS.GetRasterBand (iBand)

Call DstBand.SetMetadata (SrcBand.GetMetadata (""), "")
Call DstBand.SetOffset (SrcBand.GetOffset ())

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

16.5 Tutorial - Coordinate Systems and Reprojection 77

Call DstBand.SetScale (SrcBand.GetScale())
Dim NoDataValue As Double, Success As Long

NoDataValue = SrcBand.GetNoDataValue (Success)
If Success <> 0 Then

Call DstBand.SetNoDataValue (NoDataValue)
End If

Then, if one is available, we copy the palette.

Dim ct As GDALColorTable
Set ct = SrcBand.GetColorTable ()
If ct.IsValid() Then
err = DstBand.SetColorTable (ct)
End If

Finally, the meat and potatoes. We copy the image data. We do this one scanline at a
time so that we can support very large images without require large amounts of RAM.
Here we use a Double buffer for the scanline, but if we knew in advance the type of
the image, we could dimension a buffer of the appropriate type. The RasterlO() method
internally knows how to convert pixel data types, so using Double ensures all data types
(except for complex) are properly preserved, though at the cost of some extra data
conversion internally.

Dim Scanline() As Double, iLine As Long
ReDim Scanline (SrcDS.XSize) As Double

’ Copy band raster data.
For iLine = 0 To SrcDS.YSize - 1
Call SrcBand.RasterIO(GDAL.GF_Read, 0, iLine, SrcDS.XSize, 1,
Scanline)
Call DstBand.RasterIO(GDAL.GF_Write, 0, iLine, SrcDS.XSize, 1,
Scanline)

Next iLine

16.5 Tutorial - Coordinate Systems and Reprojection

The GDAL VB6 bindings also include limited support for use of the OGRSpatialRef-
erence and OGRCoordinateTransformation classes. The OGRSpatialReference repre-
sents a coordinate system and can be used to parse, manipulate and form WKT strings,
such as those returned by the GDALDataset.GetProjection() method. The OGRCoor-
dinateTransformation class provides a way of reprojecting between two coordinate sys-
tems.

The following example shows how to report the corners of an image in georeferenced
and geographic (lat/long) coordinates. First, we open the file, and read the geotrans-
form.

Dim ds As GDALDataset

Call GDALCore.GDALAllRegister
Set ds = GDAL.OpenDS (FileDlg.Filename, GDAL.GA_ReadOnly)

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

78 GDAL VB6 Bindings Tutorial

If ds.IsValid() Then
Dim Geotransform(6) As Double

Call ds.GetGeoTransform(Geotransform)

Next, we fetch the coordinate system, and if it is non-empty we try to instantiate an
OGRSpatialReference from it.

! report projection in pretty format.

Dim WKT As String

Dim srs As New OGRSpatialReference

Dim latlong_srs As OGRSpatialReference
Dim ct As New OGRCoordinateTransformation

WKT = ds.GetProjection()
If Len (WKT) > 0 Then
Print "Projection: "
Call srs.SetFromUserInput (WKT)

If the coordinate system is projected it will have a PROJECTION node. In that case we
build a new coordinate system which is the corresponding geographic coordinate sys-
tem. So for instance if the "srs" was UTM 11 WGS84 then it’s corresponding geographic
coordinate system would just be WGS84. Once we have these two coordinate systems,
we build a transformer to convert between them.

If srs.GetAttrValue ("PROJECTION", 0) <> "" Then
Set latlong_srs = srs.CloneGeogCS ()
Set ct = GDAL.CreateCoordinateTransformation(srs, latlong_srs)
End If
End If

Next we call a helper function to report each corner, and the center. We pass in the
name of the corner, the pixel/line location at the corner, and the geotransform and trans-
former object.

Call ReportCorner ("Top Left ", 0, 0, _
Geotransform, ct)

Call ReportCorner ("Top Right ", ds.XSize, 0, _
Geotransform, ct)

Call ReportCorner ("Bottom Left ", 0, ds.YSize,

Geotransform, ct)

Call ReportCorner ("Bottom Right ", ds.XSize, ds.YSize,
Geotransform, ct)

Call ReportCorner ("Center ", ds.XSize / 2#, ds.¥YSize / 2#,
Geotransform, ct)

The ReportCorner subroutine starts by computing the corresponding georeferenced x
and y location using the pixel/line coordinates and the geotransform.

