Atomic orbital example

An example showing the norm and phase of an atomic orbital: isosurfaces of the norm, with colors displaying the phase.

This example shows how you can apply a filter on one data set, and dislay a second data set on the output of the filter. Here we use the contour filter to extract isosurfaces of the norm of a complex field, and we display the phase of the field with the colormap.

The first step is to create a data source with two scalar datasets. The second step is to apply filters and modules, using the ‘set_active_attribute’ filter to select on which data these apply.

The field we choose to plot is a simplified version of the 3P_y atomic orbital for hydrogen-like atoms.

../_images/example_atomic_orbital.jpg

Source code: atomic_orbital.py

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org> 
# Copyright (c) 2008, Enthought, Inc.
# License: BSD Style.

# Create the data ############################################################
import numpy as np

x, y, z = np.ogrid[-.5:.5:200j, -.5:.5:200j, -.5:.5:200j]
r = np.sqrt(x**2 + y**2 + z**2)


# Generalized Laguerre polynomial (3, 2)
L = -r**3/6 + 5./2*r**2 - 10*r + 6

# Spherical harmonic (3, 2)
Y = (x+y*1j)**2*z/r**3

Phi = L*Y*np.exp(-r)*r**2

# Plot it ####################################################################
from enthought.mayavi import mlab
mlab.figure(1, fgcolor=(1, 1, 1), bgcolor=(0, 0, 0))
# We create a scalar field with the module of Phi as the scalar
src = mlab.pipeline.scalar_field(np.abs(Phi))

# And we add the phase of Phi as an additional array
# This is a tricky part: the layout of the new array needs to be the same
# as the existing dataset, and no checks are performed. The shape needs
# to be the same, and so should the data. Failure to do so can result in 
# segfaults.
src.image_data.point_data.add_array(np.angle(Phi).T.ravel())
# We need to give a name to our new dataset.
src.image_data.point_data.get_array(1).name = 'angle'

# We select the 'scalar' attribute, ie the norm of Phi
src2 = mlab.pipeline.set_active_attribute(src,
                                    point_scalars='scalar')

# Cut isosurfaces of the norm
contour = mlab.pipeline.contour(src2)

# Now we select the 'angle' attribute, ie the phase of Phi
contour2 = mlab.pipeline.set_active_attribute(contour,
                                    point_scalars='angle')

# And we display the surface. The colormap is the current attribute: the phase.
mlab.pipeline.surface(contour2, colormap='hsv')

mlab.colorbar(title='Phase', orientation='vertical', nb_labels=3)

mlab.show()

Previous topic

Tvtk in mayavi example

Next topic

Julia set decimation example

This Page