mqmfind.marker {qtl} | R Documentation |
Fetch significant makers after permutation analysis. These markers can be used as cofactors for model selection in a forward stepwise approach.
mqmfind.marker(cross, mqmscan = NULL, perm = NULL, alpha = 0.05, verbose=FALSE)
cross |
An object of class cross . See read.cross for details.
|
mqmscan |
Results from either scanone or mqmscan |
perm |
a scanoneperm object |
alpha |
Threshold value, everything with significance < alpha is reported |
verbose |
Display more output on verbose=TRUE |
returns a matrix with at each row a significant marker (determined from the
scanoneperm
object) and with columns: markername, chr and pos (cM)
Ritsert C Jansen; Danny Arends; Pjotr Prins; Karl W Broman kbroman@biostat.wisc.edu
mqmprocesspermutation
- Function called to convert results from an mqmpermutation into an scanoneperm object
MQM
- MQM description and references
mqmscan
- Main MQM single trait analysis
mqmscanall
- Parallellized traits analysis
mqmaugment
- Augmentation routine for estimating missing data
mqmautocofactors
- Set cofactors using marker density
mqmsetcofactors
- Set cofactors at fixed locations
mqmpermutation
- Estimate significance levels
scanone
- Single QTL scanning
data(multitrait) #Use the multitrait dataset cof <- mqmsetcofactors(multitrait,3) #Set cofactors at each 3th marker multitrait <- fill.geno(multitrait) multitrait <- transformPheno(multitrait, 7) #log transform the 7th phenotype ## Not run: result <- mqmpermutation(multitrait,scanfunction=mqmscan,cofactors=cof,pheno.col=7,n.perm=50,batchsize=10) # Bootstrap 50 runs in batches of 10 f2perm <- mqmprocesspermutation(result) #Create a permutation object summary(f2perm) #What LOD score is considered significant ? marker <- mqmfind.marker(multitrait,result[[1]],f2perm) #Find markers with a significant QTL effect (First run is original phenotype data) marker #Print it to the screen