Private Sub ReportCorner (CornerName As String, pixel As Double, line As Double,
gt () As Double, ct As OGRCoordinateTransformation)

Dim geox As Double, geoy As Double

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

16.5 Tutorial - Coordinate Systems and Reprojection 79

geox = gt (0) + pixel % gt(l) + line x gt (2)
geoy = gt (3) + pixel % gt(4) + line * gt (5)

Next, if we have a transformer, we use it to compute a corresponding latitude and longi-
tude.

Dim longitude As Double, latitude As Double, Z As Double
Dim latlong_valid As Boolean

latlong_valid = False

If ct.IsValid() Then

Z =0

longitude = geox

latitude = geoy

latlong_valid = ct.TransformOne (longitude, latitude, Z)
End If

Then we report the corner location in georeferenced, and if we have it geographic coor-
dinates.

If latlong_valid Then

Print CornerName & geox & "," & geoy & " " & longitude & "," & latitud
e
Else
Print CornerName & geox & "," & geoy
End If

End Sub

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

80

GDAL VB6 Bindings Tutorial

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 17

GDAL Warp API Tutorial

17.1 Overview

The GDAL Warp API (declared in gdalwarper.h) provides services for high performance
image warping using application provided geometric transformation functions (GDAL-
TransformerFunc), a variety of resampling kernels, and various masking options. Files
much larger than can be held in memory can be warped.

This tutorial demonstrates how to implement an application using the Warp APL. It as-
sumes implementation in C++ as C and Python bindings are incomplete for the Warp
API. It also assumes familiarity with the GDAL, Data Model, and the general GDAL
API.

Applications normally perform a warp by initializing a GDALWarpOptions structure with
the options to be utilized, instantiating a GDALWarpOperation based on these options,
and then invoking the GDALWarpOperation::ChunkAndWarplmage() method to perform
the warp options internally using the GDALWarpKernel class.

17.2 A Simple Reprojection Case

First we will construct a relatively simple example for reprojecting an image, assuming
an appropriate output file already exists, and with minimal error checking.
#include "gdalwarper.h"
int main ()
{ GDALDatasetH hSrcDS, hDstDS;
// Open input and output files.

GDALAllRegister();

hSrcDS
hDstDS

GDALOpen("in.tif", GA_ReadOnly);
GDALOpen("out.tif", GA_Update);

file:gdal_datamodel.html

82 GDAL Warp API Tutorial

// Setup warp options.

GDALWarpOptions xpsWarpOptions = GDALCreateWarpOptions();

psWarpOptions->hSrcDS = hSrcDS;
psWarpOptions—>hDstDS = hDstDS;

psWarpOptions->nBandCount = 1;
psWarpOptions->panSrcBands =

(int *) CPLMalloc(sizeof (int) % psWarpOptions->nBandCount);
psWarpOptions->panSrcBands[0] = 1;
psWarpOptions->panDstBands =

(int %) CPLMalloc(sizeof (int) % psWarpOptions—->nBandCount);
psWarpOptions->panDstBands[0] = 1;

psWarpOptions->pfnProgress = GDALTermProgress;
// Establish reprojection transformer.

psWarpOptions->pTransformerArg =
GDALCreateGenImgProjTransformer (hSrcDS,
GDALGetProjectionRef (hSrcDS),
hDstDS,
GDALGetProjectionRef (hDstDS),
FALSE, 0.0, 1);
psWarpOptions->pfnTransformer = GDALGenImgProjTransform;

// Initialize and execute the warp operation.
GDALWarpOperation oOperation;

oOperation.Initialize(psWarpOptions);
oOperation.ChunkAndWarpImage (0, O,
GDALGetRasterXSize (hDstDS),
GDALGetRasterYSize (hDstDS));

GDALDestroyGenImgProjTransformer (psWarpOptions->pTransformerArg);
GDALDestroyWarpOptions (psWarpOptions);

