Gold User’s Guide

Scott Jackson
Pacific Northwest National Laboratory

Gold User’s Guide
by Scott Jackson

Copyright © 2004, 2005 Pacific Northwest National Laboratory, Battelle Memorial Institute.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

+ Neither the name of the Battelle nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

Notice xi
1. Overview 1
1.1, BACKGIOUNA ...ttt sttt et s b et s b et e st et enaesbeesaenbeens 1
L2 FRATUIES ...ttt ettt ettt ettt st et b e e bt et b et e bt et e bt e bt et e s bt eb b e bt eatenbesbeennenbeens 1
L3 INEEITACES ..ottt ettt et et s bt et be ettt sbt e et sbe e e bt eae 3
1.3.1. Command Line CHENES.......cc.eeteriiririiniinieienieeteicettete sttt sttt et sieeaesieeas 3

1.3.2. Interactive Control ProOgramc..ccccoverierinirieninienieneeienieeteiesieeee et 3

1.3.3. Web-based Graphical User INtErface...........cceevueerierieeiiirniienieeieeieesie et eve e 4

L3040 PErl AP ...ttt ettt ettt sttt e et enaaesanesats 4

1.3.5. SSSRMAP Wire ProtOCOL.......cocuiiriiiriieiieniieeieeie ettt ettt et 4

2. Installation 6
2.1, PIOPATALION ..euieniiieiieeiieet ettt ettt ettt ettt et e bt e st st e bt e satesat e e beebtesate s be e beesatesabeebeenaeenn 6
2.1.1. Select @ Databasecccueeriiiiieiiieriieeieeeesite ettt ettt st ettt st s 6

2.2, INSLAll PrET@QUISILES ..eouveetieriieriieeiieeiteeite ettt ettt ettt et e sb e e st st e e bt e bt e satesabe e beesaeesabeebeenaee s 7
2.2.1. PostgreSQL database 7.2 or higher (or other tested database) [REQUIRED]............... 7
2.2.2. Perl 5.6.1 or higher (with suidperl) [REQUIREDI]........ccccccceniiniiiiiiniinienieeeeeeee, 9
2.2.3. libxml2 2.4.25 or higher [REQUIRED]cccieiiiiiiiiieieeeee e 10
2.2.4. Gnu readline 2.0 or higher [OPTIONAL]coooiiiiiiiiete e 10
2.2.5. Apache Hittpd Server 2.0 or higher [OPTIONAL]ccccoociiiiiiiiiiiineiceceeeee 11
2.2.6. OpenSSL 0.9.5a or higher [OPTIONALL].......cciitrieiietieiereeee et 11
2.2.7. mod_ssl 2.26 or higher [OPTIONALJ.......ccciiiiiiiieieieee e 11

2.3, CONTIGUIALION ...ttt ettt ettt ettt e bttt et e s ae et e sb e e st e teebeeneesaeestesaesaeeneeabeensenseeneeneesseenean 12
2.4, COMPIIATION.eeutiteiiieteet ettt ettt ettt et b e s e e e b e e st e bt es e e tesaeeasesbeeseeneeeneeneesaeenean 13
2.5. Perl Module DePendenciesc.ceeerueruieieniieieiienieeieste ettt ettt st este e eaeeeesae s 14
2.0, INSLAILALION....c.tieeieeieeiieiteeie ettt e et e e te et e st e s tteebe e teesseessbeesbeeseessseensaeseessseansaenseenssesnsansseenses 15
2.7 GENEIAL SELUP ...ttt ettt ettt et b e bt et b et e bt e st e te s bt et e bt est e teeaeeneesbeenean 15
2.8. Database SELUPcueeuiertirtieiieiietee ettt sttt b et ettt et ettt et sbe s 15
2.9. WED SEIVET SELUP ..ttt ettt ettt ettt et b et e st eb e et sbe e e e bt eaa et e sbeeneesbeeneen 16
2.10. BOOESIIAP ..ttt ettt ettt sttt et b ettt s bt e b s bt et e bt eaa et e ebe e e e sbeeneen 18
2110 SEATTUP ¢ttt ettt ettt bt et b e e bt et b et b e e bt e bt bt e bbbt et e be et e b eneen 19
212, TNHHAIIZALION ..ottt sttt et b ettt s bt e st e e bt ebt et sbeeneesbeeneen 19
3. Getting Started 20
3.1 DEEINE USEIS ...eeuvieiieeiieeiieniieeie ettt et e ettt et e satesabe e bt esbeesabeesbeenbeessbesabesnbeesssesssesnseensaenssesnsean 20
3.2. DEfiNe MACKINESeoeuviiiiiiiiieiieiiieitetee ettt sttt et sttt e bt e satesabe e beesbaessbesabeebaesasesnseen 20
3.3, DEMINE PrOJECES ...eeviieiiieiieiieeieeit ettt ettt st ettt sttt e bt e sabesabe e beesbaesabesabeebaesssesaseen 21
3.4, Add USErs t0 the PrOJECLSeeviiiiieiierieeie ettt sttt ettt et ettt e b e saaesaee s 22
3.5. MAKE DIEPOSILS ..eevieiieeiiieiieeie ettt ettt et et e st st e et e bt e sate e bt e bt eshbeeabe s beesbbesabesateebeesatesaten 22
3.6. Check The BalancCecooeeeiiiiiiniienieeieeieeteete ettt sttt et sat e sbeesatesate s 23
3.7. Integrate Gold with your Resource Management SyStem...........cccceevvervuernieenieniiensieenieeneennnenn 23
3.8. ODbtain A JOD QUOLE......c.uuiieiiiieiiieeiiee ettt eiee et e e et e e s bt eeebeeessbeeessseeesseeessseeansseeansseessseessseans 24
3.9. Make A JOD RESEIVALIONc.uviieiiieeiiieeiieeciieeeieeeetteesteeeeteeesereeesebeeesseeessseeessseeassseesssaesseeens 24
3.10. Charge fOr @ JOD ..cc.oiiiiiiie e 25
311 RefUNA @ JOD ettt et e et e et e e et e e et eeenaeeenraeenaaean 26
T B 5 1Y I T Tod 1o) s RSP PS 27
3.13. Examine AcCCOUNE StAtEIMENL.......cccueeeiuieeeitieeeiieeetieesieeeeteeesreeesreeessreesssseeasreeessseessssessnseeens 28

iii

3.14. EXamine ProjeCt USAZEcccueviiiriierieiiieiieritesite ettt sttt ettt sttt e st e satesateenbeesasesaseen

4. Getting More Advanced

4.1. Define Projects..........
4.2. Define Accounts.......
4.3. Make Deposits..........
4.4. Check The Balance ..
4.5. Define Charge Rates.
4.6. Obtain A Guaranteed

JOD QUOLE ..ttt e

4.7. Make A Quoted JOD RESEIVAIONccoiiuiiiiiiiiiiiee ettt e e e arae e e e enens
4.8. Charge for @ QUOLE JOD ...ccuoiuiiiiiiieiieie ettt ettt sttt et sae et e eee s enes
4.9. Partially Refund @ JODc.ccciviiiiiiiiiiinieicccet ettt ettt e
4.10. EXamine ACCOUNT STACIMENL......c.ceeuieerierieeiieerierieesteereesteesseessseesseesseesssessseesseessesssseesseessessns

5. Managing Users

5.1. Creating Users..........
5.2. Querying Users
5.3. Modifying Users
5.4. Deleting Users..........

6. Managing Machines

6.1. Creating Machines ...
6.2. Querying Machines..
6.3. Modifying Machines
6.4. Deleting Machines ...

7. Managing Projects

7.1. Creating Projects......
7.2. Querying Projects.....
7.3. Modifying Projects...
7.4. Deleting Projects......

7.5. Project USage SUMIMATYcceeiiiriiiieiienieietietete ettt et st ne s e s s enesaeennes

8. Managing Accounts

8.1. Creating Accounts....
8.2. Querying Accounts ..
8.3. Modifying Accounts
8.4. Making Deposits
8.5. Querying The Balanc
8.6. Personal Balance.......
8.7. Making Withdrawals
8.8. Making Transfers

L N

8.9. Obtaining an ACCOUNE SEALEMEIILeoueeuerterieriirtieieeteete e ete sttt et st ee e steestesbesbeeeesbeeneesaeenees

8.10. Deleting Accounts..

9. Managing Allocations

9.1. Creating Allocations
9.2. Querying Allocations

9.3. MOAIfyiNg ATIOCALIONSveereieriiieiieriierieeteeiteste et et esttesate e bt esteesatesbeeseesbaesnbeenseensaesasessseenses

9.4. Deleting Allocations

30

30
31
32
33
34
35
36
37
38
39

41

41
41
42
43

44

44
44
45
45

46

46
47
47
48
48

50

50
51
52
52
53
54
55
55
56
57
58
58
58
58
59

10. Managing Reservations

11. Managing Quotations

12. Managing Jobs

13. Managing Charge Rates

14. Managing Transactions

15. Managing Roles

16. Managing Passwords

10.1. Creating RESETVALIONScc.ceviiiiieriieniieiieeitenite sttt estee st ebe e bt e sitessbesbeesbaessbesabeesbeesasesaseenses
10.2. QUETYING RESEIVALIONS ...ccuviiiiiiniieiieiie ittt sttt ettt sttt et e st et e sbeesabesaseenbes
10.3. MOdifying RESETVAIONScevuviiuiiiiieniieiieeiteite ettt sttt ettt et sabe st esbeesaeesaneenbes
10.4. Deleting RESEIVALIONSccuieiiriiriieienieiieieeitetestt ettt ettt ettt st sbe e ne s enesaeennes

11.1. Creating QUOLALIONScccoiuiiiiiiiiieienie ettt ettt ettt et st et saeeanes
11.2. QUETrYING QUOTALIONSeeueeieiieiiieitentieeteet et sttt et e st e et e bt esbteeabesbeesbeesabesabeesbeesasesaneenrs
11.3. Modifying QUOLALIONScc.eeeuieuieieeeieiesteeitete et ete et et et e te st et e et eseeseesseetesbeeneenteeseeneesaeeneas
11.4. Deleting QUOLALIONSc.eeiirtieeieieeeeetesteeiteste et et e ete et e steeeeetesbeeste et eseesaesseetesbeeneenteeseeneesaeeneas

12,1, Creating JODS ... coiuiiuieiitieiete ettt ettt et sttt s b ettt eat e be s bt et e s bt e bt et e ebeentesaeeneen
12.2. QUETYING JODS ..ottt ettt b ettt saeeaees
12.3. MOQIEYING JODS ..ttt ettt sttt ettt st b e bbbt e sbeeaees
12.4. DEIEtING JODScoiiiiiiiiieiteieeitete sttt ettt ettt et e bt bt et s bt ebt et s b et e saeeneen
12.5. Obtaining JOD QUOLEScc.uirtiriieiirieeienieriteteeteet ettt sttt ettt et ettt sbeebs et sbeeneesaeenees
12.6. Making JOD RESEIVALIONScc.eevuiriiiiiriiriieiieiietesicet ettt sttt s
12.7. CRATZING JODS . .coiiiiiiiiiieteteetee ettt sttt ettt ettt st b et e b s b et e saeeneen
12.8. IsSUING JOD RETUNAS ...evieivieiieiiiieiieiece ettt sttt ettt et et esbaesaaesnse s

13.1. Creating ChargeRALES.cooviiiierierie ettt sttt e st st e bt e bbesabesbeesbeesabesaseenses
13.2. QUerying ChargERALESccuiiiiiriieiieiieeieee ettt ettt et sbe e st e easeenes
13.3. Modifying Charge RAteScocuiiriiiiiiiieiieie ettt ettt st sttt et
13.4. Deleting Charge RAes........cooviiiiiriieriiiieeiteite ettt ettt ettt et st st sbe e st e sabeenbs

14.1. QUETYING TTANSACHIONS ...eeuvterurieniieriteniieeteeitenite sttt et et ee st et e bt e sbteeabeebeesbtesabesabeesbeesasesaseenses

15.1. QUETYING ROIES ...oeeiiiiiiiiiiiie ettt ettt ettt e b e s
15.2. QUErying ROIE USEIS ...c..eeiiiiiuieiieiieieeteete ettt ettt et ee st et s be et e e s e e sae s
15.3. QUErying ROIE ACHOMNS.ocuieuieiiiieeieiteeitete ettt ettt ettt et ae st e te b eat e te e s eeesaeeneas
15.4. Creating ROIESoo.iiiiiieiee ettt sttt ettt s b es e teeseeeesaeenean
15.5. Associating an Action With @ ROIE.........cccueiiiiiiiiiiieee e
15.6. Adding @ ROIE t0 @ USETcouiiuiiiiiiieieiteeieee ettt
15.7. Removing an Action from @ ROIEc..cocieiiiiiiiiiiiiiieee e
15.8. Removing a Role from @ USET.........ccceiuiriiiiinieiiiieeectee ettt
15.9. Deleting ROIES ...c..euiiuiiiieiiiiieitee ettt sttt ettt sbeeae et b e e e sbeeaees

16.1. Creating PaSSWOTMSc..cocueruiiiiriiriietenieetee ettt ettt ettt sbe e st sbesaeens
16.2. QUETYING PASSWOTAS ...ccuvieiieieiiiiieiiesiie ettt sttt et e st et esbeesseessbeenbeesbaesasessbeenseesasesnseenses
16.3. MOdifying PaSSWOIAScevuiiriiiiieniieniieeieeiterite sttt sttt et e st sbeebeesbaessbesaseenbeesssesnseenses
16.4. DEleting PaSSWOTASccveeruieriiiiieriienieeieeieesite sttt e s te e et esatesabeenbeesbaessbesnseenbeesasesaseenses

17. Using the Gold Shell (goldsh) 84

L7 L USAZE ..ttt ettt ettt st st et e bt s et e bt et e e s et e eab e e bt e s bt e s ab e et e e sbeesabe et e enbeesabeeaneenbes 84
17.2. COMMANA SYNEAX ..eeutiiiiiiieriiieiienitenite et eteestte st et et e e satesbe e bt e sbteesbesabeesbeesabesaseenbeesasesaseenses 85
17.3. Valid ODBJECLS ..ttt sttt sttt et s bttt e bt e bt e st e e abeesbeesabesaneenbes 87
17.4. Valid Actions for an ODBJECT.......c..cocieviiririiiiinieiiniieeereeeseetet et 88
17.5. Valid Predicates for an Object and ACHONc..coeevvirierieiiinieieiieeeereceseeere e 88
17.6. COMMON OPLIONScouviniieiiiiieiieie ettt ettt ettt sttt et e ae st enesbeeanesneeneennesaeennes 89
17.7. Common Actions Available for most ObJects..........ccccoerieiiiniiiiiniiieiiceecceeeee e 89
17.7. 1. QUETY ACHON ...ttt s e st e e 89
17.7.2. CIEate ACHIOMNcoueeeiieiiieiteeitet ettt ettt ettt sttt e bt e sat e st e bt e saee st e enbeesaeesaee s 91
17.7.3. MOQIEY ACHON ..ttt ettt ettt ettt 91
17.7.4. DEIEte ACHON......eouiiieitieieieeee ettt ettt ettt st b e s e te e bt et e et eneesbeeseeneeeaeenes 93
17.7.5. UNAEIEte ACHIONcoitiitieiieiieiierie ettt ettt ettt st b e b et eae et e et et esbeese e e eneenes 94

17.8. MUlti-ODbjECt QUETIESeuveuveureuieiiniinieieieeeiteie ettt ettt st eseeae st et be e e e s b e 95
18. Customizing Gold Objects 96
18.1. Removing an Attribute from an ObJECt.........ccceevuerirriiririeiienieienieeeee e 96
18.2. Adding an Attribute t0 an ODBJECL........couerieriirieiiniieieiertetesieetee ettt 97
18.3. Modifying an ALIIIDULEcc.evieriiiieiiniiiteeettet ettt ettt st st 97
18.4. Creating @ CUSTOM ODJECLco.eeriirieiiiieiteieeitetestcet ettt ettt ettt e e e saeesees 98
18.5. Adding an Action t0 an ODJECTcoouerieriiriirieiiniietcert ettt 99
18.6. Examples Creating Custom ODJECEScccevuireeriererieniinieiinieetenie sttt ereeee e estesiesinens 99
19. Integration with the Resource Management System 104
19.1. Dynamic versus Delayed ACCOUNTING......ccc.eerieriieriirriienieeieeitenitesteeteesteesireseteenbeesaneseeens 104
19.1.1. Delayed ACCOUNLINGcc.eeruiiriiiriieniieniteeiteitesite et et e sitesteebeesbeesabesabeebeesatesaseensees 104
19.1.2. DyNamicC ACCOUNTINGcc.eeriiriieriienieritieieenitesite et esttesttesbeeseesbeessbesaseebeesasessesnseas 104

