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On the CD:
Full documentation 
concerning the Fann li-
brary (the fi les includ-
ing source code as well 
as the Fann library ver-
sion) can be found on 
the CD.

Neural Networks Made Simple

For years, the Hollywood science fi ction fi lms 
such as I, Robot have portrayed an artifi cial in-I, Robot have portrayed an artifi cial in-I, Robot
telligence (AI) as a harbinger of Armageddon. 

Nothing, however, could be farther from the truth. While 
Hollywood regales us with horror stories of our immi-
nent demise, people with no interest in the extinction of 
our species have been harnessing AI to make our lives 
easier, more productive, longer and generally better.

The robots in the I, Robot fi lm have an artifi cial I, Robot fi lm have an artifi cial I, Robot
brain based on a network of artifi cial neurons; this arti-
fi cial neural network (ANN) is built to model the human 
brain's own neural network. The Fast Artifi cial Neural 
Network (FANN) library is an ANN library, which can 
be used from C, C++, PHP, Python, Delphi and Mathe-
matica and although, it cannot create Hollywood magic, 
it is still a powerful tool for software developers. ANNs 
can be used in areas as diverse as creating more ap-
pealing game-play in computer games, identify-
ing objects in images and helping the stock brokers 
predict trends of the ever-changing stock market.

Function approximation
ANNs apply the principle of function approximation 
by example, meaning that they learn a function by 
looking at examples of this function. One of the sim-
plest examples is an ANN learning the XOR function, 
but it could just as easily be learning to determine 
the language of a text, or whether there is a tumour 
visible in an X-ray image.

If an ANN is to be able to learn a problem, it must 
be defi ned as a function with a set of input and out-
put variables supported by examples of how this 
function should work. A problem like the XOR func-
tion is already defi ned as a function with two bina-
ry input variables and a binary output variable, and 
with the examples which are defi ned by the results of 
four different input patterns. However, there are more 
complicated problems which can be more diffi cult 
to defi ne as functions. The input variables to the 
problem of fi nding a tumour in an X-ray image could 
be the pixel values of the image, but they could also 
be some values extracted from the image. The out-
put could then either be a binary value or a fl oating-

point value representing the probability of a tumour 
in the image. In ANNs this fl oating-point value would 
normally be between 0 and 1, inclusive.

The human brain
A function approximator like an ANN can be viewed 
as a black box and when it comes to FANN, this is 
more or less all you will need to know. However, ba-
sic knowledge of how the human brain operates is 
needed to understand how ANNs work.

The human brain is a highly complicated system 
which is capable to solve very complex problems. The 
brain consists of many different elements, but one 
of its most important building blocks is the neuron, 
of which it contains approximately 1011. These neu-
rons are connected by around 1015 connections, cre-
ating a huge neural network. Neurons send impulses 
to each other through the connections and these im-
pulses make the brain work. The neural network also 
receives impulses from the fi ve senses and sends out 
impulses to muscles to achieve motion or speech.

The individual neuron can be seen as an input-
output machine which waits for impulses from the sur-
rounding neurons and, when it has received enough 
impulses, it sends out an impulse to other neurons.

Artifi cial Neural Networks
Artifi cial neurons are similar to their biological counter-
parts. They have input connections which are summed 
together to determine the strength of their output, which 
is the result of the sum being fed into an activation func-
tion. Though many activation functions exist, the most 
common is the sigmoid activation function, which out-
puts a number between 0 (for low input values) and 
1 (for high input values). The resultant of this func-
tion is then passed as the input to other neurons 
through more connections, each of which are weighted. 
These weights determine the behaviour of the network.

Steffen Nissen

Steffen Nissen is a Computer Scientist from Denmark. 
He has created and actively maintained the FANN li-
brary, while the others maintain the bindings for oth-
er languages. He is also the author of technical report 
covering the creation of FANN library, Implementation of 
a Fast Artifi cial Neural Network Library (fann).
Contact the author: lukesky@diku.dk

Figure 1. An ANN with four input neurons, a hidden 
layer and four output neurons
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In the human brain the neurons are connected in a seem-
ingly random order and send impulses asynchronously. If we 
wanted to model a brain this might be the way to organise an 
ANN, but since we primarily want to create a function approxi-
mator, ANNs are usually not organised like this.