GDALClose (hDstDS);
GDALClose(hSrcDS);

return 0;

This example opens the existing input and output files (in.tif and out.tif). A GDALWar-
pOptions structure is allocated (GDALCreateWarpOptions() sets lots of sensible de-
faults for stuff, always use it for defaulting things), and the input and output file handles,
and band lists are set. The panSrcBands and panDstBands lists are dynamically allo-
cated here and will be free automatically by GDALDestroyWarpOptions(). The simple
terminal output progress monitor (GDALTermProgress) is installed for reporting comple-
tion progress to the user.

GDALCreateGenlmgProjTransformer() is used to initialize the reprojection transforma-
tion between the source and destination images. We assume that they already have
reasonable bounds and coordinate systems set. Use of GCPs is disabled.

Once the options structure is ready, a GDALWarpOperation is instantiated using them,
and the warp actually performed with GDALWarpOperation::ChunkAndWarplmage().

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

17.3 Other Warping Options 83

Then the transformer, warp options and datasets are cleaned up.

Normally error check would be needed after opening files, setting up the reprojection
transformer (returns NULL on failure), and initializing the warp.

17.3 Other Warping Options

The GDALWarpOptions structures contains a number of items that can be set to control
warping behavior. A few of particular interest are:

1. GDALWarpOptions::dfWarpMemoryLimit - Set the maximum amount of memory
to be used by the GDALWarpOperation when selecting a size of image chunk
to operate on. The value is in bytes, and the default is likely to be conservative
(small). Increasing the chunk size can help substantially in some situations but
care should be taken to ensure that this size, plus the GDAL cache size plus the
working set of GDAL, your application and the operating system are less than the
size of RAM or else excessive swapping is likely to interfere with performance.
On a system with 256MB of RAM, a value of at least 64MB (roughly 64000000
bytes) is reasonable. Note that this value does not include the memory used by
GDAL for low level block caching.

2. GDALWarpOpations::eResampleAlg - One of GRA_NearestNeighbour (the de-
fault, and fastest), GRA_Bilinear (2x2 bilinear resampling) or GRA_Cubic. The
GRA_NearestNeighbour type should generally be used for thematic or colormapped
images. The other resampling types may give better results for thematic images,
especially when substantially changing resolution.

3. GDALWarpOptions::padfSrcNoDataReal - This array (one entry per band being
processed) may be setup with a "nodata" value for each band if you wish to avoid
having pixels of some background value copied to the destination image.

4. GDALWarpOptions::papszWarpOptions - This is a string list of NAME=VALUE
options passed to the warper. See the GDALWarpOptions::papszWarpOptions
docs for all options. Supported values include:

* INIT_DEST=[value] or INIT_DEST=NO_DATA: This option forces the des-
tination image to be initialized to the indicated value (for all bands) or in-
dicates that it should be initialized to the NO_DATA value in padfDstNo-
DataReal/padfDstNoDatalmag. If this value isn’t set the destination image
will be read and the source warp overlayed on it.

* WRITE_FLUSH=YES/NO: This option forces a flush to disk of data after
each chunk is processed. In some cases this helps ensure a serial writing
of the output data otherwise a block of data may be written to disk each time
a block of data is read for the input buffer resulting in a lot of extra seeking
around the disk, and reduced 10 throughput. The default at this time is NO.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

84 GDAL Warp API Tutorial

17.4 Creating the Output File

In the previous case an appropriate output file was already assumed to exist. Now we
will go through a case where a new file with appropriate bounds in a new coordinate
system is created. This operation doesn’t relate specifically to the warp API. It is just
using the transformation API.