19.2. TNteraction POINTSc..coviiiiriiiiiiiiieieriet ettt ettt a e st e 104
19.2.1. Job Quotation @ Job Submission Time [Optional — Recommended].................... 104
19.2.2. Job Reservation @ Job Start Time [Optional — Highly Recommended]................ 105
19.2.3. Job Charge @ Job End Time [Required].........cccccceeveeviirinnininiinenieieneeeeieneenens 105

19.3. Methods of interacting With GOIdcccceiiiiiriiiiiiiiniiiee e 106
19.3.1. Configuring an application that already has hooks for Gold.............ccccecceceevininnen. 106
19.3.2. Using the appropriate command-line clientccccoeeevieninieieniinicniieceneens 107
19.3.3. Using the Gold control program..............ccceeuieiieriinieriinieieeneneeiese e 107
19.3.4. Use the Perl APIcc.ccooiiiiiiiiccicen ettt et 107
19.3.5. Communicating via the SSSRMAP Protocol........c..cccoceeereneniecnenicnenenenieeeenens 108

20. Configuration Files 110
20.1. Server CONTIGUIATION ...cc.eeiuieuieierteeterteet ettt sttt et e et e e bt et enbesbe e e sbeeseentesseenaesbeeneans 110
20.2. Client CONTIGUIALION.........ccuiiuieiiitieierteet ettt sttt ettt ettt et et satenbesbe e e sbeeaeenbesaeenaesbeennans 112

Vi

List of Examples

Lo1. LASTINE USBIS. ettt ettt ettt ettt b ettt ea e et sh et e e bt eb b et e ebeen e e sbe e st e nbeestenbeebeentesbeeneenbesbeensenbeans 3
1-2. LASTINE USBIS. .. cutetteiteteittete ettt ettt sttt ettt ea et sh e s e s bt eb b et e e bt eneesbe e st e nbeebtenbeebeentesbeeaeenbesbeenbenbeans 3
1-30 LASTINE USBIS. .. cutetieiteteitteteet ettt ettt sttt ettt e et b et bt e bt et e e bt entesbe e st e nbeebtenbeebeemtenbeeatenbesbeenbenbeans 4
Lo LASTINE USBIS...cuteneieiieteitteteet ettt ettt sttt ettt e a et sh et e bt eb et e bt e st e sbe e st e s beebt et e ebeeaeenbeeseenbesbeenbenbeans 4
1=5. LASTINE USBIS. .. cutitieitenieitteiteet ettt sttt ettt ettt sh et b e eb et e bt e st e sbe e st e s beebten b e ebeeneenbeebeenbesbeenbenbeans 5
3-1. Let’s add the users amy, bob and dave.c..coeevieriiiininiineiee e 20
3-2. Let’s define machines called colony and bIUE.c..cocueririininiiieniniineeeeeeeeeee e 21
3-3. We will define the projects biology and ChemiStrY.........coereerererieninieniinieieneeeeeeeeseeee e 21
3-4. AddIng USETS tO OUL PIOJECES. ..cuverureurertieutintiriteterteetenteettenteeteetesteestesteettestesseestesbeemsensesseensesbeensesueeneen 22
3-5. Let’s add 360000000 credits to each project. We will cause them both to be valid just for the fiscal
VEAT 20005 .. eiieeteetteetie ettt ettt ettt e st e et e et e st e st e st e e bt e h e e s et e e bt e bt e eate e b e e beeshteenbeenbaebaesabeenbeentes 22
3-6. Let’s 100K at amy’s DALANICEc.eevuieriiiiiieiieiierie ettt ettt ettt ettt e st e saaessbeesaeesseesaseeseenseenes 23
3-7. You may just want the total balance for a certain project and machineccccoeceevieniiriieeneeneenne 23
3-8. We’ll assume our job has the following charaCteriStiCs:ceecveerieriieriieeriienienie ettt 24
3-9. Let’s see how much it Will COSt tO TUN QUL JOD.......oiiuiiiiiiiiiiiieiiieiieieeieeterteee et 24
3-10. Make a reServation fOr OUT JOD.......cocuiiiiiriiinienieeieeieeste ettt ettt ettt et sae e et e st e beesabeeseenaeesas 25
3-11. Issue the charge fOr OUL JOD.ooiuiiiiiiiiiiiieee ettt ettt st e b esaee e 26
3-12. Let’s isse a refund fOr OUT JOD.cc.eoiuiiiiiiiiiiiiiieeeetet ettt ettt st 26
3-13. Let’s list all the JOD tranSaCtIONSccceruirierierierieniieiete et ereste e et et e saeenne s e esresaeennesaeennes 27
3-14. It may also be illustrative to examine what transactions actually composed our charge request.....28
3-15. We can request an itemized account statement over all time for the chemistry project (account 2)28
3-16. Display usage by user for the chemiStry projectcccooceveriiieninieriniee e 29
4-1. Now we will define the projects. This time we will define the project members at the same time. ..30
4-2. We will create some accounts for use by the biology and chemistry projects.ccccceeevereereeenene 31

4-3. Let’s deposit 100 million credits for use by the biology project. We are going to establish a
use-it-or-lose-it policy here in which one fourth of the credits expire each quarter. Since there is
only one account for the biology project, we can specify the project name in the deposit.............. 32

4-4. Next we will make some deposits valid toward the chemistry project for the entire year. Since there
are multiple accounts for the chemistry project, we must specify the appropriate account id in the

EPOSIE. ettt ettt ettt et et b e et e h et s h et bt e h et bt e a e bt eh e et bt et e b e eat et e ebe et e nbeenean 32
4-5. We can now take a closer look at the accounts and the allocations that we have created. 33
4-6. Let’s 100k at amy’s DALANCEcoeeviiiiiiiiriiiieiiecee ettt 33
4-7. Let’s just get amy’s balance for chemistry on COIONY.......c..cecueviireiriririininieicee e 34
4-8. Now let’s just get the total that can be used by amy for chemistry on colony. This includes amy’s
AVATLADIE CIEAIL. ..euveiiiiiiiietei ettt ettt et sttt et et ebe et sbeeneen 34
4-9. Let’s examine the predefined Charge rates..........coccevererierinieninieneneeieeeteeeeete et 35
4-10. Let’s say we want to charge for memory USEdcocvieieeriienieiiieeiieieesteeie et 35
4-11. We also want a quality of Service MUILIPIETcccceeriirrieeriierieiieeieee ettt sne e s 35
4-12. Creating another quality-based charge MUItPIErcceevvierirriieeiieerierieeie e 35
4-13. Let’s take a 1ook at the current Charge Tates.cocvereerrierrieenienieeieeiee e ete et eseesiresbeesieesanesaseas 35
4-14. Let’s request a guaranteed charge quote that reflects the memory and quality of service we expect
O USL. ntteitenteeitent et et et et et s bt et e s bt et et e bt e st s bt e st e bt e at e h e e et e a e e ae et s he st e bt et et e b et saeeat e bt eane s e ebeenee 36
4-15. Make a reservation for our job that reflects our resource and quality preferences while specifying
TRE QUOLE 1. .ttt ettt sttt e bt st e b e bt e sat e st e et e s bt e eab e e be e bee st e eabeenbes 36
4-16. Let’s change a charge rate and issue the charge for our job. We will request that the quote be
ROMNOTEA. ...ttt et st ettt e ae e st e s nesreeeee 37

Vii

4-17. Suppose you want to issue a partial refund.cocceveririiiiinienini e 38
4-18. We can request an itemized account statement over all time for account 3 (chemistry for amy)....39

51 CTOALINE @ USET .eeuvteiieeuiieiienite et esttestte sttt ebeeteesutesabe e beesbeesabeeateebaessbesateenbeesstesatesabeestensaesaseensaenseesas 41
5-2. Listing all infO aDOUL ACLIVE USETS....cccueerutierieiriieriieeteeieentteete et esbeesitesiteesbeesstesaeesbeesseesseesaseesseesseesas 41
5-3. Displaying bob’s PhONE NUIMDETccouiiriiiiiiiiiiiiteieeste ettt sttt et st esbeesiee e 42
5-4. Listing all user names without the hEadereovueiiiiiiiiniiiiiiiieeeeete e 42
5-5. LiStING @ USEI’S PIOJECES ..cuvturenreiieiretieiteteeiteresieeteste et enesaeessesueesses st eusessesneesnesaeennensesanensesseennesaeennen 42
5-6. ACHVALINE @ USETceivieiiiiieiieieeiieteete ettt et te st et et et et st e s e sae e s e s b e easesseeaeesnesaeennesseeaeessesneennesaeennes 42
5-7. Changing a user’s email AddIeSSccccoiriiiriiiiiiiiniiict et 43
5-8. DEIEHING @ USET ...ttt ettt ettt ettt e s e b e e a e e bt e s ae e e neeae e eneenes 43
6-1. Creating @ MACKIIEcccueiruiiiieiieeteete ettt ettt et et s e e b e s bt e sat e st e e saeesbeesaneenbeenneenas 44
6-2. Listing all inactive machine names and deSCIIPLONSeecverueruerrierieieriieiee sttt ee e enees 44
6-3. Deactivating @ MACKINEoiueiieiieetieiere ettt ettt st ettt e st et eae e tesae et e beeseenteeneeneesaeeneas 45
6-4. Deleting @ MACKINEcocuiiuiiieiteitieeet ettt st b e st et e st et e saeentesbe e st enteeseeneesaeenean 45
T-1. CrEAtING @ PIOJECE ..eeutitieuietietieteettete et eet et et e e bt et e eee s bt eatesbeestenteeaeeneesbeemsebeeseenteebeensesaeemtenbeeseenseeneenes 46
7-2. Creating a project and specifying user members at the Same timeccceeovevuereerienersieneneenenene 46
7-3. Listing all info about all PrOJECES......ciueiiiririerieiete sttt sttt e 47
7-4. Displaying the name and user members of a project in long format...........ccceceveevenennenienienenene. 47
7-5. LiSting all PIOJECE MAINESeveetireienieteeitenteettenteettete st eite st e ebtetesteetesbeestenbesbeentesbeenaesaeestenbesbeensesaeenee 47
7-6. DEACHIVALING & PIOJECE...cuveutieuietirtietenteeit ettt ettt sb et e b eb et sbe et e sbeestesbeebt et e ebeemtesbeemtenbesbeentesaeenee 48
7-7. Adding users as MeMDEIS Of @ PrOJECT......ccueruiiriirieriiitirterieetete ettt ettt sttt 48
7-8. Adding machines as members Of @ PrOJECT......cc.coeeruiririeriirieriireeereeteeeitete ettt 48
7-9. DEICHNGZ @ PIOJECT ..cnviniiiitiniieiietiettete sttt ettt ettt s eat b bt et sbe et e sbe e bt e b e e bt et e sbeestesbeemtenaeebeensesbeenee 48
7-10. Displaying a usage summary for the chemistry project during the third quarter of 2006................ 49
8-1. Creating AN ACCOUNLccueeruierieeiierteenteeeteeteesteestteeteeseesttesssesaseenseesssessseenseesseesssesnseesseessessseessesnseesns 51
8-2. Creating @ Wide-OPEIN ACCOUNLcccueeruieriierieeiierteeteeteesttesteeteesteesstessteesseesseesssesnseesseesseesnseesseenseesns 51
8-3. Creating an account valid toward all biology project members except for dave and all machines
EXCEPL TOT DIUCceuiiiiiiiieeieetteee ettt ettt st e b e be e sab e s b e e beesbaessbeenbe e baesabeenseenses 51
8-4. Listing all info about all accounts with multi-valued fields displayed in a multi-line format............ 51
8-5. Listing all info about all accounts useable by dave...........oevveiiiiiiierieniiiiiieeec e 52
8-6. Adding a user to the list of users that share the aCCOUNLccceevierieriiiiiiiniereceee e 52
8-7. MAKING & AEPOSIL ...eeetiiuiiiiieriieiieeitert ettt set e ettt sb e st e st e bt e sabesabe e bt esbtesaeesabeesseenbeesateenbeenseenas 53
8-8. Making a deposit "INt0" @ PIOJECE....ccvutiriieriiiiieriieeieeit ettt ettt ettt et et e st e st sbe e bt e sbeesateesbeenaeesas 53
8-9. Creating a CTedit AllOCAtION.uiireiertiiiieeieeee sttt ettt st et e st e st st e e sbtesbeesabeenbeenaeesas 53
8-10. Querying the project balance detail broken down by accountc.ccoeveevireeneninienieneeneneenee. 53
8-11. Querying the total balance for a particular user in a particular project on a particular machine54
8-12. List the projects and available balance amy can charge to.........cccccceeceeeiiniieiiniiiiniccceeeeeeeen 54
8-13. List my (Project) BalanCesccoouieiiiriiiiiiiiieiecee ettt 54
8-14. List my balance in (Processor) NOUTLScoccceiiiiiiiiiiiiinieeeeteeteee ettt e 55
8-15. Making a WithdIaWal............coeiuiiiiiieee ettt sttt et eaeeeesae s 55
8-16. Making a withdrawal "from" @ PIrOJECT.......cceriiuieiiiriieiere ettt 55
8-17. Transferring credits DEtWEen tWO ACCOUINLSeeruertieierieeieriesteetesteettenteeteeeeseeetesbeeneetesseeeeseeeneas 56
8-18. Transferring credits between two Single-account ProJECEScecvereeeeriereereereerieneeeenieeeeeseeseeenees 56
8-19. Generating an account statement for the third quarter of 2000..........c.ccccoervevieereninineneneneieenenn 56
8-20. DEltiNg QN ACCOUNL......coiuiiuiitiitieierteet ettt te st et et etteteeetetesbeestesbeestenteebeentesbeeatenbeebeentesbeeneenaeeneen 57
9-1. Listing allocations fOr @CCOUNE 4cocuiiiiiiriiiee ittt ettt sttt ettt st ettt e e e sae s 58
9-2. Changing the end time for an allOCAtIONc..ceeeriiririinierieie ettt ettt 58
9-3. Changing the credit limit for an alloCation.........c..ceviiirieiirienineee et 59

viii

9-4. Deleting an allOCALION.......ccueruiiriierieeitetterte sttt ettt ste et et e st e e be e bt e satesabesabeessaessbesaseeseesasesnsean 59