When we create ANNs, the neurons are usually ordered in 
layers with connections going between the layers. The fi rst layer 
contains the input neurons and the last layer contains the output 
neurons. These input and output neurons represent the input 
and output variables of the function that we want to approximate. 
Between the input and the output layer a number of hidden lay-
ers exist and the connections (and weights) to and from these 
hidden layers determine how well the ANN performs. When 
an ANN is learning to approximate a function, it is shown exam-
ples of how the function works and the internal weights in the 
ANN are slowly adjusted so as to produce the same output as in 
the examples. The hope is that when the ANN is shown a new 
set of input variables, it will give a correct output. Therefore, if an 
ANN is expected to learn to spot a tumour in an X-ray image, it 
will be shown many X-ray images containing tumours, and many 
X-ray images containing healthy tissues. After a period of training 
with these images, the weights in the ANN should hopefully con-
tain information which will allow it to positively identify tumours 
in X-ray images that it has not seen during the training.

A FANN library tutorial
The Internet has made global communication a part of many 
people's lives, but it has also given rise to the problem that ev-
eryone does not speak the same language. Translation tools 
can help bridge this gap, but in order for such tools to work 
they need to know in what language a passage of text is writ-
ten. One way to determine this is by examining the frequency 
of letters occurring in a text. While this seems like a very na-
ïve approach to language detection, it has proven to be very 
effective. For many European languages it is enough to look 
at the frequencies of the letters A to Z, even though some 
languages also use other letters as well. Easily enough, the 

Listing 1. Program that calculates the frequencies of the 
letters A-Z in a text fi le

#include <vector>

#include <fstream>

#include <iostream>

#include <ctype.h>

void error(const char* p, const char* p2 = "")

{

   std::cerr << p << ' ' << p2 << std::endl;

   std::exit(1);

}

void generate_frequencies(const char *fi lename,

   fl oat *frequencies)

{

   std::ifstream infi le(fi lename);

   if(!infi le) error("Cannot open input fi le", fi lename);

   std::vector<unsigned int> letter_count(26, 0);

   unsigned int num_characters = 0;

   char c;

   while(infi le.get(c)){

      c = tolower(c);

      if(c >= 'a' && c <= 'z'){

         letter_count[c - 'a']++;

         num_characters++;

      }

   }

   if(!infi le.eof()) error("Something strange happened");

   for(unsigned int i = 0; i != 26; i++){

      frequencies[i] =

         letter_count[i]/(double)num_characters;

   }

}

int main(int argc, char* argv[])

{

   if(argc != 2) error("Remember to specify an input fi le");

   fl oat frequencies[26];

   generate_frequencies(argv[1], frequencies);

   for(unsigned int i = 0; i != 26; i++){

      std::cout << frequencies[i] << ' ';

   }

   std::cout << std::endl;

   return 0;

}

Listing 2. The fi rst part of the training fi le with character 
frequencies for English, French and Polish, the fi rst line 
is a header telling that there are 12 training patterns 
consisting of 26 inputs and 3 outputs.

12 26 3

0.103 0.016 0.054 0.060 0.113 0.010 0.010 0.048 0.056 

0.003 0.010 0.035 0.014 0.065 0.075 0.013 0.000 0.051 

0.083 0.111 0.030 0.008 0.019 0.000 0.016 0.000

1 0 0

0.076 0.010 0.022 0.039 0.151 0.013 0.009 0.009 0.081 

0.001 0.000 0.058 0.024 0.074 0.061 0.030 0.011 0.069 

0.100 0.074 0.059 0.015 0.000 0.009 0.003 0.003

0 1 0

0.088 0.016 0.030 0.034 0.089 0.004 0.011 0.023 0.071 

0.032 0.030 0.025 0.047 0.058 0.093 0.040 0.000 0.062 

0.044 0.035 0.039 0.002 0.044 0.000 0.037 0.046

0 0 1

...
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FANN library can be used to make a small program that deter-
mines the language of a text fi le. The ANN used should have 
an input neuron for each of the 26 letters, and an output neu-
ron for each of the languages. But fi rst, a small program must 
be made measuring the frequency of the letters in a text fi le.