#include "gdalwarper.h"
#include "ogr_spatialref.h"

GDALDriverH hDriver;
GDALDataType eDT;
GDALDatasetH hDstDS;
GDALDatasetH hSrcDS;

// Open the source file.

hSrcDS = GDALOpen("in.tif", GA_ReadOnly);
CPLAssert (hSrcDS != NULL);

// Create output with same datatype as first input band.
eDT = GDALGetRasterDataType (GDALGetRasterBand (hSrcDS,1));
// Get output driver (GeoTIFF format)

hDriver = GDALGetDriverByName ("GTiff");
CPLAssert (hDriver != NULL);

// Get Source coordinate system.
const char xpszSrcWKT, xpszDstWKT = NULL;

pszSrcWKT = GDALGetProjectionRef (hSrcDS);
CPLAssert (pszSrcWKT != NULL && strlen(pszSrcWKT) > 0);

// Setup output coordinate system that is UTM 11 WGS84.
OGRSpatialReference oSRS;

OoSRS.SetUTM(11, TRUE);
OSRS.SetWellKnownGeogCS ("WGS84");

OSRS.exportToWkt (&pszDStWKT) ;

// Create a transformer that maps from source pixel/line coordinates
// to destination georeferenced coordinates (not destination

// pixel line). We do that by omitting the destination dataset

// handle (setting it to NULL) .

void xhTransformArg;
hTransformArg =
GDALCreateGenImgProjTransformer (hSrcDS, pszSrcWKT, NULL, pszDstWKT,
FALSE, 0, 1);
CPLAssert (hTransformArg != NULL);

// Get approximate output georeferenced bounds and resolution for file.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

17.4 Creating the Output File 85

double adfDstGeoTransform([6];
int nPixels=0, nLines=0;
CPLErr eErr;

eErr = GDALSuggestedWarpOutput (hSrcDS,
GDALGenImgProjTransform, hTransformArg,
adfDstGeoTransform, &nPixels, &nLines);
CPLAssert (eErr == CE_None);

GDALDestroyGenImgProjTransformer (hTransformArg);
// Create the output file.

hDstDS = GDALCreate(hDriver, "out.tif", nPixels, nLines,
GDALGetRasterCount (hSrcDS), eDT, NULL);

CPLAssert (hDstDS != NULL);
// Write out the projection definition.

GDALSetProjection(hDstDS, pszDstWKT);
GDALSetGeoTransform(hDstDS, adfDstGeoTransform);

// Copy the color table, if required.
GDALColorTableH hCT;

hCT = GDALGetRasterColorTable (GDALGetRasterBand(hSrcDS,1));
if (hCT != NULL)
GDALSetRasterColorTable (GDALGetRasterBand (hDstDS,1), hCT);

proceed with warp as before

Some notes on this logic:

* We need to create the transformer to output coordinates such that the output of
the transformer is georeferenced, not pixel line coordinates since we use the
transformer to map pixels around the source image into destination georefer-
enced coordinates.

» The GDALSuggestedWarpOutput() function will return an adfDstGeoTransform,
nPixels and nLines that describes an output image size and georeferenced ex-
tents that should hold all pixels from the source image. The resolution is intended
to be comparable to the source, but the output pixels are always square regard-
less of the shape of input pixels.

« The warper requires an output file in a format that can be "randomly" written to.
This generally limits things to uncompressed formats that have an implementation
of the Create() method (as opposed to CreateCopy()). To warp to compressed
formats, or CreateCopy() style formats it is necessary to produce a full temporary
copy of the image in a better behaved format, and then CreateCopy() it to the
desired final format.

« The Warp API copies only pixels. All colormaps, georeferencing and other meta-
data must be copied to the destination by the application.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

86 GDAL Warp API Tutorial

17.5 Performance Optimization

There are a number of things that can be done to optimize the performance of the warp
API.

1. Increase the amount of memory available for the Warp API chunking so that larger
chunks can be operated on at atime. This is the GDALWarpOptions::dfWarpMemoryLimit
parameter. In theory the larger the chunk size operated on the more efficient the
1/O strategy, and the more efficient the approximated transformation will be. How-
ever, the sum of the warp memory and the GDAL cache should be less than RAM
size, likely around 2/3 of RAM size.

2. Increase the amount of memory for GDAL caching. This is especially important
when working with very large input and output images that are scanline oriented.
If all the input or output scanlines have to be re-read for each chunk they inter-
sect performance may degrade greatly. Use GDALSetCacheMax() to control the
amount of memory available for caching within GDAL.