9-5. Purging inactive allOCAtIONS.ccueeruiiriieitieriieniie ettt ettt ettt st ettt e st e s abe st e baesabesateebeesanesasean 59
10-1. Listing all info about all reservations fOr Bobcoccieriieiiiiiiiniiiiieee e 60
10-2. Listing all info about all reservations that impinge against amy’s balance.........cc.ccceceveveereeneennnen. 60
10-3. Changing the expiration time Of @ TESETVALIONcccueeruierieriieriieniteeie ettt ettt esbeesaeeseee s 61
10-4. Deleting a reservation by name (JODBIA)........cccocuiriiriiiiniiiiiiiniiieeeee e 61
10-5. Deleting a reservation by Reservationldcccoceviiiiiiiiiiiiinieieceeeceeeere e 61
10-6. Purging Stale TESEIVALIONSc.eeuieuieieiiriieteiteetete ettt e ettt e aesaeene b e easeteeneennesneennen 61
11-1. Listing all info about all quotes for user amy on machine colonycccceceeveevereniienineenenennne. 63
11-2. Changing the expiration time Of @ QUOLALIONccceeiuiiieiiiiiiicieeeee e 63
11-3. DEleting @ UOLALION ..c...eeveiriiieieeieeniieeieeieesite et ete e bt esate et e bt e sbtesatesabeesbtesatesateesbeesseesateebeenneenaeens 64
11-4. Purging Stale qUOLALIONSceueerueruieierieeiiete et eeite et eete ettt ete s bt ese e e et e entesteeneessesaeentesbeentenseeneensesneenean 64
12-1. Creating @ JOD TECOTMoouiiiiiieieiieteeee ettt ettt sttt b et e sttt esbesae e tesbeesteteeseeneesaeenean 65
12-2. Show specific info about jJObS TUN DY QMYcecuiriiiiiiiiiieieieeeee et 65
12-3. CRANZING @ JOD....eitieiiitieiiete ettt ettt ettt s a et e s b e s et e e bt e at e s bt e st e besaeenbenbeessebeeneeneesaeenean 66
12-4. DEIELING @ JOD ..ttt ettt e a et st e a et e b et e s bt e st e besbe et e e bees b et e eaeenteeaeeaean 67
12-5. ReqUESING @ QUOTATION ...c..veutitieuiietieitenteettete sttt et tete st etesbeee b et e et e estesbeestenbesbeemtesbeessentesueeneesaeeneen 67
12-6. Requesting a gUAranteed QUOTEc.evuerieriertieienieeitetesicet e sttt ettt ettt et bt e tesbeebtentesbeeneesbeeneen 67
12-7. Creating @ T@SETVALIONcc.eertirtietietietenteettete et eit e bttt etesbeestesbesb e et e ebeestesbeest e bt sbeenbenbeesseteebeentenbeeneen 68
12-8. TSSUING @ JOD CHATZEc.vevieniiiieiieieetee ettt st ettt et b e ea et s e e sbeeaees 69
12-9. TSSUING @ JOD TEIUNM ..ottt ettt ettt st eb et st sbeeaeen 69
13-1. Creating a consumable resource Charge ratecocevereeriererienienieiieneetene sttt 71
13-2. Creating another consumable resource Charge rate..........cc.ccoveeveriereerieneeieneneenenenreneeeeeeeseeenees 71
13-3. Creating a USAZE ChAIZE TALE....c..ccuiriiriitiriieierieetet ettt sttt sbe e b et be bt sbeeneesaeeneen 71
13-4. Creating another USage CharZe Tate.........ccceirierieriiieiiienieeie ettt e st et et e st e satesbeesseesseesabeenseenaeenes 71
13-5. Creating a name-based MUItIPIET TALE........cecvierieriieriiierieeie et ertte st ettt et e sreebeesteeseeesbeesaeenaee e 71
13-6. Creating another name-based MUILPHET TALEcccveevierierieriieiierieeie ettt ettt sre e esaee e 71
13-7. Creating a value-based MUItIPIET TALE........cociirierieeiiierierie ettt ettt st sbeeaeesaee e 72
13-8. LiSting all CRAIZE TALESeevuiiiiieiieiieiieeie ettt ettt ettt et s bttt et esate s beebeesseesabeeseenaeenas 72
13-9. Changing @ CRATZE TALEccouvieiieiieiieeieeeert ettt ettt ettt et e st e st e st e e sbaesaeesateenbeesanesaeean 73
13-10. Deleting @ Char@E TALE.......ccvieieeriieriieeieeeertte ettt ettt ettt e st e s bt st e satesabe s bt esbaesaeesateebeesaeesneean 73
14-1. List all deposits made i 2004ooueeieiiiiiieeieee ettt et ettt st st e st e sieesateesbeesaeesaeen 74
14-2. List everything done by amy since the beginning of 2004-.........c..cceceriiinieniiiniieniereeeeeesee e 74
14-3. List all transactions affecting Job Id PBS.1234.0.......c..cccceoiiiriiiiniiinieeeneereeeeeeeeeee e 74
14-4. List all transactions affecting Charge Tatescoceerierieriiiiiienieeeeeesteete ettt 74
15-1. LiStING @11 TOIES ...ttt et sttt e 75
15-2. LiSting @l TOIE USETScouviuiiiieiiiiieieieee ettt sttt et s et eanes 75
15-3. Listing all TO1€ QCHONSccuiiuiiiiiiiiiiieiteieeeet ettt et st e s 76
15-4. Creating @ Manager TOLEc.cocuiiuiiiiiiiiiicieice ettt st s 76
15-5. Allow the Manager to change role responSibilitiescccevveeiereriereneeiere e 77
15-6. Adding a user to the Manager 1Olccoiuiiuieiiriieieie ettt sttt e saeeaeas 78
15-7. Don’t let UserServices Create or Update Projectscceeeieeieiinieniinieiene e 78
15-8. Removing dave as @ MaNAET..........coveeueieuiririinienieieieieetesiestesteeeee et sae st st te st eneebesaesaesseneneenesaeas 79
15-9. Deleting the Manager TO1€.......c.coiiiriirieiriiiniiieictetetettee ettt ettt et sae e e saeas 80
16-1. Creating @ PASSWOITceueiuiriieiietietente ettt ettt ettt ettt et e s beeb e et e sb e et e sbeestenbesbeemtenbeestentesbeeneesbeeneen 81
16-2. List the users Who have Set PASSWOIMScc.eiiiriiriiriiiieie ittt ettt 81
16-3. Changing amy’s PASSWOITccuerueeierierierieitietenieettetesttetestestte e st eete bt este bt sbe e tesbeestentesbeensesbeeneen 82
16-4. Deleting @ PASSWOIT ...c..couiiiiiiieiiriietenteettetert ettt ettt sttt et et b et e sttt e besbeeaesbeebte b e ebeentesbeeneen 82

17-1. Specifying the command as direCt arGUMENLScccueerueerieriieeriienieeieeieestesteebeesteesieesreesieesaeenas 84

17-2. USIng the INETACIVE PIOIIIPE ..eeuveeutieriieeierieertieeteeteesteesiteereebeesstesssesbeessaesasessteesseesseesaseenseesseesssenn 84
17-3. Reading commands from @ file............eecueiiiiiiiiiiiiiiiieeeceteteee ettt 84
17-4. LiStING ALl ODJECLS .euuviiniiiiieiiieeieette sttt ettt ettt e e et e sbte st e st e e sbtesaeesateebeesaeesaeean 87
17-5. Listing all actions associated with the ACCOUNE OBJECK......cccuerruiirieriiiriiieieeieeeeteee e 88
17-6. Show the usage for Allocation QUETYccccecueruiriiriirienienenneteneerente ettt 88
17-7. Return the number of iNACHIVE TESETVALIONSeeuveeieiriieriieeiieieesite ettt site et e st et sete e b e saeesaee s 91
17-8. Add @ NEW PIrOJECt MEMDET........c.eiouiiiiiiriieieitietete ettt sttt et esae s e e e st eneennesneeanes 91
17-9. Change/set scottmo phone number and email address............cocoeeueeieiiniiieninicicececeeeeeen 92
17-10. Extend all reservations against project chemistry by 10 days..........ccccoceeeeniniiiinniiiininneen. 93
17-11. Get rid of the pesky JACKSONSccooiiiiiiiiiiiiie e 93
17-12. Let’s resurrect the deleted users that Were aCtiVecueecueevieenierieniiienienieeeeteeee e 94
17-13. Print the current and total allocation summed by ProOJEct.........cc.ccuevererinrerieniererineneneeneeeeeeennens 95
17-14. Show all active projects for amy OF BoDcccccouevieiiiiineniiiiceeceee e 95
18-1. Removing the Organization attribute from Machine............cccceeeveiriinininenenennnencceeeee 96
18-2. Perhaps we don’t care to track the Executable attribute in @ JObccooeeevieiinininininciiicne 97
18-3. Adding a Country AttribDULE t0 USETco.eeiiiiuieiiiieieie ettt sttt e 97
18-4. We need to track Submission time in JODS.......cccueruiiieriiiinieiinieiet et 97
18-5. Change User Organization values to not be restricted by foreign keyc.ccoceevenenienincencnennen. 98
18-6. Creating @ NOAE ODJECLc.eiuiiiieiieierieiiteteet ettt ettt sttt ettt beeb et sbeetesbeeaeen 98
18-7. We need to track submission time i JODS........ccccuecuerieiiiiininiiiiiieneseeeeeeeeee e 98
18-8. Adding a Modify Action tO TranSaACtIONc..eecueriirieriirienienenieienieete ettt eaees 99
18-9. Creating a License object to track license usage and charges.cccceeeeveenereenenenieniencenenennnen 99
18-10. Using Gold as a Grid Map File.ccccocueririiniiiiiiiiciecceceesesteeseetee et 101
19-1. Configuring Maui t0 USE GOId.......cccuiiriiriieiieieeie ettt ettt sre et tee st e ebeebeessaesaseenbeas 106
19-2. To issue a charge at the completion of a job, you would use gcharge:ccccceevveeveeriienienceennnen. 107
19-3. To issue a charge you must invoke the Charge action on the Job object:......cc.cceecveevuerriieriennennen. 107
19-4. To make a charge via this interface you might do something liKe:ccceoceeviiriiinriinieniieniennnen. 107
19-5. The message might 100k SOMEthing 1Ke:ccevieriiiiiinieiiieieee e 108

Notice

Important: This is the general release of the User’s Guide. Other information may be found by
browsing the FAQ (<http://sss.scl.ameslab.gov/cgi-bin/faq?file=3&keywords=file>) posting to the
gold users list (<gold-users@lyris.pnl.gov>) submitting bug reports or change requests
(<gold-support@sss.scl.ameslab.gov>) or contacting the author (<Scott.Jackson@pnl.gov>).

Xi

Chapter 1. Overview

Gold is an open source accounting system that tracks and manages resource usage on High Performance
Computers. It acts much like a bank in which resource credits are deposited into accounts with access
controls designating which users, projects and machines may access the account. As jobs complete or as
resources are utilized, accounts are charged and resource usage recorded. Gold supports familiar
operations such as deposits, withdrawals, transfers and refunds. It provides balance and usage feedback
to users, managers, and system administrators.

Since accounting needs vary widely from organization to organization, Gold has been designed to be
extremely flexible, featuring customizable accounting and supporting a variety of accounting models.
Attention has been given to scalability, security, and fault tolerance. Gold facilitates the sharing of
resources between organizations or within a Grid by providing distributed accounting while preserving
local site autonomy.

1.1. Background

Gold is being developed at Pacific Northwest National Laboratory (PNNL) as open source software
under the Scalable Systems Software (SSS) SciDAC project. Gold is currently in alpha release and is
beginning alpha testing at a number of DOE and university sites.

Gold was designed to meet the accounting needs of computing centers that share resources in
multi-project environments. In order for an organization to use its high performance computers most
effectively, it must be able to allocate resources to the users and projects that need them in a manner that
is fair and according to mission objectives. Tracking the historical resource usage allows for insightful
capacity planning and in making decisions on how to best mete out these resources. It allows the funding
sources that have invested heavily in a supercomputing resource a means to show that it is being utilized
efficiently.

Gold was also designed to facilitate the sharing of resources between organizations or within a Grid to
take advantage of the tremendous utilization gains afforded by meta-scheduling.

1.2. Features

« Dynamic Charging — Rather than post-processing resource usage records on a periodic basis to
rectify project balances, acounts are updated immediately at job completion.

+ Reservations — A hold is placed against the account for the estimated number of resource credits
before the job runs, followed by an appropriate charge at the moment the job completes, thereby
preventing projects from using more resources than were allocated to them.

Chapter 1. Overview

Flexible Accounts — A uniquely flexible account design allows resource credits to be allocated to
specific projects, users and machines.

Expiring Allocations — Resource credits may be restricted for use within a designated time period
allowing sites to implement a use-it-or-lose-it policy to prevent year-end resource exhaustion and
establishing a project cycle.

Flexible Charging — The system can track and charge for composite resource usage (memory, disk,
CPU, etc) and custom charge multipliers can be applied (Quality of Service, Node Type, Time of Day,
etc).

Guaranteed Quotes — Users and resource brokers can determine ahead of time the cost of using
resources.

Credit and Debit Accounts — Accounts feature an optional credit limit allowing support for both
debit and credit models. This feature can also be used to enable overdraft protection for specific
accounts.

Nested Accounts — A hierarchical relationship may be created between accounts. This allows for
the delegation of management responsibilities, the establishment of automatic rules for the distribution
of downstream resource credits, and the option of making higher level credits available to lower level
accounts.

Powerful Querying — Gold supports a powerful querying and update mechanism that facilitates
flexible reporting and streamlines administrative tasks.

Transparency — Gold allows the establishment of default projects, machines and users. Additionally
Gold can allow user, machines and projects to be automatically created the first time they are seen by
the resource management system. These features allow job submitters to use the system without even
knowing it.

Security — Gold supports multiple security mechanisms for strong authentication and encryption.

Role Based Authorization — Gold provides fine-grained (instance-level) Role Based Access
Control for all operations.

Dynamic Customization — Sites can create or modify record types on the fly enabling them to meet
their custom accounting needs. Dynamic object creation allows sites to customize the types of
accounting data they collect without modifying the code. This capability turns this system into a
generalized information service. This capability is extremely powerful and can be used to manage all
varieties of custom configuration data, to provide meta-scheduling resource mapping, or to function as
a persistence interface for other components.

Multi-Site Exchange — A traceback mechanism will allows all parties of a transaction (resource
requestor and provider) to have a first-hand record of the resource utilization and to have a say as to
whether or not the job should be permitted to run, based on their independent policies and priorities. A
job will only run if all parties are agreeable to the idea that the target resources can be used in the
manner and amount requested. Support for traceback debits will facilitate the establishment of trust
and exchange relationships between administrative domains.

Web Interface — Gold will implement a powerful dynamic web-based GUI for easy remote access
for users, managers and administrators.

Journaling — Gold implements a journaling mechanism that preserves the indefinite historical state
of all objects and records. This powerful mechanism allows historical bank statements to be generated,

Chapter 1. Overview

provides an undo/redo capability and allows commands to be run as if it were any arbitrary time in the
past.

« Open Source — Being open source allows for site self-sufficiency, customizability and promotes
community development and interoperability.

1.3. Interfaces

Gold provides a variety of means of interaction, including command-line interfaces, graphical user
interfaces, application programming interfaces and communication protocols.

1.3.1. Command Line Clients

The command-line clients provided feature rich argument sets and built-in documentation. These
commands allow scripting and are the preferred way to interact with Gold for basic usage and
administration. Use the --help option for usage information or the --man option for a manual page on any
command.

Example 1-1. Listing Users

glsuser

1.3.2. Interactive Control Program

The goldsh command uses a control language to issue object-oriented requests to the server and display
the results. The commands may be included directly as command-line arguments or read from stdin. Use
the "ShowUsage:=True" option after a valid Object Action combination for usage information on the
command.

Example 1-2. Listing Users

goldsh User Query

Chapter 1. Overview

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Do not use this command unless you understand the
syntax and the potential for unintended results.

1.3.3. Web-based Graphical User Interface

A powerful and easy-to-use web-based GUI is being developed for use by users, managers and
administrators. It sports two interface types:

« Management Interface — The management interface supports an interface that makes
administration and interaction very safe and easy. It approaches things from a functional standpoint,
aggregating results and protecting against accidental modifications.

« Object Interface — The object interface exposes you to the full power of the actions the server can
perform on the objects. This interface allows actions to be performed on many objects in a single
command and can impose arbitrary field conditions, field updates and field selections to the query.

Example 1-3. Listing Users

Click on "Manage Users" -> "List Users"

1.3.4. Perl API

You can access the full Gold functionality via the Perl API. Use perldoc to obtain usage information for
the Perl Gold modules.

Example 1-4. Listing Users

use Gold;
my Srequest = new Gold::Request (object => "User", action => "Query");
my S$response = Srequest->getResponse();

foreach my $datum (Sresponse->getData())
{
print $datum->toString (), "\n";

Chapter 1. Overview

1.3.5. SSSRMAP Wire Protocol

It is also possible to interact with Gold by directly using the SSSRMAP Wire Protocol and Message
Format over the network. Documentation for these protocols can be found at SSS Resource Management
and Accounting Documentation (http://sss.scl.ameslab.gov/docs.shtml).

Example 1-5. Listing Users

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Query" object="User" ></Request>
</Body>
<Signature>
<DigestValue>azu4obZswzBt890gATukBeLyt6 Y=</DigestValue>
<SignatureValue>Y XE/CO8XX3RX4PMU 1bWju+5/E5M=</Signature Value>
<SecurityToken type="Symmetric" name="scottmo" > </Security Token>
</Signature>
</Envelope>
0

Chapter 2. Installation

Gold uses the standard configure, make and make install steps that we all know and love. However, there
are a number of preparation, prerequisite, setup and customization steps that need to be performed. This
document provides general installation guidance and provides a number of sample steps referenced to a
particular installation on a Linux platform using the bash shell. These steps indicate the userid in
brackets performing the step. The exact commands to be performed and the user that issues them will
vary based on the platform, shell, installation preferences, etc.