Listing 1 will generate letter frequencies for a fi le and out-
put them in a format that can be used to generate a training 
fi le for the FANN library. Training fi les for the FANN library 
must consist of a line containing the input values, followed by 
a line containing the output values. If we wish to distinguish 
between three different languages (English, French and Pol-
ish), we could choose to represent this by allocating one out-
put variable with a value of 0 for English, 0.5 for French and 1 
for Polish. Neural networks are, however, known to perform 
better if an output variable is allocated for each language, and 
that it is set to 1 for the correct language and 0 otherwise.

With this small program at hand, a training fi le containing 
letter frequencies can be generated for texts written in the dif-
ferent languages. The ANN will of course be better at distin-
guishing the languages if frequencies for many different texts 
are available in the training fi le, but for this small example, 
3-4 texts in each language should be enough. Listing 2 shows 
a pre-generated training fi le using 4 text fi les for each of the 
three languages and Figure 2 shows a graphical representa-
tion of the frequencies in the fi le. A thorough inspection of this 
fi le shows clear trends: English has more H's than the other two 
languages, French has almost no K's and Polish has more W's 
and Z's than the other languages. The training fi le only uses let-
ters in the A to Z range, but since a language like Polish use let-
ters like Ł, Ą and Ę which are not used in the other two languag-
es, a more precise ANN could be made by adding input neu-
rons for these letters as well. When only comparing three lan-
guages, there is, however, no need for these added letters since 
the remaining letters contain enough information to classify the 
languages correctly, but if the ANN were to classify hundreds of 
different languages, more letters would be required.

With a training fi le like this it is very easy to create a pro-
gram using FANN which can be used to train an ANN to distin-

guish between the three languages. Listing 2 shows just how 
simply this can be done with FANN. This program uses four 
FANN functions fann _ create, fann _ train _ on _ fi le, fann _

save and fann _ destroy. The function fann _ destroy. The function fann _ destroy struct fann* fann _

create(fl oat connection _ rate, fl oat learning _ rate, unsigned 

int num _ layers, ...) is used to create an ANN, where the con-
nection _ rate parameter can be used to create an ANN that 
is not fully connected, although fully connected ANNs are nor-
mally preferred, and the learning _ rate is used to specify how 
aggressive the learning algorithm should be (only relevant for 
some learning algorithms). The last parameters for the func-
tion are used to defi ne the layout of the layers in the ANN. In 
this case, an ANN with three layers (one input, one hidden and 
one output) has been chosen. The input layer has 26 neurons 
(one for each letter), the output layer has three neurons (one for 
each language) and the hidden layer has 13 neurons. The num-
ber of layers and number of neurons in the hidden layer has 
been selected experimentally, as there is really no easy way 
of determining these values. It helps, however, to remember 
that the ANN learns by adjusting the weights, so if an ANN con-
tains more neurons and thereby also more weights it can learn 

Listing 3. A program that trains an ANN to learn to 
distinguish between languages

#include "fann.h"

int main()

{

   struct fann *ann = fann_create(1, 0.7, 3, 26, 13, 3);

   fann_train_on_fi le(ann, "frequencies.data", 200, 10,

      0.0001);

   fann_save(ann, "language_classify.net");

   fann_destroy(ann);

   return 0;

}

Figure 2. A chart of the average frequencies of the letters in English, French and Polish
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more complicated problems. Having too many weights can also 
be a problem, since learning can be more diffi cult and there is 
also a chance that the ANN will learn specifi c features of the in-
put variables instead of general patterns which can be extrapo-
lated to other data sets. In order for an ANN to accurately clas-
sify data not in the training set, this ability to generalise is cru-
cial – without it, the ANN will be unable to distinguish frequen-
cies that it has not been trained with.