3. Use an approximated transformation instead of exact reprojection for each pixel to
be transformed. This code illustrates how an approximated transformation could
be created based on a reprojection transformation, but with a given error thresh-
old (dfErrorThreshold in output pixels).

hTransformArg =
GDALCreateApproxTransformer (GDALGenImgProjTransform,
hGenImgProjArg, dfErrorThreshold);
pfnTransformer = GDALApproxTransform;

4. When writing to a blank output file, use the INIT_DEST option in the GDALWar-
pOptions::papszWarpOptions to cause the output chunks to be initialized to a
fixed value, instead of being read from the output. This can substantially reduce
unnecessary 10 work.

5. Use tiled input and output formats. Tiled formats allow a given chunk of source
and destination imagery to be accessed without having to touch a great deal of
extra image data. Large scanline oriented files can result in a great deal of wasted
extra 10.

6. Process all bands in one call. This ensures the transformation calculations don’t
have to be performed for each band.

7. Use the GDALWarpOperation::ChunkAndWarpMulti() method instead of GDAL-
WarpOperation::ChunkAndWarplmage(). It uses a separate thread for the 10
and the actual image warp operation allowing more effective use of CPU and 10
bandwidth. For this to work GDAL needs to have been built with multi-threading
support (default on Win32, --with-pthreads on Unix).

8. The resampling kernels vary is work required from nearest neighbour being least,
then bilinear then cubic. Don’t use a more complex resampling kernel than
needed.

9. Avoid use of esoteric masking options so that special simplified logic case be
used for common special cases. For instance, nearest neighbour resampling
with no masking on 8bit data is highly optimized compared to the general case.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

17.6 Other Masking Options 87

17.6 Other Masking Options

The GDALWarpOptions include a bunch of esoteric masking capabilities, for validity
masks, and density masks on input and output. Some of these are not yet implemented
and others are implemented but poorly tested. Other than per-band validity masks it is
advised that these features be used with caution at this time.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

88

GDAL Warp API Tutorial

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 18

GDAL for Windows CE

Overview

Features

Supported Platforms

Content of 'wince’ directory

Building GDAL for Windows CE using Microsoft Visual C++ 2005
Enable PROJ.4 support

wince_building_geos

How can | help?

Warning

xxx Currently, GDAL port for Windows CE platform is not actively maintained. If
you are interested in providing patches or taking over this project, please write to
gdal-dev@lists.maptools.org mailing list. **x*

18.1 Overview

This document is devoted to give some overview of the GDAL port for Windows CE
operating system.

18.2 Features

Currently, from version 1 . 4 . 0, GDAL includes following features for Windows CE plat-
form:

» CPL library
* GDAL and OGR core API

http://lists.osgeo.org/mailman/listinfo/gdal-dev/
http://en.wikipedia.org/wiki/Windows_CE
http://www.gdal.org/dl/gdal140.zip

90 GDAL for Windows CE

GDAL drivers:

— AAIGrid
— DTED

— GeoTIFF

OGR drivers:

Generic

- CSV

- MITAB

ESRI Shapefile
+ Unit Test suite (gdalautotest/cpp)
 Optional PROJ . 4 support

 Optional GEOS support

18.3 Supported Platforms
GDAL for Windows CE has been tested on following versions of Windows CE:

» Windows CE 3.x
— Pocket PC 2002
* Windows CE 4.x
— Windows Mobile 2003
* Windows CE 5.x
— Windows Mobile 5
— customized versions of Windows CE 5.0

Supported compilers for Windows CE operating system:

* Microsoft Visual C++ 2005 Standard, Professional or Team Suite Edition

» Microsoft eMbedded Visual C++ 4.0

Note
Currently, no project files provided for eVC++ 4.0 IDE

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://www.gdal.org/frmt_various.html#AAIGrid
http://www.gdal.org/frmt_dted.html
http://www.gdal.org/frmt_gtiff.html
http://www.gdal.org/ogr/drv_csv.html
http://www.gdal.org/ogr/drv_mitab.html
http://www.gdal.org/ogr/drv_shapefile.html
http://proj.maptools.org/
http://geos.refractions.net/

18.4 Content of ‘wince’ directory 91

18.4 Content of 'wince’ directory

Note

Due to problems with removing directories from CVS and missed synchronization
of RC branch, the 'wince’ directory includes a few deprecated project files (see
below).