2.1. Preparation

To build and install Gold, you first need to unpack the archive and change directory into the top directory
of the distribution. For security reasons, it is recommended that you install and run Gold under its own
non-root userid.

[root]# useradd scottmo

[root]# passwd scottmo

[scottmo]$ mkdir ~/src

[scottmo]$ cd ~/src

[scottmo]$ gzip -cd gold-2.1.12.2.tar.gz | tar xvf -

[scottmo]$ cd gold-2.1.12.2

2.1.1. Select a Database

Gold makes use of a database for transactions and data persistence. Three databases have been tested for
use with Gold thus far: PostgreSQL, MySQL and SQLite. Postgres and MySQL are external databases
which run in a distinct (possibly remote) process and communicate over sockets. These databases must
be separately installed, configured and started. SQLite is an embedded database bundled with the Gold
source code with SQL queries being performed within the goldd process itself through library calls. The
following information may help you make a choice of databases to use.

+ PostgreSQL — PostgreSQL is an open source database. Gold requires Postgres 7.2 or higher (7.1 can
probably be used but generates warnings from the DBD::Pg module). The PostgreSQL database has

Chapter 2. Installation

been thoroughly tested in production with Gold and all Gold functionality is available since it was
developed using the PostgreSQL database. Postgres supports multiple connections so Gold is
configured to be a forking server when using PostgreSQL.

PostgreSQL is recommended since it is an excellent database, has been more thoroughly tested than
the others, and supports all Gold features.

« MySQL — MySQL is an open source database. Gold requires MySQL 4.0.6 or higher. (Prior versions
did not support UNION which is used by Gold in time travel. It is possible to use 4.0 with a minor
code tweak to the OFFSET line in Database.pm).

MySQL 4.1 is required in order to have support for the (undocumented) Transaction Undo and Redo
functionality since subqueries were not supported until this version.

» SQLite — SQLite is an open source embedded database bundled with Gold. It does not require any
configuration and reads and writes from a file. Initial testing has shown Gold to perform at least as fast
as PostgreSQL for small databases.

Due to the lack of "ALTER TABLE" functionality, Gold objects cannot be customized after
installation. It appears that this functionality is likely to be forthcoming in a future release of SQLite.

Since SQLite supports only a single connection, Gold is not configured to be a forking server when
using SQLite. This should probably not be an issue for small to medium sized clusters.

Due to a lack of support for multi-column IN clauses, the (undocumented) Transaction Undo and
Redo functions are not available.

2.2. Install Prerequisites

You will first need to build, test and install the following prerequisites:

2.2.1. PostgreSQL database 7.2 or higher (or other tested
database) [REQUIRED]

Gold makes use of a database for transactions and data persistence. Three databases have been tested for
use with Gold thus far: PostgreSQL, MySQL and SQLite (see Select a Database). If you intend to use the
PostgreSQL or the MySQL database, you will need to install it. PostgreSQL is recommended since it is

Chapter 2. Installation

an excellent database, has been more thoroughly tested than the others, and supports the most features.
PostgreSQL is available at: <http://www.postgresql.org/>

[root]# cd /usr/local/src

[root]# wget
http://£ftp7.us.postgresql.org/pub/postgresql//source/v8.3.3/postgresql-8.3.3.tar.gz

[root]# gzip —-cd postgresql-8.3.3.tar.gz | tar -xvf -

[root]# cd postgresql-8.3.3

[root]# ./configure

[root]# make

[root]# make install

[root]# adduser postgres

[root]# mkdir /usr/local/pgsql/data

[root]# chown postgres /usr/local/pgsql/data

[root]# touch /var/log/pgsql

[root]# chown postgres /var/log/pgsql

Or if you are using rpms, you will need the postgresql, postgresql-libs, postgresql-server, and
postgresql-devel rpms appropriate for your architecture and operating system:

[root]# wget
ftp://rpmfind. speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-7.3.2-3.i386.rpm

[root]# wget
ftp://rpmfind. speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-libs-7.3.2-3.1i386.

Chapter 2. Installation

[root]# wget
ftp://rpmfind. speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-server-7.3.2-3.i38

[root]# wget
ftp://rpmfind. speakeasy.net/linux/redhat/updates/9/en/os/i386/postgresql-devel-7.3.2-3.1386

[root]# rpm -Uvh postgresql-7.3.2-3.i386.rpm postgresql-libs-7.3.2-3.i386.rpm
postgresql-server-7.3.2-3.i386.rpm postgresqgl-devel-7.3.2-3.i386.rpm

2.2.2. Perl 5.6.1 or higher (with suidperl) [REQUIRED]

The gold server and clients are written in Perl. Perl 5.6.1 or higher is required. The perl installation must
include suidperl for proper client authentication. Use "perl -v’ to see what level of Perl is installed and
’suidperl -v’ to see if suidperl is installed. Perl is available at: <http://www.perl.com/>

[root]# cd /usr/local/src

[root]# wget http://www.cpan.org/src/perl-5.10.0.tar.gz
[root]# gzip —-cd perl-5.10.0.tar.gz | tar xvf -

[root]# cd perl-5.10.0

[root]# sh Configure -Dd_dosuid -de

[root]# make

[root]# make test

[root]# make install

[root]# (cd /usr/include && /usr/local/bin/h2ph *.h sys/*.h)

Or if you are using rpms, you will need the perl and the perl-suidperl rpms appropriate for your
architecture and operating system:

Chapter 2. Installation

[root]# wget
ftp://rpmfind. speakeasy.net/linux/redhat/updates/9/en/os/i386/perl-5.8.3-18.1.i386.rpm

[root]# wget
ftp://rpmfind. speakeasy.net/linux/redhat/updates/9/en/os/i386/perl-suidperl-5.8.3-18.1.i386

[root]# rpm -Uvh perl-5.8.3-18.1.i386.rpm perl-suidperl-5.8.3-18.1.i386.rpm

2.2.3. libxmi2 2.4.25 or higher [REQUIRED]

LibXML2 is needed by the XML::LibXML perl module to communicate via the SSSRMAP message
format. LibXML2 is available at: <http://www.xmlsoft.org/>

[root]# cd /usr/local/src

[root]# wget ——-passive-ftp ftp://xmlsoft.org/libxml2/libxml2-2.6.32.tar.gz
[root]# gzip —-cd libxml2-2.6.32.tar.gz | tar xvf -

[root]# cd libxml2-2.6.32

[root]# ./configure

[root]# make

[root]# make install

2.2.4. Gnu readline 2.0 or higher [OPTIONAL]

The interactive control program (goldsh) can support command-line-editing capabilities if readline
support is enabled. Most recent linux distributions come with the appropriate readline support. Gnu
readline is available at: <http://www.gnu.org/>

[root]# cd /usr/local/src

[root]# wget http://ftp.gnu.org/gnu/readline/readline-5.0.tar.gz

10

Chapter 2. Installation

[root]# gzip —-cd readline-5.0.tar.gz | tar xvf -
[root]# cd readline-5.0

[root]# ./configure

[root]l# make

[root]# make install

2.2.5. Apache Httpd Server 2.0 or higher [OPTIONAL]

Gold provides a web based gui so that managers, users and administrators can interact with the
accounting and allocation system. The web interface utilizes Perl CGI and SSL and needs to have an
httpd server (preferably apache) installed. Apache httpd is available at: <http://httpd.apache.org/>

[root]# cd /usr/local/src
wget http://rpm.emsl.pnl.gov/3.0AW/en/0s/i386-U4/RedHat/RPMS/httpd-2.0.46-44.ent.i386.rpm

[root]# rpm -Uvh httpd-2.0.46-44.ent.i386.rpm

2.2.6. OpenSSL 0.9.5a or higher [OPTIONAL]

If you are installing the gui you will need SSL (preferably OpenSSL). OpenSSL is a command line
toolkit for using secure socket layer encryption on a server. OpenSSL is available at:
<http://www.openssl.org/>

[root]# c<cd /usr/local/src
wget http://rpm.emsl.pnl.gov/3.0AW/en/os/i386-U4/RedHat/RPMS/openssl-0.9.7a-33.12.i1386.rpm

[root]# rpm -Uvh openssl-0.9.7a-33.12.i386.rpm

2.2.7. mod_ssl 2.26 or higher [OPTIONAL]

If you are installing the gui you will need an apache interface to OpenSSL (preferably mod_ssl). There

11

Chapter 2. Installation

are other alternatives to mod_ssl (one of which is apache-ssl from which the mod_ssl code was forked),
however mod_ssl has become the defacto standard and is the most widely adopted. mod_ssl is available
at: <http://www.modssl.org/>

[root]# cd /usr/local/src
wget http://rpm.emsl.pnl.gov/3.0AW/en/o0s/i386-U4/RedHat/RPMS/mod_ssl-2.0.46-44.ent.i386.rpm

[root]# rpm -Uvh mod ssl-2.0.46-44.ent.i386.rpm

2.3. Configuration

To configure Gold, run the "configure" script provided with the distribution.

To see the list of options:

-h, —help display the list of options
Use prefix to tell it where Gold should be installed (defaults to /ust/local):

—prefix=PREFIX install architecture-independent files in PREFIX
Use with-db to specify the database you intend to use with Gold. Currently only PostgreSQL (Pg), MySQL (mysql) and SQLi
gres and MySQL are external databases which runs in a distinct (possibly remote) process and communicates over sock-
ets while SQLite is an embedded database bundled with Gold with SQL queries being performed within the goldd pro-
cess itself through library calls. Initial testing has shown SQLite to be at least as fast as PostgreSQL for small in-
stallations. The default is to use PostgreSQL.

—with-db=DATABASE database to be used { Pg, mysql, SQLite } [Pg]
Use without-readline if you do not want to use the gnu readline library

—without-readline ~ Don’t use readline in interactive control program

Use with-user to specify the userid that gold will run under (defaults to the
user running the configure command).

—with-user=USER user id under which the gold server will run

Use with-log-dir to specify the directory to which logs will be written
(defaults to PREFIX/log).

—with-log-dir=PATH directory for log files [PREFIX/log]

12

Chapter 2. Installation

Use with-perl-libs to indicate whether you want to install the required perl modules in a local gold directory (PRE-
FIX/lib) or in the default system site-perl directory (triggered by running make deps).

—with-perl-libs=locallsite install policy for prerequisite perl libs [local]

Use with-gold-libs to indicate whether you want to install the Gold modules in a local gold directory (PREFIX/lib) or in the de
fault system site-perl directory (defaults to local).

—with-gold-libs=locallsite install policy for Gold perl libs [local]

If you will intend to use the Gold web GUI, use with-cgi-bin to specify the directory where you want the gold CGI files to re-
side (defaults to /var/www/cgi-bin/gold).

—with-cgi-bin=DIR directory to install cgi-bin files if using web gui [/var/www/cgi-bin/gold]
The PERL environment variable helps the install process find the desired (5.6) perl interpreter if it is not in your path or not for
PERL full pathname of the Perl interpreter
Some other influential environment variables are:
CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have
headers in a nonstandard directory <include dir>

So, as an example you might use something like:
[scottmo]$ cd gold-2.1.12.2

[scottmo]$./configure —--prefix=/usr/local/gold
—-with-cgi-bin=/var/www/cgi-bin/gold

2.4. Compilation
To compile the program, type make:

[scottmo]$ make

If you would like to install the web gui, type make gui:

13

Chapter 2. Installation

[scottmo]$ make gui

2.5. Perl Module Dependencies

Gold requires the use of a number of Perl modules. These modules are included in tarball form in the
Gold distribution and they can be installed by typing *'make deps’:

[root]# make deps

This will install the following Perl modules as necessary. By default, these will be installed under gold’s
lib/perl5 directory. To install these in the system site-perl directory, use the configure parameter
with-perl-libs as described in the configuration section.

CGIL.pm

CGI::Session
Compress::Zlib
Crypt::CBC

Crypt::DES
Crypt::DES_EDE3
Data::Properties
Date::Manip

DBI

DBD::Pg or DBD::SQLite
Digest

Digest::HMAC
Digest::MD5
Digest::SHA1

Error

Log::Dispatch
Log::Dispatch::FileRotate
Log::Log4perl
MIME::Base64
Module::Build

Params:: Validate

SOAP
Term::ReadLine::Gnu
Time::HiRes

XML::SAX
XML::LibXML::Common
XML::LibXML
XML::NamespaceSupport

14

Chapter 2. Installation

If you would prefer to do so, you could install these modules via other sources, such as from rpm, or
from CPAN using ’per]l -MCPAN -e shell’.

2.6. Installation

Use ‘make install’ to install Gold. You may need to do this as root if any of the installation or log
directories do not already have write permission as the gold admin user.

[root]# make install
If you would like to install the web gui, type make install-gui (as root).
[root]# make install-gui

The standard installation process will copy the binaries and perl scripts to /ust/local/bin, install the server
in /usr/local/sbin, put the libs in /usr/local/lib, the config files in /usr/local/etc and the man pages in
/usr/local/man. You can customize the directories either through the configuration process or by making
the necessary changes in the Makefile.

To delete the files created by the Gold installation, you can use *'make uninstall’.

You will also need to generate a secret key which enables secure communication between clients and
server. This key is a pass-phrase consisting of up to 80 characters and can include spaces and the regular
visible ASCII characters. Note that if you are using Gold with the Maui Scheduler, they will need both
need to use a shared secret key.

[root]# make auth_key

Enter your secret key (up to 80 characters and can include spaces): sss

2.7. General Setup
Edit the Gold configuration files.
[scottmo]$ vi /usr/local/gold/etc/goldd.conf

[scottmo]$ vi /usr/local/gold/etc/gold.conf

15

Chapter 2. Installation

2.8. Database Setup

If you have chosen to use PostgreSQL, you will need to configure the database to support Gold
connections and schema. No setup is needed if you are using SQLite.

Initialize the database (if you installed from tarball).
[postgres]$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

Add the IP ADDRESS of the host where the Gold server will run (even if it is the same host as the
database server).

[postgres]$ echo "host all all 192.168.1.1 255.255.255.255 trust"
>>/usr/local/pgsql/data/pg_hba.conf

Startup postgres with the -i option to allow internet domain sockets

[postgres]$ /usr/local/pgsql/bin/postmaster —-i -D /usr/local/pgsql/data
>/var/log/pgsql 2>&l &

Add the "gold" user as a database administrator
[postgres]$ /usr/local/pgsqgl/bin/createuser gold

Shall the new user be allowed to create databases? y
Shall the new user be allowed to create more new users? n

Create the gold database

[scottmo]l$ /usr/local/pgsql/bin/createdb gold
Edit the Gold configuration files.

[scottmo]$ vi /usr/local/gold/etc/goldd.conf

[scottmo]$ vi /usr/local/gold/etc/gold.conf

16

Chapter 2. Installation

2.9. Web Server Setup

If you want to use the Gold web GUI, you will need to configure your Httpd server to use SSL. For
RedHat Linux systems, a good guide on this is "Buiding a Secure RedHat Apache Server HOWTO" at
<http://www.fags.org/docs/Linux-HOWTO/SSL-RedHat-HOWTO.html >.

The following shows an example configuration that involves making some modifications to the httpd
configuration to support the use of cgi-bin and SSL connections as well as the creation of a private key
and a self-signed certificate.

Edit the httpd.conf file under /etc/httpd/conf:
[root]# cd /etc/httpd/conf

[root]# cp httpd.conf httpd.conf.orig
vi httpd.conf

Edit your cgi-bin Directory to agree with the cgi-bin directory you configured Gold to use and ensure it
has the following properties:

<Directory "/var/www/cgi-bin">
Options ExecCGI
AddHandler cgi-script .cgi .pl
</Directory>

Add a virtual host definition and edit as appropriate for your environment:

<VirtualHost 192.168.72.24:443>
DocumentRoot /var/www/cgi-bin/gold
ServerName gold-server.whatever.org
ServerAdmin Your.Email@whatever.org
ErrorLog logs/gold-error_log
TransferLog logs/gold-access_log
SSLEngine on
SSLCertificateFile /etc/httpd/conf/ssl.crt/gold-server.crt
SSLCertificateKeyFile /etc/httpd/conf/ssl.key/gold-server.key
SetEnvIf User-Agent ".+«MSIE.*" nokeepalive ssl-unclean-shutdown
</VirtualHost>

17

Chapter 2. Installation

Note: As further explanation, if you are installing your cgi-bin files directly under /var/www/cgi-bin,
just use /var/www/cgi-bin as your DocumentRoot. If you are installing your cgi-bin files under a
subdirectory such as /var/www/cgi-bin/gold, you may want to use /var/www/cgi-bin/gold as your
DocumentRoot. You could specify /var/www/cgi-bin here, but then you would need to use an extra
gold subdirectory in your URL when accessing the Gold GUI from your browser.