The void fann _ train _ on _ fi le(struct fann *ann, char 

*fi lename, unsigned int max _ epochs, unsigned int epochs _

between _ reports, fl oat desired _ error) function trains the 
ANN. The training is done by continually adjusting the weights 
so that the output of the ANN matches the output in the train-
ing fi le. One cycle where the weights are adjusted to match the 
output in the training fi le is called an epoch. In this example the 
maximum number of epochs have been set to 200, and a sta-
tus report is printed every 10 epochs. When measuring how 
close an ANN matches the desired output, the mean square er-
ror is usually used. The mean square error is the mean value of 
the squared difference between the actual and the desired out-
put of the ANN, for  individual training patterns. A small mean 
square error means a close match of the desired output.

When the program in Listing 2 is run, the ANN will be 
trained and some status information (see Listing 4) will be 
printed to make it easier to monitor progress during training. 
After training, the ANN could be used directly to determine 
which language a text is written in, but it is usually desirable to 
keep training and execution in two different programs, so that 
the more time-consuming training needs only be done only 
once. For this reason, Listing 2 simply saves the ANN to a fi le 
that can be loaded by another program.

The small program in Listing 5 loads the saved ANN and 
uses it to classify a text as English, French or Polish. When 
tested with texts in the three languages found on the Internet, 
it can properly classify texts as short as only a few sentences. 
Although this method for distinguishing between languages is 
not bullet-proof, I was not able to fi nd a single text that could 
be classifi ed incorrectly.

The FANN library: details
The language classifi cation example shows just how easily the 
FANN library can be applied to solve simple, everyday com-
puter science problems which would be much more diffi cult to 
solve using other methods. Unfortunately, not all problems can 
be solved this easily, and when working with ANNs one often 
fi nds oneself in a situation in which it is very diffi cult to train the 
ANN to give the correct results. Sometimes this is because the 

problem simply cannot be solved by ANNs, but often the train-
ing can be helped by tweaking the FANN library settings.

The most important factor when training an ANN is the size 
of the ANN. This can only be set experimentally, but knowledge 
of the problem will often help giving good guesses. With a rea-
sonably sized ANN, the training can be done in many different 
ways. The FANN library supports several different training al-
gorithms and the default algorithm (FANN _ TRAIN _ RPROP) might 
not always be the best-suited for a specifi c problem. If this is 
the case, the fann _ set _ training _ algorithm function can be fann _ set _ training _ algorithm function can be fann _ set _ training _ algorithm

used to change the training algorithm. In version 1.2.0 of the 
FANN library there are four different training algorithms avail-
able, all of which use some sort of back propagation. Back-prop-
agation algorithms change the weights by propagating the er-
ror backwards from the output layer to the input layer while ad-
justing the weights. The back-propagated error value could ei-
ther be an error calculated for a single training pattern (incre-
mental), or it could be a sum of errors from the entire train-
ing fi le (batch). FANN _ TRAIN _ INCREMENTAL implements an incre-
mental training algorithm which alters the weights after each 
training pattern. The advantage of such a training algorithm is 
that the weights are being altered many times during each ep-
och and since each training pattern alters the weights in slight-
ly different directions, the training will not easily get stuck in lo-
cal minima – states in which all small changes in the weights small changes in the weights small
only make the mean square error worse, even though the opti-
mal solution may have not yet been found. FANN _ TRAIN _ BATCH, 
FANN _ TRAIN _ RPROP and FANN _ TRAIN _ QUICKPROP are all exam-
ples of batch-training algorithms which alter the weight after cal-
culating the errors for an entire training set. The advantage of 
these algorithms is that they can make use of global optimisa-
tion information which is not available to incremental training al-
gorithms. This can, however, mean that some of the fi ner points 
of the individual training patterns are being missed. There is no 
clear answer to the question which training algorithm is the best. 
One of the advanced batch-training algorithms like rprop or 
quickprop training is usually the best solution. Sometimes, how-
ever, incremental training is more optimal – especially if many 