Please DON’T USE them, unless you want to fix them yourself.

Active content:

» msvc80 - project for Visual C++ 2005 to build GDAL DLL for Windows CE
+ README - the file you're currently reading

» TODO - planned and requested features

Deprecated

Following directories and projects are deprecated. DON'T USE THEM!

» evcd_gdalce_dli

» evcd_gdalce_dll_test
» evcd_gdalce_lib

» evc4_gdalce_lib_test
* msvc8_gdalce_lib

» msvc8_gdalce_lib_test
« wce_test dll

« wce_test_lib

« wcelibcex

18.5 Building GDAL for Windows CE using Microsoft Visual C++
2005

1. Requirements

* You need to have installed Visual C++ 2005 Standard, Professional or Team
Suite Edition.

* You also need to have installed at least one SDK for Windows CE platform:
— Windows Mobile 2003 Pocket PC SDK
— Windows Mobile 2003 SmartphoneSDK
— Windows Mobile 5.0 Pocket PC SDK

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

GDAL for Windows CE

— Windows Mobile 5.0 Smartphone SDK

» Last requirement is the Run-time Type Information library
for the Pocket PC 2003 SDK

2. External dependencies

There is only one external dependency required to build GDAL for Windows CE.
This dependency is WCELIRCEX library available to download from:

http://sourceforge.net/projects/wcelibcex

You can download latest release - wcelibcex—1.0 - or checkout sources di-
rectly form SVN. In both cases, you will be provided with project file for Visual
C++ 2005.

Note

WCELIBCEX is built to Static Library. For details, check README.txt file
form the package.

3. Download GDAL 1.4.0 release or directly from CVS

Gotohttp://www.gdal.org/download.html and download ZIP pack-
age with GDAL 1.4.0. You can also checkout sources directly from SVN.

For this guidelines, | assume following directories structure:

C:\dev\gdal-1.4.0
C:\dev\wcelibcex—-1.0

4. Projects configuration

(a) Open gdalce_dll.sIn project in Visual C++ 2005 IDE
According to the paths presented in step 3, you should load following £i1e:

C:\dev\gdal-1.4.0\wince\msvc80\gdalce_dll\gdalce_dll.sln

(b) Add WCELIBCEX project to gdalce_dll.sIn solution
Go to File -> Add -> Existing Project, navigage and open following £ile:

C:\dev\wcelibcex—-1.0\msvc80\wcelibcex_lib.vcproj

(c) Configure path to WCELIBCEX source:

+ Go to View -> Property Manager to open property manager window

» Expand tree below gdalce_dll -> Debug -> gdalce_common

* Right-click on gdalce_common and select Properties

* In Property Pages dialog, under Common Properties, go to User Macros

* In macros list, double-click on macro named as WCELIBCEX_DIR
+ According paths assumed in step 3, change the macro value to:
C:\dev\wcelibcex—-1.0\src

+ Click OK to apply changes and close the dialog
(d) Configure wcelibcex_lib.veproj as a dependency for gdalce_dll.vcproj

+ Select gdalce_dll project in Solution Explorer
» Go to Project -> Project Dependencies

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://support.microsoft.com/default.aspx?scid=kb;[LN];830482
http://support.microsoft.com/default.aspx?scid=kb;[LN];830482
http://wcelibcex.sourceforge.net
http://sourceforge.net/projects/wcelibcex
http://sourceforge.net/project/showfiles.php?group_id=160411&package_id=180452&release_id=476819
http://www.gdal.org/download.html

18.5 Building GDAL for Windows CE using Microsoft Visual C++ 2005 93

+ In the 'Depends on:’ pane, select checkbox next to wcelibcex_lib
+ Click OK to apply and close

5. Ready to build GDAL for Windows CE
Go to Build and select Build Solution

After a few minutes, you should see GDAL DLL ready to use. For example, when
Pocket PC 2003 SDK is used and Debug configuration requested, all output files
are located under this path:

C:\dev\gdal-1.4.0\wince\msvc80\gdalce_dll\Pocket PC 2003 (ARMV4)\Debug

There, you will find following binaries:

+ gdalce.dll - dymamic-link library
» gdalce_i.lib - import library

18.5.1 Enable PROJ.4 support

PROJ.4 support is optional.