Create an Alias for cgi-bin pointing to your cgi-bin directory. You may need to callout your specific
cgi-bin subdirectory if your web server configuration interferes with your cgi-bin alias. You may also
need to comment out any conflicting ScriptAlias definition:

#ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"
Alias /cgi-bin/gold "/var/www/cgi-bin/gold"

Create a Private Key for Gold

[root]# mkdir ssl.key

[root]# openssl genrsa —out ssl.key/gold-server.key 1024

Create a Self-Signed Certificate

[root]# openssl req -new -key ssl.key/gold-server.key -x509 -out
ssl.crt/gold-server.crt

Startup or restart httpd.

[root]# /usr/sbin/apachectl restart

Note: In order to use the web gui, users will have to generate passwords for themselves using the
gchpasswd client command.

[scottmo]l# gchpasswd

To access the web gui, open a browser with url: https://$server/gold.cgi

[scottmo]# mozilla https://gold-server/gold.cgi

18

Chapter 2. Installation

2.10. Bootstrap

You will need to populate the gold database with an sql dump that defines the objects, actions and
attributes necessary to function as an Accounting and Allocation Manager.

If you are using PostgreSQL:
[scottmo]l$ /usr/local/pgsql/bin/psql gold < bank.sql
If you are using SQLite:

[scottmo]$ /usr/local/gold/sbin/sqlite /usr/local/gold/data/gold.db <
bank.sql

2.11. Startup

Start the gold server daemon. It is located in the PREFIX/sbin directory.
[scottmo]$ /usr/local/gold/sbin/goldd

Alternatively, if you are on linux system that supports init.d scripts, you can add an add gold as a system
startup service by copying etc/gold.d to /etc/init.d/gold, giving it execute permission, and then start gold
by issuing:

[root]# service gold start

2.12. Initialization

You are now ready to define users, projects, machines, accounts etc. as necessary for your site. The next
chapter (Getting Started) provides a useful primer for this phase of the Gold setup.

19

Chapter 3. Getting Started

In order to prepare Gold for use as an allocation and accounting manager, you will need to perform some
initial steps to define users, machines and projects, make deposits, etc. This chapter proceeds by offering
a number of examples in performing these steps. These steps may be used as a guide, substituting values
and options appropriate for your system.

It is assumed that you have already installed and bootstrapped Gold as an allocation and accounting
manager and started the gold server before performing the steps suggested in this section.

Important: You will need to be a Gold System Adminstrator to perform the tasks in this chapter!

3.1. Define Users

First, you will need to define the users that will use, manage or administer the resources (see Creating
Users).

Example 3-1. Let’s add the users amy, bob and dave.

$ gmkuser -n "Wilkes, Amy" -E "amy(@western.edu" amy
Successfully created 1 User

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" bob

Successfully created 1 User

$ gmkuser —-n "Miller, David" -E "dave@western.edu" dave

Successfully created 1 User

$ Jglsuser

Name Active CommonName PhoneNumber EmailAddress DefaultProject Description

gold True Gold
amy True Wilkes, Amy amy@western.edu

bob True Smith, Robert F. bobRwestern.edu

dave True Miller, David dave@western.edu

20

Chapter 3. Getting Started

3.2. Define Machines

You will also need to add the names of the machines that provide resources (see Creating Machines).

Example 3-2. Let’s define machines called colony and blue.

$ gmkmachine -d "Linux Cluster" colony
Successfully created 1 Machine

$ gmkmachine -d "IBM SP2" blue
Successfully created 1 Machine

$ glsmachine

Name Active Architecture OperatingSystem Description
colony True Linux Cluster
blue True IBM SP2

3.3. Define Projects

Next you should create the projects that will use the resources (see Creating Projects).

Note: In these examples we assume that the account.autogen configuration parameter is set to
automatically create a default account for each project (see Server Configuration).

Example 3-3. We will define the projects biology and chemistry.

$ gmkproject -d "Biology Department" biology
Successfully created 1 Project
Auto-generated Account 1

$ gmkproject -d "Chemistry Department" chemistry
Successfully created 1 Project
Auto-generated Account 2

21

Chapter 3. Getting Started

$ glsproject

Name Active Users Machines Description
biology True Biology Department
chemistry True Chemistry Department

3.4. Add Users to the Projects

Although this could have been done at the project creation step, you can now assign users to be members
of your projects (see Modifying Projects).

Example 3-4. Adding users to our projects.

$ gchproject --addUsers amy,bob biology

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ gchproject —--addUsers amy,bob,dave chemistry
Successfully created 1 ProjectUser
Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ glsproject

Name Active Users Machines Description
biology True amy, bob Biology Department
chemistry True amy, dave, bob Chemistry Department

3.5. Make Deposits

Now you can make some deposits (see Making Deposits).

Example 3-5. Let’s add 360000000 credits to each project. We will cause them both to be valid just
for the fiscal year 2005.

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 360000000 -p biology
Successfully deposited 3600000 credits into account 1

22

Chapter 3. Getting Started

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 360000000 -p chemistry
Successfully deposited 3600000 credits into account 2

Let’s examine the allocations we just created

$ glsalloc
Id Account StartTime EndTime Amount CreditLimit Deposited Description
1 1 2005-01-01 2006-01-01 360000000 0 360000000

2 2005-01-01 2006-01-01 360000000 0 360000000

3.6. Check The Balance

You can verify the resulting balance (see Querying The Balance).

Example 3-6. Let’s look at amy’s balance

$ gbalance -u amy

Id Name Amount Reserved Balance CreditLimit Available
1 Dbiology 360000000 O 360000000 O 360000000
2 chemistry 360000000 O 360000000 O 360000000

Example 3-7. You may just want the total balance for a certain project and machine

$ gbalance —-u amy -p chemistry -m colony —--total
Balance

360000000
The account balance is 360000000 credits

23

Chapter 3. Getting Started

3.7. Integrate Gold with your Resource Management
System

Now you are ready to run some jobs. Before doing so you will need to integrate Gold with your Resource
Management System (see Integrating with the Resource Management System).

Although the quotation, reservation and charge steps will most likely be invoked automatically by your
resource management system, it is useful to understand their effects by invoking them manually.

Let’s simulate the lifecycle of a job.

Example 3-8. We’ll assume our job has the following characteristics:

Job Id: PBS.1234.0
Job Name: heavywater
User Name: amy
Project Name: chemistry
Machine Name: colony

Requested Processors: 16
Estimated WallClock: 3600 seconds
Actual WallClock: 1234 seconds

3.8. Obtain A Job Quote

When a job is submitted, it is useful to check that the user’s account has enough funds to run the job.
This will be verified when the job starts, but by that point the job may have waited some time in the
queue only to find out it never could have run in the first place. The job quotation step (see Obtaining Job
Quotes) can fill this function. Additionally, the quote can be used to determine the cheapest place to run,
and to guarantee the current rates will be used when the job is charged.

Example 3-9. Let’s see how much it will cost to run our job.

$ gquote -p chemistry -u amy -m colony -P 16 -t 3600
Successfully quoted 57600 credits

24

Chapter 3. Getting Started

3.9. Make A Job Reservation

When a job starts, the resource management system creates a reservation (or pending charge) against the
appropriate allocations based on the estimated wallclock limit specified for the job (see Making a Job
Reservation).

Example 3-10. Make a reservation for our job.

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -t 3600
Successfully reserved 57600 credits for job PBS.1234.0

$ Jglsres
Id Account Amount Name Job User Project Machine EndTime Type Descr
1 2 57600 PBS.1234.0 1 amy chemistry colony 2005-08-03 15:29:30-07 Normal

This reservation will decrease our balance by the amount reserved.

$ gbalance -p chemistry —--total --quiet
359942400

Although our allocation has not changed.

$ glsalloc —-p chemistry

Id Account StartTime EndTime Amount CreditLimit Deposited Description

2 2 2005-01-01 2006-01-01 360000000 0 360000000

This is best illustrated by the detailed balance listing:

$ gbalance -p chemistry

Id Name Amount Reserved Balance CreditLimit Available

2 chemistry 360000000 57600 359942400 O 359942400

25

Chapter 3. Getting Started

3.10. Charge for a Job

After a job completes, any associated reservations are removed and a charge is issued against the
appropriate allocations based on the actual wallclock time used by the job (see Charging Jobs).

Example 3-11. Issue the charge for our job.

$ gcharge -J PBS.1234.0 -u amy -p chemistry -m colony -P 16 -t 1234
Successfully charged job PBS.1234.0 for 19744 credits
1 reservations were removed

Your allocation will now have gone down by the amount of the charge.

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount CreditLimit Deposited Description

2 2 2005-01-01 2006-01-01 359980256 0 360000000

However, your balance actually goes up (because the reservation that was removed was larger than the
actual charge).

$ gbalance -p chemistry —--total
Balance

359980256
The account balance is 359980256 credits

A job record was created for the job as a side-effect of the charge (see Querying Jobs).

$ glsjob
Id JobId User Project Machine Charge Class Type Stage QualityOfService Nodes Proc
1 PBS.1234.0 amy chemistry colony 19744 Normal Charge 16

3.11. Refund a Job

Now, since this was an imaginary job, you had better refund the user’s account (see Issuing Job Refunds).

26

Chapter 3. Getting Started

Example 3-12. Let’s isse a refund for our job.

$ grefund -J PBS.1234.0
Successfully refunded 19744 credits for job PBS.1234.0

Our balance is back as it was before the job ran.

$ gbalance -p chemistry —--total

Balance

360000000
The account balance is 360000000 credits

The allocation, of course, is likewise restored.

$ glsalloc -p chemistry

Id Account StartTime EndTime Amount CreditLimit Deposited Description

2 2 2005-01-01 2006-01-01 360000000 0 360000000

Notice that the job charge is now zero because the job has been fully refunded.

$ glsjob
Id JobId User Project Machine Charge Class Type Stage QualityOfService Nodes Proc
1 PBS.1234.0 amy chemistry colony 0 Normal Charge 16

3.12. List Transactions

You can now check the resulting transaction records (see Querying Transactions).

Example 3-13. Let’s list all the job transactions

$ glstxn -0 Job

—-show="RequestId, TransactionId,Object,Action, JobId,Project, User,Machine, Amount"

RequestId TransactionId Object Action JobId Project User Machine Amount

27

Chapter 3. Getting Started

298 299 Job Create

298 303 Job Quote chemistry amy colony 57600
299 304 Job Modify

299 307 Job Reserve PBS.1234.0 chemistry amy colony 57600
300 311 Job Charge PBS.1234.0 chemistry amy colony 19744
300 312 Job Modify

301 314 Job Refund PBS.1234.0

301 315 Job Modify

Example 3-14. It may also be illustrative to examine what transactions actually composed our
charge request...

$ glstxn -R 655 —--show="Id,Object,Action,Name, JobId, Amount,Account,Delta"
Id Object Action Name JobId Amount Account Delta

308 Usage Create

309 Reservation Delete PBS.1234.0

310 Allocation Modify 2

311 Job Charge 1 PBS.1234.0 19744 2 -19744
312 Job Modify 1

3.13. Examine Account Statement

Finally, you can examine the account statement for our activities (see Obtaining an Account Statement).

Example 3-15. We can request an itemized account statement over all time for the chemistry
project (account 2)

$ gstatement -p chemistry
FHH A A R R R R

#

Statement for account 2 (chemistry) generated on Tue Aug 3 16:06:15 2005.
#

Reporting account activity from —-infinity to now.

#

FHEFAAAE AR A R A A R R R R A

Beginning Balance: 0
Total Credits: 360019744
Total Debits: -19744
Ending Balance: 360000000

28

Chapter 3. Getting Started

FHEFFAF A AFRFFF A AR FFERFFSHFFE Credit Detail ####FHFFFFFFFFFFHFFERFFHFFFRHFHERS

Object Action JobId Amount Time
Account Deposit 360000000 2005-08-03 16:01:15-07
Job Refund PBS.1234.0 19744 2005-08-03 16:04:02-07

FHFF A F A A FRFFF A AR A FERFFSHHFFE Debit Detall #####FHFFFFFFRFFFHFFERFFSFFFEHFFEHS

Object Action JobId Project User Machine Amount Time

Job Charge PBS.1234.0 chemistry amy colony -19744 2005-08-03 16:03:39-07

FHERHAFRAAFR A AR A AR A FERFF SR FFE End of Report ########HH#4F#HFH#HERFFSHFFEHFHEHS

3.14. Examine Project Usage

An additional report examines the charge totals for each user that completed jobs (see Project Usage
Summary).

Example 3-16. Display usage by user for the chemistry project

$ gusage —-p chemistry

CE i i i
#

Usage Summary for project chemistry

Generated on Tue Feb 8 11:05:06 2005.

Reporting user charges from 2006-07-01 to 2006-10-01

#

FHH A R R R R S
User Amount

29

Chapter 4. Getting More Advanced

In the previous chapter, a view of the system was presented that largely ignored the presence of accounts
and other advanced features in Gold. This chapter will touch on the additional versatility derived from
explicit use of accounts and other advanced features.

Important: You will need to be a Gold System Adminstrator to perform the tasks in this chapter!

4.1. Define Projects

Let’s assume that we have created users and machines as before in the Getting Started chapter (see
Define Users and Define Machines). Again we will create some projects.

Note: In these examples we assume that the account.autogen configuration parameter is NOT set to
automatically create a default account for each project (see Server Configuration).

Example 4-1. Now we will define the projects. This time we will define the project members at the
same time.

For the biology project we will define a set of users and a default set of machines for the project. The
specified default machine will be honored within accounts associated with this project that specify
MEMBERS in the machine list.

$ gmkproject -d "Biology Department" —-u amy,bob -m blue biology
Successfully created 1 Project

For the chemistry projects we will just define a set of member users.

$ gmkproject -d "Chemistry Department" —-u amy,bob,dave chemistry
Successfully created 1 Project

Let’s see what we’ve got so far in terms of projects.

$ glsproject

Name Active Users Machines Description

30

Chapter 4. Getting More Advanced

biology True amy, bob blue Biology Department
chemistry True amy, dave, bob Chemistry Department

Note: Note that accounts were not auto-generated this time because the account.autogen feature is
set to false.

4.2. Define Accounts

Next, you can create your accounts (see Creating Accounts). Think of your accounts as bank accounts to
which you can associate the users, projects and machines that can use them.

Example 4-2. We will create some accounts for use by the biology and chemistry projects.

$ gmkaccount -p biology —-u MEMBERS -m MEMBERS -n "biology"
Successfully created Account 1

$ gmkaccount -p chemistry —-u MEMBERS -m colony —n "chemistry on colony"

Successfully created Account 2

$ gmkaccount -p chemistry -u amy -n "chemistry for amy"
Successfully created Account 3

$ gmkaccount -p chemistry —-u MEMBERS, —amy -n "chemistry not amy"
Successfully created Account 4

$ glsaccount

Id Name Amount Projects Users Machines Description
1 Dbiology biology MEMBERS MEMBERS

2 chemistry on colony chemistry MEMBERS colony

3 chemistry for amy chemistry amy ANY

4 chemistry not amy chemistry MEMBERS, —amy ANY

So what we have here is: 1) a single account for biology available to all of its defined members and able
to be used only on the blue machine (since blue is its only member machine) 2) an account usable toward

31

Chapter 4. Getting More Advanced

the chemistry project on the colony machine only 3) an account usable anywhere for chemistry by amy
only 4) an account usable anywhere for chemistry by any member except for amy

4.3. Make Deposits

Now you can make some deposits (see Making Deposits).

Example 4-3. Let’s deposit 100 million credits for use by the biology project. We are going to
establish a use-it-or-lose-it policy here in which one fourth of the credits expire each quarter. Since
there is only one account for the biology project, we can specify the project name in the deposit.