Listing 4. Output from FANN during training

Max epochs      200. Desired error: 0.0001000000

Epochs            1. Current error: 0.7464869022

Epochs           10. Current error: 0.7226278782

Epochs           20. Current error: 0.6682052612

Epochs           30. Current error: 0.6573708057

Epochs           40. Current error: 0.5314316154

Epochs           50. Current error: 0.0589125119

Epochs           57. Current error: 0.0000702030

Listing 5. A program classifying a text as written in one of 
the three languages (The program uses some functions 
defi ned in Listing 1)

int main(int argc, char* argv[])

{

   if(argc != 2) error("Remember to specify an input fi le");

   struct fann *ann = fann_create_from_fi le(

      "language_classify.net");

   fl oat frequencies[26];

   generate_frequencies(argv[1], frequencies);

   fl oat *output = fann_run(ann, frequencies);

   std::cout << "English: " << output[0] << std::endl

             << "French : " << output[1] << std::endl

             << "Polish : " << output[2] << std::endl;

   return 0;

}
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training patterns are available. In the language training exam-
ple the most optimal training algorithm is the default rprop one, 
which reached the desired mean square error value after just 57 
epochs. The incremental training algorithm needed 8108 ep-
ochs to reach the same result, while the batch training algorithm 
needed 91985 epochs. The quickprop training algorithm had 
more problems and at fi rst it failed altogether at reaching the de-
sired error value, but after tweaking the decay of the quickprop
algorithm, it reached the desired error after 662 epochs. The de-
cay of the quickprop algorithm is a parameter which is used to 
control how aggressive the quickprop training algorithm is and 
it can be altered by the fann _ set _ quickprop _ decay function. fann _ set _ quickprop _ decay function. fann _ set _ quickprop _ decay

Other fann _ set _ ... functions can also be used to set addi-
tional parameters for the individual training algorithms, although 
some of these parameters can be a bit diffi cult to tweak without 
knowledge of how individual algorithms work.

One parameter, which is independent of the training algo-
rithm, can however be tweaked rather easily – the steepness of 
the activation function. Activation function is the function that de-
termines when the output should be close to 0 and when it should 
be close to 1, and the steepness of this function determines how 
soft or hard the transition from 0 to 1 should be. If the steepness 
is set to a high value, the training algorithm will converge faster 
to the extreme values of 0 and 1, which will make training fast-
er for an e.g. the language classifi cation problem. However, if the 
steepness is set to a low value, it is easier to train an ANN that re-
quires fractional output, like e.g. an ANN that should be trained to 
fi nd the direction of a line in an image. For setting the steepness 
of the activation function FANN provides two functions: fann _
set _ activation _ steepness _ hidden and fann _ set _ activa-

tion _ steepness _ output. There are functions because it is often 
desirable to have different steepness for the hidden layers and 
for the output layer.

FANN possibilities
The language identifi cation problem belongs to a special kind 
of function approximation problems known as classifi cation 
problems. Classifi cation problems have one output neuron 
per classifi cation and in each training pattern precisely one of 
these outputs must be 1. A more general function approxima-
tion problem is where the outputs are fractional values. This 
could e.g. be approximating the distance to an object viewed 

by a camera or even the energy consumption of a house. 
These problems could of course be combined with classifi -
cation problems, so there could be a classifi cation problem of 
identifying the kind of object in an image and a problem of ap-
proximating the distance to the object. Often this can be done 
by a single ANN, but sometimes it might be a good idea to 
keep the two problems separate and e.g. have an ANN which 
classifi es the object and an ANN for each of the different ob-
jects which approximates the distance to the object.