In the CVS repository of PROJ.4, there are available project files for Visual C++ 2005
for Windows CE.

It is recommended to read README.txt file from wince\msvc80 directory in PROJ.4
sources tree. There, you will find instructions how to build PROJ.4 without attaching its
project to gdalce_dll.sIn. Then you can just add proj.dil and proj_i.lib to linker settings
of gdalce_dll.vcproj project.

Below, you can find instructions how to add projce_dll.vcproj project directly to gdalce_-
dll.sIn and build everything together.

1. Go to http://proj.maptools.org and learn how to checkout PROJ.4
source from the CVS

2. Checkout sources to prefered location, for example:

C:\dev\proj

3. Add projce_dll.vcproj project to gdalce_dll.sIn solution
Go to File -> Add -> Existing Project, navigage and open following £ile:

C:\dev\proj\wince\msvc80\projce_dll\projce_dll.vcproj

4. Open Property Manager as described here, open Property Page for gdalce_-
common, and edit macro named as PROJ_DIR.
Change value of the PROJ_DIR macro to:

C:\dev\proj

Don't close the Property Manager yet.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://proj.maptools.org

GDAL for Windows CE

5. Configure path to WCELIBCEX source:

+ Go to View -> Property Manager to open property manager window

» Expand tree below projce_dll -> Debug -> projce_common

* Right-click on projce_common and select Properties

* In Property Pages dialog, under Common Properties, go to User Macros

* In macros list, double-click on macro named as WCELIBCEX_DIR
» According paths assumed in step 3, change the macro value to:

C:\dev\wcelibcex-1.0\src

+ Click OK to apply changes and close the dialog

6. Follow instructions explained here and add projce_dll.vcproj as a dependency

for gdalce_dIl.vcproj

. Update proj_config.h file:

Go to C:\dev\proj\ src and rename proj_config.h.wince to proj_config.h.

. Ready to build GDAL for Windows CE
Go to Build and select Build Solution

Similarly to explanation above in step 5 for GDAL, binaries for PROJ.4 for Win-
dows CE can be found here:

C:\dev\proj\wince\msvc80\projce_dll\Pocket PC 2003 (ARMV4)\Debug

There, you can find following binaries:
« proj.dll - dymamic-link library
« proj_i.lib - import library

Note

PROJ.4 binaries for Windows CE do not include 'ce’ in names. This is due the
fact GDAL uses fixed proj.dll name to find and link dynamically with PROJ.4
DLL.

. After all, put proj.dil to the same directory on device where you copied gdalce.dll
and your application which uses GDAL.

18.6 How can | help?

I'd like to encourage everyone interested in using GDAL on Windows CE devices to help
in its development. Here is a list of what you can do as a contribution to the project:

* You can build GDAL for Windows CE and report problems if you will meet any

* You can try to build new OGR drivers

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

18.6 How can | help? 95

* You can test GDAL/OGR on different Windows CE devices

* You can write sample applications using GDAL/OGR and announce them on the
GDAL mailing list

« If you have found a bug or something is not working on the Windows CE, please
report it on the GDAL’ s Bugzilla
There is also wince\ TODO file where you can find list of things we are going to do.

If you have any comments or questions, please sentthemto gdal—-dev@lists.maptools.org
mailing list.

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

http://lists.maptools.org/mailman/listinfo/gdal-dev/
http://bugzilla.remotesensing.org
http://lists.osgeo.org/mailman/listinfo/gdal-dev/

96

GDAL for Windows CE

Generated on Mon Jun 20 2011 17:27:08 by Doxygen

Chapter 19

Deprecated List

Page GDAL for Windows CE Following directories and projects are deprecated. DON’T
USE THEM!