$ gdeposit -s 2005-01-01 -e 2005-04-01 -z 25000000 -p biology
Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-04-01 -e 2005-07-01 -z 25000000 -p biology
Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-07-01 -e 2005-10-01 -z 25000000 -p biology
Successfully deposited 25000000 credits into account 1

$ gdeposit -s 2005-10-01 -e 2006-01-01 -z 25000000 -p biology
Successfully deposited 25000000 credits into account 1

Example 4-4. Next we will make some deposits valid toward the chemistry project for the entire
year. Since there are multiple accounts for the chemistry project, we must specify the appropriate
account id in the deposit.

First, we’ll dedicate 50 million credits for use on colony.

$ gdeposit -s 2005-01-01 —-e 2006-01-01 -z 50000000 -a 2
Successfully deposited 50000000 credits into account 2

Then we’ll give amy special access to 10 million credits that she can use anywhere — with 9 million
credits prepaid, and a million credits of overdraft.

32

Chapter 4. Getting More Advanced

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 9000000 -L 1000000 -a 3
Successfully deposited 9000000 credits into account 3

Finally, we’ll give all the other members except amy access to the remaining 40 million credits.

$ gdeposit -s 2005-01-01 -e 2006-01-01 -z 40000000 -a 4
Successfully deposited 40000000 credits into account 4

Example 4-5. We can now take a closer look at the accounts and the allocations that we have

created.
glsaccount
Id Name Amount Projects Users Machines Description
1 Dbiology 25000000 biology MEMBERS MEMBERS
2 chemistry on colony 50000000 chemistry MEMBERS colony
3 chemistry for amy 9000000 chemistry amy ANY
4 chemistry not amy 40000000 chemistry MEMBERS, —amy ANY

Let’s examine the allocations we just created with the time period information.

glsalloc
Id Account StartTime EndTime Amount CreditLimit Deposited Description
1 1 2005-01-01 2005-04-01 25000000 0 25000000
2 1 2005-04-01 2005-07-01 25000000 0 25000000
3 1 2005-07-01 2005-10-01 25000000 0 25000000
4 1 2005-10-01 2006-01-01 25000000 0 25000000
5 2 2005-01-01 2006-01-01 50000000 0 50000000
6 3 2005-01-01 2006-01-01 9000000 1000000 9000000
7 4 2005-01-01 2006-01-01 40000000 0 40000000

4.4. Check The Balance

You can examine the resulting balance (see Querying The Balance).

33

Chapter 4. Getting More Advanced

Example 4-6. Let’s look at amy’s balance

$ gbalance -u amy

Id Name Amount Reserved Balance CreditLimit Available
1 Dbiology 25000000 0 25000000 0 25000000
2 chemistry on colony 50000000 0 50000000 0 50000000
3 chemistry for amy 9000000 0 9000000 1000000 10000000

We see that amy’s total balance is composed of some 25000000 credits useable toward the biology
project, 50000000 for chemistry on colony and another 10000000 which can be used for chemistry on
any machine. Notice that the 10000000 credits available for use in account 3 is composed of a 9000000
balance plus an overdraft limit of 1000000 (meaning your account can go negative by that amount).

Example 4-7. Let’s just get amy’s balance for chemistry on colony.

$ gbalance -u amy -p chemistry -m colony —-total
Balance

59000000
The account balance is 60000000 credits

Example 4-8. Now let’s just get the total that can be used by amy for chemistry on colony. This
includes amy’s available credit.

$ gbalance -u amy -p chemistry -m colony —--total —--available
Balance

60000000
The account balance is 60000000 credits

4.5. Define Charge Rates

Gold allows you to define how much you will charge for your resources (see Creating Charge Rates).

In the Getting Started chapter, we relied on the fact that the default Gold installation predefines a
Processors charge rate for you. This means that the total charge for a job will be calculated by taking the
number of processors used in the job multiplied by the Processors charge rate which is then multiplied by

34

Chapter 4. Getting More Advanced

the wallclock limit. For example: ((16 [Processors] * 1 [ChargeRate{Resource}{Processors}])) * 1234
[WallDuration] = 19744.

Example 4-9. Let’s examine the predefined charge rates.

$ goldsh ChargeRate Query
Type Name Rate Description

Resource Processors 1

Now let’s create a few of our own.

Example 4-10. Let’s say we want to charge for memory used

$ goldsh ChargeRate Create Type=Resource Name=Memory Rate=0.001
Successfully created 1 ChargeRate

Example 4-11. We also want a quality of service multiplier

$ goldsh ChargeRate Create Type=QualityOfService Name=BottomFeeder Rate=0.5
Successfully created 1 ChargeRate

Example 4-12. Creating another quality-based charge multiplier

$ goldsh ChargeRate Create Type=QualityOfService Name=Premium Rate=2
Successfully created 1 ChargeRate

Example 4-13. Let’s take a look at the current charge rates.

$ goldsh ChargeRate Query

Type Name Rate Description
Resource Processors 1

Resource Memory 0.001
QualityOfService BottomFeeder 0.5
QualityOfService Premium 2

35

Chapter 4. Getting More Advanced

4.6. Obtain A Guaranteed Job Quote

This time, we will use the job quote to guarantee our charge rates (this may be useful in the case of
fluxuating rates like market based rates).

Example 4-14. Let’s request a guaranteed charge quote that reflects the memory and quality of
service we expect to use.

$ gquote -p chemistry -u amy -m colony -P 16 -M 2048 -t 3600 —Q Premium
——guarantee
Successfully quoted 129946 credits with quote id 1

This time it actually created a persistent quote ...

$ glsquote 1

Id Amount Job Project User Machine StartTime EndTime WallDuration C

1 129946 1 chemistry amy colony 2005-02-16 12:06:25 2005-02-23 13:06:25 3600 N

... and created a job entry.

$ glsjob -j 1
Id JobId User Project Machine Queue QualityOfService Stage Charge Processors Nodes WallDu

1 amy chemistry colony Premium Quote 16 3600

4.7. Make A Quoted Job Reservation

If the quote id is specified when we make the reservation, the reservation will use the quoted amounts in
calculating the amount to reserve and it will connect to the existing job entry.

Example 4-15. Make a reservation for our job that reflects our resource and quality preferences

while specifying the quote id.

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -M 2048 -t 3600
-Q Premium -q 1
Successfully reserved 129946 credits for job PBS.1234.0

36

Chapter 4. Getting More Advanced

$ glsres
Id Name Amount StartTime EndTime Job User Project Machine Acc

1 PBS.1234.0 129946 2005-02-16 12:35:13 2005-02-16 13:35:13 3 amy chemistry colony 3

The reservation modifies the job entry to take on the new Jobld and to change its stage from Quote to
Reserve.

$ glsjob -3 1
Id JobId User Project Machine Queue QualityOfService Stage Charge Processors Nodes

1 PBS.1234.0 amy chemistry colony Premium Reserve 16

As before, the reservation will decrease our balance by the amount reserved.

$ gbalance -u amy —-p chemistry -m colony

Id Name Amount Reserved Balance CreditLimit Available
2 chemistry on colony 50000000 0 50000000 0 50000000
3 chemistry for amy 8960512 129946 8830566 1000000 9830566

Gold has two accounts to choose from. Gold will debit allocations in the order of earliest expiring and
most specific first. Specifically, precedence is considered in the following order of highest to lowest:
hierarchical relation, expiration time, generality of the project, generality of the user, and generality of
the machine. Here we see that Gold considers the account that is exclusively for amy to be more specific
(and of hence of higher precedence) than the account that is exclusively for the colony machine. This
ordering will ensure that allocations that will expire the soonest will be used up first and that accounts
with more specific access restrictions will be used in favor of accounts that have more general access (for
example - amy will use up an account just for amy before the she begins using a shared account).

4.8. Charge for a Quoted Job

Even if the charge rates change between submission and completion of a job, a job tied to a quote will
use the quoted charge rates in a prorated manner.

37

Chapter 4. Getting More Advanced

Example 4-16. Let’s change a charge rate and issue the charge for our job. We will request that the
quote be honored.

$ goldsh ChargeRate Modify Type==Resource Name==Memory Rate=.002
Successfully modified 1 ChargeRate

$ gcharge -J PBS.1234.0 —u amy -p chemistry -m colony -P 16 -M 2048 -t 1234
-Q Premium -q 1

Successfully charged job PBS.1234.0 for 44542 credits

1 reservations were removed

The charge modifies the job entry with the actual usage, charges and wallduration while changint its
stage from Reserve to Charge.

$ glsjob -j 1
Id JobId User Project Machine Queue QualityOfService Stage Charge Processors Nodes

3 PBS.1234.0 amy chemistry colony Premium Charge 44542 16

The detail charge information for the job can be extracted from the transaction log.

$ glstxn —-A Charge —-J PBS.1234.0 —--show Details

Details

WallDuration=1234,QuotelId=1,QualityOfService=Premium, Processors=16,ItemizedCharges:=((16

Notice from the Itemized Charges above that the quoted memory charge rate of .001 was used instead of
the current rate of .002. Notice also that the amounts have been prorated according to actual resources
used and actual wallclock duration.

4.9. Partially Refund a Job

Example 4-17. Suppose you want to issue a partial refund.

$ grefund -j 1 -z 10000

38

Chapter 4. Getting More Advanced

Successfully refunded 10000 credits for job PBS.1234.0

Notice that the Job Charge is now 10000 credits lower as a result. Gold will not let your refunds total
more than the total charge for the job.

$ glsjob 1
Id JobId User Project Machine Queue QualityOfService Stage Charge Processors Nodes
3 PBS.1234.0 amy chemistry colony Premium Charge 34542 16

4.10. Examine Account Statement

You can get request account statement for our activites as they apply to a particular account.

Example 4-18. We can request an itemized account statement over all time for account 3
(chemistry for amy)

$ gstatement -a 3

FHA A S
#

Statement for account 3 (chemistry for amy)

Generated on Wed Feb 16 15:16:04 2005.

Reporting account activity from -infinity to now.

#

FH A A A

Beginning Balance: 0
Total Credits: 9010000
Total Debits: -44542
Ending Balance: 8965458

HHHHHSH A H A H A4 Credit Detall #######44 4444444 HH4HHHHHHHHHEHHHS
Object Action JobId Amount Time

Account Deposit 9000000 2005-02-16 15:10:44
Job Refund 10000 2005-02-16 15:15:36

HHEFHHA A A E A4S Debit Detall ########4HH#4HHHHHIHERSHERFHERHHERS

Object Action JobId Project User Machine Amount Time

39

Chapter 4. Getting More Advanced
Job Charge PBS.1234.0 chemistry amy colony -44542 2005-02-16 15:14:39

FhHEFHAH SRR F AR H A End of Report ########HH#HHHHHFHFHEEHHHHESESS

40

Chapter 5. Managing Users

A user is a person authorized to submit jobs to run on a high performance computing resource. User
properties include the common name, phone number, email, organization, and default project for that
person. A user can be created, queried, modified and deleted.

5.1. Creating Users

To create a new user, use the command gmkuser:

gmkuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-p
default_project] [-d description] [—debug] [-? | —help] [--man] [—quiet] [-v | —verbose] {[-u]

user_name}

Note: It is possible to have users be created automatically when first encountered in a job function
(charge, reserve or quote) by setting the user.autogen configuration parameter to true (see Server
Configuration). However, bear in mind that users must be defined in order to assign them as
members of a project. It is also possible to establish a system default user to be used in job functions
(charge, reserve, quote) when the user is unspecified (user.default parameter).

Example 5-1. Creating a user

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" -F " (509) 555-1234" bob

Successfully created 1 User

5.2. Querying Users

To display user information, use the command glsuser:

glsuser [-A | -I] [—show
attribute_namel,attribute_name...]...] [—showHidden] [—showSpecial] [-1 | —long] [-w |
—wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-u] user_pattern]

41

Chapter 5. Managing Users

Example 5-2. Listing all info about active users

$ glsuser -A

Name Active CommonName PhoneNumber EmailAddress DefaultProject Description

amy True Wilkes, Amy (509) 555-8765 amylwestern.edu
bob True Smith, Robert F. (509) 555-1234 bob@western.edu

Example 5-3. Displaying bob’s phone number

$ glsuser —--show PhoneNumber bob —--quiet
(509) 555-1234

Example 5-4. Listing all user names without the header

$ glsuser —--show Name --quiet
amy
bob

Example 5-5. Listing a user’s projects

$ glsuser —--show Projects amy -1

Projects

chemistry
biology

5.3. Modifying Users

To modify a user, use the command gchuser:

gchuser [-A|-I] [-n common_name] [-F phone_number] [-E email_address] [-p
default_project] [-d description] [—debug] [-?7 | —help] [—man] [—quiet] [-V |
—verbose] {[-u] user._name}

42

Chapter 5. Managing Users

Example 5-6. Activating a user

$ gchuser —-A bob

Successfully modified 1 User

Example 5-7. Changing a user’s email address

$ gchuser -E "rsmith@cs.univ.edu" bob

Successfully modified 1 User

5.4. Deleting Users

To delete a user, use the command grmuser:

grmuser [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-u] user_name}

Example 5-8. Deleting a user

$ grmuser bob

Successfully deleted 1 User

43

Chapter 6. Managing Machines

A machine is a resource that can run jobs such as a cluster or an SMP box. Machine properties include
the description and whether it is active. A machine can be created, queried, modified and deleted.

6.1. Creating Machines

To create a new machine, use the command gmkmachine:

gmkmachine [-A | -I] [—arch architecture] [—opsSys operating system] [-d
description] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] machine_name}

Note: It is possible to have machines be created automatically when first encountered in a job
function (charge, reserve or quote) by setting the machine.autogen configuration parameter to true
(see Server Configuration). However, bear in mind that machines must be defined in order to assign
them as members of a project. It is also possible to establish a system default machine to be used in
job functions (charge reserve, quote) when the machine is unspecified (machine.default parameter).

Example 6-1. Creating a machine

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

6.2. Querying Machines

To display machine information, use the command glsmachine:

glsmachine [-A | -I] [—show
attribute_namel,attribute_name...]...] [—showHidden] [—showSpecial] [—raw] [—debug] [-? |
—help] [—man] [—quiet] [[-m] machine_pattern]

Example 6-2. Listing all inactive machine names and descriptions

$ glsmachine -I —--show Name,Description

Name Description

inert This machine is unusable

44

Chapter 6. Managing Machines

6.3. Modifying Machines

To modify a machine, use the command gchmachine:

gchmachine [-A | -I] [—arch architecture] [—opsys operating system] [-d
description] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] machine_name}

Example 6-3. Deactivating a machine

$ gchmachine -I colony

Successfully modified 1 Machine

6.4. Deleting Machines

To delete a machine, use the command grmmachine:

grmmachine [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] machine_name}

Example 6-4. Deleting a machine

$ grmmachine colony

Successfully deleted 1 Machine

45

Chapter 7. Managing Projects

A project is a research interest or activity requiring the use of computational resources for a common
purpose. Users may be designated as members of a project and allowed to share its allocations. The
project user list will be honored within accounts including the project that specifty MEMBERS in the
user list. Machines may also be designated as members of a project as a default resource pool. The
project machine list will be honored within accounts including the project that specify MEMBERS in the
machine list.

7.1. Creating Projects

To create a new project, use the command gmkproject:

gmkproject [-A|-I] [-u [+ |-]user_name [, [+ |-]luser_name...]] [[m [+ |-]machine_name [, [+
-lmachine_name...]] [-d description] [—createAccount=TruelFalse] [—debug] [-? |
—help] [—man] [—quiet] [-v | —verbose] {[-p] project_name}

Note: If the account.autogen configuration parameter is set to true (see Server Configuration), an
account will be automatically created for the project (unless overridden with the —createAccount
option). The auto-generated account will be associated with the new project, the user MEMBERS of
the project and ANY machine.

Note: It is possible to have projects be created automatically when first encountered in a job function
(charge, reserve or quote) by setting the project.autogen configuration parameter to true (see Server
Configuration). It is also possible to establish a system default project (project.default) to be used in
job functions (charge, reserve, quote) when the project is unspecified and the user does not have a
default project.