Another kind of approximation problems is time-series 
problem, approximating functions which evolve over time. 
A well known time-series problem is predicting how many sun-
spots there will be in a year by looking at historical data. Nor-
mal functions have an x-value as an input and a y-value as an 
output, and the sunspot problem could also be defi ned like 
this, with the year as the x-value and the number of sun spots 
as the y-value. This has, however, proved not to be the best 
way of solving such problems. Time-series problems can be 
approximated by using a period of time as input and then us-
ing the next time step as output. If the period is set to 10 years, 
the ANN could be trained with all the 10-year periods where 
historical data exists and it could then approximate the number 
of sunspots in 2005 by using the number of sunspots in 1995 
– 2004 as inputs. This approach means that each set of histor-
ical data is used in several training patterns, e.g. the number of 
sunspots for 1980 is used in training patterns with 1981 – 1990 
as outputs. This approach also means that the number of sun-
spots cannot be directly approximated for 2010 without fi rst-ap-
proximating 2005 – 2009, which in turn will mean that half of 
the input for calculating 2010 will be approximated data and 
that the approximation for 2010 will not be as precise as the 
approximation for 2005. For this reason, time-series prediction 
is only well-fi tted for predicting things in the near future.

Time-series prediction can also be used to introduce mem-
ory in controllers for robots etc. This could e.g. be done by giv-
ing the direction and speed from the last two time steps as in-
put to the third time step, in addition to other inputs from sen-
sors or cameras. The major problem of this approach is, how-
ever, that training data can be very diffi cult to produce since 
each training pattern must also include history.

FANN tips & tricks
Lots of tricks can be used to make FANN train and execute 
faster and with greater precision. A simple trick which can be 
used to make training faster and more precise is to use input 

Artifi cial Intelligence
When is something or somebody intelligent? Is a dog intelligent? 
How about a newborn baby? Normally, we defi ne intelligence as 
the ability to acquire and apply knowledge, reason deductively and 
exhibit creativity. If we were to apply the same standards to artifi -
cial intelligence (AI), it would follow that there is currently no such 
thing as AI. Normally, however, AI is defi ned as the ability to perform 
functions that are typically associated with the human intelligence. 
Therefore, AI can be used to describe all computerised efforts deal-
ing with learning or application of human knowledge. This defi nition 
allows the AI term to describe even the simplest chess computer or 
a character in the computer game.

Figure 3. A graph showing the sigmoid activation function for 
the steepness of 0.25, 0.50 and 1.00
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and output values in the range -1 to 1 as opposed to 0 to 1. This 
can be done by changing the values in the training fi le and us-
ing fann _ set _ activation _ function _ hidden and fann _ set _

activation _ function _ output to change the activation function 
to FANN _ SIGMOID _ SYMMETRIC, which has outputs in the range of 
-1 and 1 instead of 0 and 1. This trick works because 0 values 
in ANNs have an unfortunate feature that no matter which val-
ue the weight has, the output will still be 0. There are of course 
countermeasures in FANN to prevent this from becoming a big 
problem; however, this trick has been proved to reduce training 
time. The  fann _ set _ activation _ function _ output can also 
be used to change the activation function to the FANN _ LINEAR
activation function which is unbounded and can, therefore, be 
used to create ANNs with arbitrary outputs.

When training an ANN, it is often diffi cult to fi nd out how 
many epochs should be used for training. If too many epochs 
are used during training, the ANN will not be able to classify 
the training data. If, however, too many iterations are used, the 
ANN will be too specialised in the exact values of the training 
data and the ANN will not be good at classifying data it has 
not seen during training. For this reason, it is often a good 
idea to have two sets of training data, one applied during the 
actual training and one applied to verify the quality of the ANN 
by testing it on data which have not been seen during the 
training. The fann _ test _ data function can be used for this 
purpose, along with other functions which can be used to han-
dle and manipulate training data.

Transforming a problem into a function which can easily 
be learned by an ANN can be a diffi cult task, but some gener-
al guidelines can be followed:

• Use at least one input/output neuron for each informative 
unit. In the case of the language classifi cation system, this 
means to have one input neuron for each letter and one 
output neuron for each language.

• Represent all the knowledge that you as a programmer 
have about the problem when choosing the input neu-
rons. If you e.g. know that the word length is important for 
the language classifi cation system, then you should al-
so add an input neuron for the word length (this could al-
so be done by adding an input neuron for the frequency of 
spaces). Also, if you know that some letters are only used 
in some languages, then it might be an idea to add an ex-
tra input neuron which is 1 if the letter is present in the text 
and 0 if the letter is not present. In this way even a single 
Polish letter in a text can help classifying this text. Perhaps 
you know that some languages contain more vowels than 
others and you can then represent the frequency of the 
vowels as an extra input neuron.

• Simplify the problem. If you e.g. want to use an ANN for 
detection of some features in an image, then it might be 
a good idea to simplify the image in order to make the 
problem easier to solve, since the raw image will often 
contain far too much information and it will be diffi cult  
for the ANN to fi lter out the relevant information. In im-
ages, simplifi cation can be done by applying some fi lters 
to do smoothing, edge-detection, ridge-detection, grey-
scaling etc. Other problems can be simplifi ed by prepro-
cessing data in other ways to remove unnecessary infor-
mation. Simplifi cation can also be done by splitting an 
ANN into several easier-to-solve problems. In the lan-
guage classifi cation problem, one ANN could e.g. dis-
tinguish between European and Asian languages, while 
two others could be used to classify the individual lan-
guages in the two areas.

While training the ANN is often the big time consumer, ex-
ecution can often be more time-critical – especially in sys-
tems where the ANN needs to be executed hundreds of 
times per second or if the ANN is very large. For this rea-
son, several measures can be applied to make the FANN li-
brary execute even faster than it already does. One meth-
od is to change the activation function to use a stepwise lin-
ear activation function, which is faster to execute, but which 
is also a bit less precise. It is also a good idea to reduce the 
number of hidden neurons if possible, since this will reduce 
the execution time. Another method, only effective on em-
bedded systems without a fl oating point processor, is to let 
the FANN library execute by using integers only. The FANN 
library has a few auxiliary functions allowing the library to 
be executed using only integers, and on systems which 
does not have a fl oating point processor this can give a per-
formance enhancement of more than 5000%.

A tale from the Open Source world
When I fi rst released the FANN library version 1.0 in Novem-
ber 2003 I did not really know what to expect, but I thought 
that everybody should have the option to use this new li-
brary that I had created. Much to my surprise, people actual-
ly started downloading and using the library. As months went 
by, more and more users started using FANN, and the library 
evolved from being a Linux-only library to supporting most 
major compilers and operating systems (including MSVC++ 
and Borland C++). The functionality of the library was also 
considerably expanded, and many of the users started con-
tributing to the library. Soon the library had bindings for PHP, 
Python, Delphi and Mathematica and the library also became 
accepted in the Debian Linux distribution.

My work with FANN and the users of the library takes up 
some of my spare time, but it is a time that I gladly spend. 
FANN gives me an opportunity to give something back to the 
open source community and it gives me a chance to help peo-
ple, while doing stuff I enjoy.

I cannot say that developing Open Source software is 
something that all software developers should do, but I will say 
that it has given me a great deal of satisfaction, so if you think 
that it might be something for you, then fi nd an Open Source 
project that you would like to contribute to, and start contribut-
ing. Or even better, start your own Open Source project. 

On the Net
• The FANN library

http://fann.sourceforge.net
• Martin Riedmiller and Heinrich Braun, A Direct Adaptive Meth-

od for Faster Backpropagation Learning: The RPROP Algorithm
http://citeseer.ist.psu.edu/riedmiller93direct.html

• ANN FAQ
ftp://ftp.sas.com/pub/neural/FAQ.html