Example 7-1. Creating a project

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project

Example 7-2. Creating a project and specifying user members at the same time

$ gmkproject -d "Chemistry Department" —-u amy,bob,dave chemistry

Successfully created 1 Project

46

Chapter 7. Managing Projects

7.2. Querying Projects

To display project information, use the command glsproject:

glsproject [-A | -I] [—show
attribute_name [,attribute_name...]...] [—showHidden] [—showSpecial] [-1 | —long] [-w |
—wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-p] project_pattern]

Example 7-3. Listing all info about all projects

$ glsproject

Name Active Users Machines Description
biology True amy, bob colony Biology Department
chemistry True amy, dave, bob Chemistry Department

Example 7-4. Displaying the name and user members of a project in long format

$ glsproject —--show Name,Users -1 chemistry

Name Users

chemistry bob
dave
amy

Example 7-5. Listing all project names

$ glsproject —--show Name —--quiet
biology
chemistry

7.3. Modifying Projects

To modify a project, use the command gchproject:
gchproject [-A | -I] [-d description] [—addUser(s) [+ |-]luser_name [, [+

-luser_name...]] [—addMachines(s) [+|-]lmachine name [, [+ | -lmachine_name...]] [—delUser(s)
user._name [,user_name...]] [—delMachines(s) machine_name [,machine_name...]] [—actUser(s)

47

Chapter 7. Managing Projects

user._name [,user_name...]] [—actMachines(s) machine name [,machine_name...]] [—deactUser(s)

user_name [,user_name...]] [—deactMachines(s)
machine_name [,machine_name...]] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p]

project_name}

Example 7-6. Deactivating a project

$ gchproject -I chemistry

Successfully modified 1 Project

Example 7-7. Adding users as members of a project

$ gchproject —--addUsers jsmith,barney chemistry

Successfully created 2 ProjectUsers

Example 7-8. Adding machines as members of a project

$ gchproject --addMachines colony chemistry

Successfully created 1 ProjectMachines

7.4. Deleting Projects

To delete a project, use the command grmproject:

grmproject [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name}

Example 7-9. Deleting a project

$ grmproject chemistry
Successfully deleted 1 Project

48

Chapter 7. Managing Projects

7.5. Project Usage Summary

To generate a project usage summary broken down by user, use the command gusage. This report lists
the total charges by each of the active users during the specified time frame.

gusage [-s start_time] [-e end_time] [-h | —hours] [—debug] [-? | —help] [—man] {[-p]

project_name}

Example 7-10. Displaying a usage summary for the chemistry project during the third quarter of
2006

$ gusage -p chemistry -s 2006-07-01 -e 2006-10-01

FHAFHS A A A
#

Usage for project chemistry

Generated on Tue Feb 8 11:05:06 2005.

Reporting user charges from 2006-07-01 to 2006-10-01

#

#

FHEH S AR R R R R R R R R R

User Amount

amy 19744
bob 36078

49

Chapter 8. Managing Accounts

An account is a container for time-bounded resource credits valid toward a specific set of projects, users
and machines. Much like with a bank, an account is a repository for resource credits. Each account has a
set of access control lists designating which users, projects, and machines may access the account. An
account may restrict the projects that can charge to it. Normally an account will be tied to a single project
but it may be tied to an arbitrary set of projects or ANY project. An account may restrict the users that
can charge to it. It will frequently be tied to the the user MEMBERS of the associated project(s) but it
may be tied to an arbitrary set of users or ANY user. An account may restrict the machines that can
charge to it. It may be tied to an arbitrary set of machines, just the machine MEMBERS of the associated
project(s) or ANY machine.

When resource credits are deposited into an account, they are associated with a time period within which
they are valid. These time-bounded pools of credits are known as allocations. (An allocation is a pool of
resource credits associated with an account for use during a particular time period.) By using multiple
allocations that expire in regular intervals it is possible to implement a use-it-or-lose-it policy and
establish a project cycle.

Accounts may be nested. Hierarchically nested accounts may be useful for the delegation of management
roles and responsibilities. Deposit shares may be established that assist to automate a trickle-down effect
for funds deposited at higher level accounts. Additionally, an optional overflow feature allows charges
against lower level accounts to trickle up the hierarchy.

Operations include creating, querying, modifying and deleting accounts as well as making deposits,
withdrawals, transfers and balance queries.

8.1. Creating Accounts

gmkaccount is used to create a new account. A new id is automatically generated for the account.

gmkaccount [-n account_name] [-p [+ |-]project_name |, [+ |-lproject_name...]] [-u [+]
-luser_name [, [+|-]luser_name...]] [-[m [+|-]lmachine_name [, [+ |-]lmachine_name...]] [-d
description] [——debug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Important: When creating an account, it is important to specify at least one user, machine and
project designation. If omitted, these will default to ANY.

Note: It is possible to have accounts be created automatically when projects are created by setting
the account.autogen configuration parameter to true (see Server Configuration). The auto-generated
account will be associated with the new project, the user MEMBERS of the project and ANY
machine.

50

Chapter 8. Managing Accounts

Example 8-1. Creating an account

$ gmkaccount -p chemistry -u MEMBERS -m ANY -n "Chemistry"
Successfully created 1 Account

Successfully created 1 AccountProject

Successfully created 1 AccountUser

Successfully created 1 AccountMachine

Example 8-2. Creating a wide-open account

$ gmkaccount -p ANY —-u ANY -m ANY -n "Cornucopia"
Successfully created 1 Account

Successfully created 1 AccountProject
Successfully created 1 AccountUser
1

Successfully created AccountMachine

Example 8-3. Creating an account valid toward all biology project members except for dave and
all machines except for blue

$ gmkaccount -p biology —-u MEMBERS,-dave -m ANY,-blue -n "Not Dave"
Successfully created 1 Account
Successfully created AccountProject

Successfully created AccountUser

AccountMachine

1
1

Successfully created 1 AccountUser
Successfully created 1
1

Successfully created AccountMachine

8.2. Querying Accounts

To display account information, use the command glsaccount:

glsaccount [-A | -I] [-n account_name] [-p project_name] [-u user_name] [-m machine_name] [-s
start_time] [-e end_time] [—exact-match] [—show

attribute_name [,attribute_name...]...] [—showHidden] [-1 | —long] [-w | —wide] [—raw] [-h
—hours] [—debug] [-? | —help] [—man] [—quiet] [[-a] account_id]

51

Chapter 8. Managing Accounts

Example 8-4. Listing all info about all accounts with multi-valued fields displayed in a multi-line
format

$ glsaccount --long

Id Name Amount Projects Users Machines Description
1 Biology 360000000 biology MEMBERS blue

2 Chemistry 360000000 chemistry MEMBERS ANY

3 Cornucopia 0 ANY ANY ANY

4 Not Dave 250000 biology —dave -blue

Example 8-5. Listing all info about all accounts useable by dave

$ glsaccount -u dave --long

Id Name Amount Projects Users Machines Description

2 Chemistry 360000000 chemistry MEMBERS ANY
3 Cornucopia 0 ANY ANY ANY

8.3. Modifying Accounts

To modify an account, use the command gchaccount:

gchaccount [-n account_name] [-d description] [—addProject(s) [+ |-]project_name [, [+ |
-lproject_name...]] [—addUser(s) [+ |-luser_name [, [+ | -luser_name...]] [—addMachine(s) [+ |
-lmachine_name [, [+ | -lmachine_name...]] [—delProject(s)

project_name [,project_name...]] [—delUser(s) user._name [,user_name...]| [—delMachine(s)

machine_name [,machine_name...]|] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a]
account_id}

Example 8-6. Adding a user to the list of users that share the account

$ gchaccount —--addUser dave 1

Successfully created 1 AccountUser

52

Chapter 8. Managing Accounts

8.4. Making Deposits

gdeposit is used to deposit time-bounded resource credits into accounts resulting in the creation or
enlargement of an allocation. (See Allocations for managing allocations). The start time will default to
-infinity and the end time will default to infinity if not specified. Accounts must first be created using
gmkaccount (unless auto-generated).

gdeposit {-a account_id|-p project_name} [-i allocation_id] [-s start_time] [-€
end_time] [[-z] amount] [-L credit_limit] [-d description] [-h | —hours] [—debug] [-? |
—help] [—man] [—quiet] [-v | —verbose]

Example 8-7. Making a deposit

$ gdeposit -s 2003-10-01 —-e 2004-10-01 -z 360000000 -a 1
Successfully deposited 360000000 credits into account 1

Example 8-8. Making a deposit "into'' a project

If a project has a single account then a deposit can be made against the project.

$ gdeposit -s 2003-10-01 -e 2004-10-01 -z 360000000 -p chemistry
Successfully deposited 360000000 credits into account 2

Example 8-9. Creating a credit allocation

$ gdeposit -L 10000000000 -a 3

Successfully deposited 0 credits into account 3

8.5. Querying The Balance

To display balance information, use the command gbalance:

gbalance [-p project_name] [-u user_name] [-m
machine_name] [—total] [—available] [—raw] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet]

53

Chapter 8. Managing Accounts

Example 8-10. Querying the project balance detail broken down by account

$ gbalance -p chemistry

Id Name Amount Reserved Balance CreditLimit Available
1 Chemistry 360000000 O 360000000 O 360000000
2 Cornucopia 0 0 0 1000000000000 1000000000000

Example 8-11. Querying the total balance for a particular user in a particular project on a
particular machine

$ gbalance -u bob -m colony —-p chemistry —--total
Balance

360000000
The account balance is 360000000 credits

Example 8-12. List the projects and available balance amy can charge to

$ gbalance —-u amy —--show Project,Balance
Project Balance

biology 360000000
chemistry 360000000

8.6. Personal Balance

The mybalance has been provided as a wrapper script to show users their personal balance. It provides a
list of balances for the projects that they can charge to:

gbalance [-h | —hours] [-? | —help] [—man]

Example 8-13. List my (project) balances

$ mybalance

Project Balance

biology 324817276

54

Chapter 8. Managing Accounts

chemistry 9999979350400

Example 8-14. List my balance in (Processor) hours

$ mybalance -h
Project Balance

biology 90227.02
chemistry 2777772041.77

8.7. Making Withdrawals

To issue a withdrawal, use the command gwithdraw:

gwithdraw {-a account_id|-p project_name} [-1 allocation_id] {[-z] amount} [-d
description] [-h | —hours] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 8-15. Making a withdrawal

$ gwithdraw -z 12800 -a 1 -d "Grid Tax"

Successfully withdrew 12800 credits from account 1

Example 8-16. Making a withdrawal ''from'' a project

If a project has a single account then a withdrawal can be made against the project.

$ gwithdraw -z 12800 -p chemistry

Successfully withdrew 12800 credits from account 2

8.8. Making Transfers

To issue a transfer between accounts, use the command gtransfer. If the allocation id is specified, then
only credits associated with the specified allocation will be transferred, otherwise, only active credits will
be transferred. Account transfers preserve the allocation time periods associated with the resource credits

55

Chapter 8. Managing Accounts

from the source to the destination accounts. If a one-to-one mapping exists between project and account,
then the fromProject/toProject options may be used in place of the fromAccount/toAccount options.

gtransfer {—fromAccount source_account_id|—fromProject source_project_namel -i
allocation_id} {—toAccount destination _account_id |—toProject
destination_project_name} [-d description] [-h | —hours] [—debug] [-? |

—help] [—man] [—quiet] [-v | —verbose] {[-z] amount}

Example 8-17. Transferring credits between two accounts

$ gtransfer —--fromAccount 1 —--toAccount 2 10000

Successfully transferred 10000 credits from account 1 to account 2

Example 8-18. Transferring credits between two single-account projects

$ gtransfer —--fromProject biology —--toProject chemistry 10000
Successfully transferred 10000 credits from account 1 to account 2

8.9. Obtaining an Account Statement

To generate an account statement, use the command gstatement. For a specified time frame it displays
the beginning and ending balances as well as the total credits and debits to the account over that period.
This is followed by an itemized report of the debits and credits. Summaries of the debits and credits will
be displayed instead of the itemized report if the —summarize option is specified. If a project, user or
machine is specified instead of an account, then the statement will consist of information merged from
all accounts valid toward the specified entities.

gstatement [[-a] account_id] [-p project_name] [-U user_name] [-m machine_name] [-S
start_time] [-e end_time] [—summarize] [-h | —hours] [—debug] [-? | —help] [—man]

Example 8-19. Generating an account statement for the third quarter of 2006

$ gstatement -a 2 -s 2006-07-01 —-e 2006-10-01
FH S R R R A

#

Statement for account 2 (chemistry) generated on Tue Aug 3 16:06:15 2005.
#

Reporting account activity from —-infinity to now.

#

FHEFHAAE AR A R A R R A R R R R R A R R R

56

Chapter 8. Managing Accounts

Beginning Balance: 0
Total Credits: 360019744
Total Debits: -19744
Ending Balance: 360000000

FHFR A F A AFRFFF A A AR A FERFFSFFFE Credit Detail ####HHFFFFFFFFFFHFFERFFSHFFRHFFEES

Object Action JobId Amount Time
Account Deposit 360000000 2005-08-03 16:01:15-07
Job Refund PBS.1234.0 19744 2005-08-03 16:04:02-07

FHERHAFRAAFR A A AR A AR A FE A F SR HE Debit Detall #####H##FFHHHRFHFHAFERAFSHFFEHFHERS

Object Action JobId Project User Machine Amount Time

Job Charge PBS.1234.0 chemistry amy colony -19744 2005-08-03 16:03:39-07

FHERHAF A AFR A AR A AR A F SR FF SR FFE End of Report #######4H#4H4HHHFHERFFSHFFERFHEHS

8.10. Deleting Accounts

To delete an account, use the command grmaccount:

grmaccount [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a] account_id}

Example 8-20. Deleting an account

$ grmaccount 2

Successfully deleted 1 Account

57

Chapter 9. Managing Allocations

An allocation is a time-bounded pool of resource credits associated with an account. An account may
have multiple allocations, each for use during a different time period. An allocation may also have a
credit limit representing the amount by which it can go negative.

Operations include querying, modifying and deleting allocations.

9.1. Creating Allocations

Allocations are created by making account deposits via the gdeposit command (See Making Deposits).

9.2. Querying Allocations

To display allocation information, use the command glsalloc:

glsalloc [-A | -I] [-a account_id] [-p project_name] [—show
attribute_name [,attribute_name...]...] [—showHidden] [—raw] [-h | —hours] [—debug] [-? |
—help] [—man] [—quiet] [[-i] allocation_id]

Example 9-1. Listing allocations for account 4

$ glsalloc -a 4

Id Account StartTime EndTime Amount CreditLimit Deposited Active Description
4 4 2005-01-01 2005-04-01 250000 0 250000 False
5 4 2005-04-01 2005-07-01 250000 0 250000 False
6 4 2005-07-01 2005-10-01 250000 0 250000 True
7 4 2005-10-01 2006-01-01 250000 0 250000 False

9.3. Modifying Allocations

To modify an allocation, use the command gchalloc:

gchalloc [-s start_time] [-e end_time] [-L credit_limit][-d description][-hl
—hours] [—debug] [-? | —help] [--man] [—quiet] [-v | —verbose] {[-i] allocation_id}

58

Chapter 9. Managing Allocations

Example 9-2. Changing the end time for an allocation

$ gchalloc -e "2005-01-01" 4

Successfully modified 1 Allocation

Example 9-3. Changing the credit limit for an allocation

$ gchalloc -L 500000000000 -i 2
Successfully modified 1 Allocation

9.4. Deleting Allocations

To delete an allocation, use the command grmalloc:

grmalloc [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-1|[-i] allocation_id}

Example 9-4. Deleting an allocation

$ grmalloc 4
Successfully deleted 1 Allocation

Example 9-5. Purging inactive allocations

$ grmalloc -I
Successfully deleted 2 Allocations

59

Chapter 10. Managing Reservations

A reservation is a hold placed against an account. Before a job runs, a reservation (or hold) is made
against one or more of the requesting user’s applicable account(s). Subsequent jobs will also post
reservations while the available balance (active allocations minus reservations) allows. When a job
completes, the reservation is removed and the actual charge is made to the account(s). This procedure
ensures that jobs will only run so long as they have sufficient reserves.

Associated with a reservation is the name of the reservation (often the job id requiring the reservation),
the user, project, and machine as applicable, an expiration time, and an amount. Operations include
creating, querying, modifying and deleting reservations.

10.1. Creating Reservations

Reservations are created by the resource management system with the greserve command (See Making
Job Reservations).

10.2. Querying Reservations

To display reservation information, use the command glsres:

glsres [-A|-I] [-n reservation_name | job_id pattern][-p project_name] [-u
user._name] [-m machine_name] [—show

attribute_name [,attribute_name...]...] [—showHidden] [-l | —long] [-w | —wide] [—raw] [-h |
—hours] [—debug] [-? | —help] [—man] [—quiet] [[-1] reservation_id]

Example 10-1. Listing all info about all reservations for bob

$ glsres —u bob

Id Name Amount StartTime EndTime Job User Project Mac

1 Interactive.789654 3600 2005-01-13 16:48:15 2005-01-13 17:48:15 1 bob chemistry blu

Example 10-2. Listing all info about all reservations that impinge against amy’s balance

$ glsres —u amy —-option name=UseRules value=True

Id Name Amount StartTime EndTime Job User Project Mac

60

Chapter 10. Managing Reservations

1 1Interactive.789654 3600 2005-01-13 16:48:15 2005-01-13 17:48:15 1 bob chemistry blu
2 PBS.1234.0 7200 2005-01-13 17:59:09 2005-01-14 02:28:41 2 amy chemistry col

10.3. Modifying Reservations

To modify a reservation, use the command gchres:

gchres [-s start_time] [-e end_time] [-d description] [—debug] [-? |
—help] [—man] [—quiet] [-v | —verbose] {[-1] reservation_id}

Example 10-3. Changing the expiration time of a reservation

$ gchres -e "2004-08-07 14:43:02" 1

Successfully modified 1 Reservation

10.4. Deleting Reservations

To delete a reservation, use the command grmres:

grmres [—debug] [-? | —help] [—man] [-q | —quiet] [-v | —verbose] {-1 | -n reservation_name |
job_id | [-r] reservation_id}

Example 10-4. Deleting a reservation by name (JobId)

$ grmres —-n PBS.1234.0

Successfully deleted 1 Reservation

Example 10-5. Deleting a reservation by Reservationld

$ grmres 1

Successfully deleted 1 Reservation

61

Chapter 10. Managing Reservations

Example 10-6. Purging stale reservations

$ grmres -I

Successfully deleted 2 Reservations

62

Chapter 11. Managing Quotations

A quotation provides a way to determine beforehand how much would be charged for a job. When a
quotation is requested, the charge rates applicable to the job requesting the quote are saved and a quote id
is returned. When the job makes a reservation and the final charge, the quote can be referenced to ensure
that the saved chargerates are used instead of current values. A quotation has an expiration time after
which it cannot be used. A quotation may also be used to verify that the given job has sufficient funds
and meets the policies necessary for the charge to succeed.

Operations include querying, modifying and deleting quotations.

11.1. Creating Quotations

Quotations are normally created by the resource management system with the gquote command (See
Making Job Quotations).

11.2. Querying Quotations

To display quotation information, use the command glsquote:
glsquote [-A | -I] [-p project_name] [-u user_name] [-m machine_name] [—show

attribute_name [,attribute_name...]...] [—showHidden] [-l | —long] [-w | —wide] [—raw] [-h |
—hours] [—debug] [-? | —help] [—man] [—quiet] [[-q] quote_id]

Example 11-1. Listing all info about all quotes for user amy on machine colony

$ glsquote -u amy -m colony

Id Amount Job Project User Machine StartTime EndTime WallDuration T

1 57600 1 chemistry amy colony 2005-01-14 10:09:58 2005-09-10 15:27:07 3600 N

11.3. Modifying Quotations

To modify a quotation, use the command gchquote:

gchquote [-s start_time] [-e expiration_time] [-d description] [—debug] [-? |
—help] [--man] [—quiet] [-v | —verbose] {[-q] quote_id}

63

Chapter 11. Managing Quotations

Example 11-2. Changing the expiration time of a quotation

$ gchquote -e "2005-03-01" 1

Successfully modified 1 Quotation

11.4. Deleting Quotations

To delete a quotation, use the command grmquote:

grmquote [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-1 | [-q] quote_id}

Example 11-3. Deleting a quotation

$ grmquote 1
Successfully deleted 1 Quotation

Example 11-4. Purging stale quotations

$ grmquote -I
Successfully deleted 2 Quotations

64

Chapter 12. Managing Jobs

Gold can track the jobs that run on your system, recording the charges and resources used for each job.
Typically, a job record is created when the resource manager charges for a job. Job quotes, reservations,
charges and refunds can be issued.

12.1. Creating Jobs

In most cases, jobs will be created by the resource management system with the gcharge command (See
Charging Jobs).

Howeyver, it is also possible to create job records by hand using the command gold Job Create:

goldsh Job Create Jobld=<Job 1d> [User=<User Name>] [Project=<Project

Name>] [Machine=<Machine Name>][Charge=<Charge>] [Queue=<Class or

Queue>] [Type=<Job Type> (Normal)][Stage=<Last Job Stage>][QOS=<Quality Of
Service>] [Nodes=<Number Of Nodes>] [Processors=<Number Of Processors>] [State=<Job
State>] [Executable=<Executable>] [Application=<Application>] [StartTime=<Start
Time>] [EndTime=<End Time>][WallDuration=<wallclock Time in

seconds>] [Quoteld=<guote 1d>][Description=<Description>][ShowUsage:=True]

Example 12-1. Creating a job record

$ goldsh Job Create JobId=PBS.1234.0 User=jsmith Project=chem
Machine=cluster Charge=2468 Processors=2 WallDuration=1234
Successfully created 1 Job

12.2. Querying Jobs

To display job information, use the command glsjob:

glsjob [[-J] job_id pattern] [-p project_name] [-u user_name] [-m machine_name] [-C
queue] [-T type] [—stage stage] [-S start_time] [-e end_time] [—show
attribute_namel,attribute_name...]...] [—showHidden] [—raw] [—debug] [-? |

—help] [—man] [—quiet] [[-j] gold job_id]

65

Chapter 12. Managing Jobs

Example 12-2. Show specific info about jobs run by amy

$ glsjob —-show=Jobld,Project,Machine,Charge -u amy
JobId Project Machine Charge

PBS.1234.0 chemistry colony 0

12.3. Modifying Jobs

It is possible to modify a job by using the command goldsh Job Modify:

goldsh Job Modify [Jobld==<Job 1d>|ld==<Gold Job Id>][User=<User

Name>] [Project=<Project Name>][Machine=<Machine

Name>] [Charge=<Charge>] [Queue=<Class or Queue>][Type=<Job Type>][Stage=<Last
Job Stage>][QOS=<Quality 0f Service>][Nodes=<Number Of

Nodes>] [Processors=<Number Of Processors>]|[State=<Job

State>] [Executable=<Executable>] [Application=<Application>] [Start-
Time=<StartTime>] [EndTime=<EndTime>] [WallDuration=<Wallclock Time in
seconds>] [Quoteld=<Quote Id>] [Description=<Description>][ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent modification of all jobs.

Example 12-3. Changing a job

$ goldsh Job Modify JobId==PBS.1234.0 Charge=1234 Description="Benchmark"
Successfully modified 1 Job

12.4. Deleting Jobs

To delete a job, use the command goldsh Job Delete:

goldsh Job Delete [Jobld==<Job 1d> |Id==<1d>]

66

Chapter 12. Managing Jobs

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent deletion of all jobs.

Example 12-4. Deleting a job

$ goldsh Job Delete JobId==PBS.1234.0
Successfully deleted 1 Job

12.5. Obtaining Job Quotes

Job quotes can be used to determine how much it will cost to run a job. This step verifies that the
submitter has sufficient funds for, and meets all the allocation policy requirements for running the job
and can be used at job submission as an early filter to prevent jobs from getting in and waiting in the job
queue just to be blocked from running later. If a guaranteed quote is requested, a quote id is returned and
can be used in the subsequent charge to guarantee the rates that were used to form the original quote. A
guaranteed quote has the side effect of creating a quotation record and a permanent job record.

To request a job quote, use the command gquote:

gquote [-p project_name] [-u user_name] [-m machine_name] [-P processors] [-M memory] [-D
disk] [-Q 00S] [-t wallclock_time][-s start_time][-e end time] [-d
description] [—guarantee] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 12-5. Requesting a quotation

$ gquote -p chemistry -u amy -m colony -P 2 -t 3600
Successfully quoted 7200 credits

Example 12-6. Requesting a guaranteed quote

$ gquote -p chemistry —-u amy -m colony -P 16 -t 3600 ——guarantee
Successfully quoted 57600 credits with quote id 1

67

Chapter 12. Managing Jobs

$ glsquote
Id Amount Job Project User Machine StartTime EndTime WallDuration T
1 57600 1 chemistry amy colony 2005-01-14 10:09:58 2005-08-10 15:27:07 3600 N

Note: It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server Configuration).

12.6. Making Job Reservations

A job reservation can be used to place a hold on the user’s account before a job starts to ensure that the
credits will be there when it completes.

To create a job reservation use the command greserve:

greserve [-p project_name] [-u user_name] [-m machine_name] [-P processors] [-M
memory] [-D disk] [-Q 00S] [-t wallclock_time] [-S start_time] [-e end_time] [-q
quote_id] [-d description] [—replace] [—debug] [-? | —help] [—man] [—quiet] [-V |
—verbose] {[-J] job_id}

Example 12-7. Creating a reservation

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 3600
Successfully reserved 7200 credits for job PBS.1234.0

Note: It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server Configuration).

12.7. Charging Jobs

A job charge debits the appropriate allocations based on the user, project and machine associated with
the job. The charge is calculated based on factors including the resources used, the job run time, and
other quality-based factors (See Managing Charge Rates).

To charge for a job use the command gcharge:

68

Chapter 12. Managing Jobs

gcharge [-p project_name] [-u user_name] [-m machine_name] [-P processors] [-N nodes] [-M
memory] [-D disk] [-Q 00S] [-t wallclock_time] [-S job_state] [-T job_type] [—application
application] [—executable executable] [-C queue] [-s start_time] [-e end_time] [-q
quote_id] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-J] job_id}

Example 12-8. Issuing a job charge

$ gcharge -J PBS.1234.0 -p chemistry —u amy -m colony -P 2 -t 1234
Successfully charged job PBS.1234.0 for 2468 credits
1 reservations were removed

Note: It is possible to establish a system default machine, project or user to be used in job functions
(charge, reserve or quote) when left unspecified (see Server Configuration).

12.8. Issuing Job Refunds

A job can be refunded in part or in whole by issuing a job refund. This action attempts to lookup the
referenced job to ensure that the refund does not exceed the original charge and so that the charge entry
can be updated. If multiple matches are found (such as the case when job ids are non-unique), this
command will return the list of matched jobs with unique ids so that the correct job can be specified for
the refund.

To issue a refund for a job, use the command grefund:

grefund [-J job_id] [[-j] gold_job_id] [-z amount] [-a account_id] [-d description][-hl|
—hours] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 12-9. Issuing a job refund

$ grefund -J PBS.1234.0
Successfully refunded 19744 credits for job PBS.1234.0

69

Chapter 13. Managing Charge Rates

Charge Rates establish how much it costs to use your resources. There are four main categories of charge
rates: Consumable Resource Charge Rates, Usage Charge Rates, Name-Based Multiplier Rates and
Value-Based Multiplier Rates.

« Consumable Resource Charge Rates — Consumable Resource Charge Rates define how much it
costs per unit of time to use a consumable resource like processors, memory, telescope, etc. These
resource metrics must first be multiplied by wall duration before being added to the total charge.
Consumable Resource Charge Rates are of Type "Resource"”, with the Name being the resource name
(such as Processors) and the given Rate (such as 1) being multiplied by the consumed resource value
(such as 8).

- Usage Charge Rates — Usage Charge Rates define how much to charge for metrics of total
resource usage such as CpuTime, Licenses used, Power consumed (in Watts), etc. These resource
metrics are added to the total charge without being multiplied by wall duration. Usage Charge Rates
are of Type "Usage", with the Name being the resource name (such as Power) and the given Rate
(such as .001) being multiplied by the consumed resource value (such as 40000).

« Name-Based Multiplier Rates — Name-Based Multiplier Rates are quality based charge rates
which apply a multiplicative charge factor based on a quality of the job such as QOS, nodetype, queue,
user, time of day, etc. These charge multipliers are determined by a hash or lookup table based on the
value of the job attribute. These rates are multiplied against the total of the resource and usage charges
for the job. Name-Based Multiplier Rates have a Type named according to the job quality (such as
QOS), with the Name being the quality instance (such as Premium) and the given Rate (such as 2)
being directly multiplied to the total of the resource and usage charges.

+ Value-Based Multiplier Rates — Value-Based Multiplier are scaled multipliers which apply a
multiplicative charge factor based on a numeric scaling factor. These incoming scaling factors are
multiplied against the Value-Based Multiplier Rate and then are multiplied against the total of the
resource and usage charges for the job. Value-Based Multiplier Rates are of Type "Multiplier", with
the Name being the multiplier name (such as Discount) and the given Rate (such as 1) being
multiplied with the scaling factor before being multiplied to the total job charge.

By default, job charges are calculated according to the following formula: For each Consumable
Resource Charge Type applicable to a given job, a resource charge is calculated by multiplying the
amount of the resource used by the amount of time it was used, multiplied by the charge rate for that
resource. For each Usage Charge Type applicable to a given job, a usage charge is calculated by
multiplying the amount of the resource used by the charge rate for that resource. These resource charges
and usage charges are added together. Then, for each Name-Based Charge Rate applicable to the job, a
charge factor is looked-up based on the type and name of the charge rate. The sum of the resource
charges is multiplied by each of the applicable name-based charge factors. Finally, for each Value-Based
Charge Rate applicable to the job, a charge factor is determined by multiplying the multiplier value by its
corresponding rate. These value-based charge rates are multiplied against the total job charge.

70

Chapter 13. Managing Charge Rates

13.1. Creating ChargeRates

To create a new charge rate, use the command goldsh ChargeRate Create:

goldsh ChargeRate Create Type=<Charge Rate Type> Name=<Charge Rate Name>
Rate=<Floating Point Multiplier> [Description=<Description>][ShowUsage:=True]

Example 13-1. Creating a consumable resource charge rate

$ goldsh ChargeRate Create Type=Resource Name=Processors Rate=1
Successfully created 1 ChargeRate

Example 13-2. Creating another consumable resource charge rate

$ goldsh ChargeRate Create Type=Resource Name=Memory Rate=0.001
Successfully created 1 ChargeRate

Example 13-3. Creating a usage charge rate

$ goldsh ChargeRate Create Type=Usage Name=Power Rate=0.001
Successfully created 1 ChargeRate

Example 13-4. Creating another usage charge rate

$ goldsh ChargeRate Create Type=Usage Name=CpuTime Rate=1
Successfully created 1 ChargeRate

Example 13-5. Creating a name-based multiplier rate

$ goldsh ChargeRate Create Type=QualityOfService Name=BottomFeeder Rate=0.5
Successfully created 1 ChargeRate

71

Chapter 13. Managing Charge Rates

Example 13-6. Creating another name-based multiplier rate

$ goldsh ChargeRate Create Type=QualityOfService Name=Premium Rate=2
Successfully created 1 ChargeRate

Example 13-7. Creating a value-based multiplier rate

$ goldsh ChargeRate Create Type=Multiplier Name=Discount Rate=1
Successfully created 1 ChargeRate

13.2. Querying ChargeRates

To display charge rate information, use the command goldsh ChargeRate Query:

goldsh ChargeRate Query [Show:=<"Fieldl,Field2,...">][Type==<Charge Rate
Type>] [Name==<Charge Rate Name>][Rate==<Floating Point
Multiplier>] [Description==<Description>] [ShowUsage:=True]

Example 13-8. Listing all charge rates

$ goldsh ChargeRate Query

Type Name Rate Description

Resource Processors 1 Passed in Clusters
Resource Memory 0.001 Mega Bytes

Usage Power 0.001 watts

Usage CpuTime 1 Passed in SMP Machines
QualityOfService BottomFeeder 0.5

QualityOfService Normal 1

QualityOfService Premium 2

Architecture Power?2 1.5

MachineName BlueMountain 0.1

UserName brandon 0 Brandon uses for free
Queue development 0.25

Multiplier Discount 1

72

Chapter 13. Managing Charge Rates

13.3. Modifying Charge Rates

To modify a charge rate, use the command goldsh ChargeRate Modify:

goldsh ChargeRate Modify [Rate=<Floating Point

Multiplier>] [Description=<Description>][Type==<Charge Rate
Type>] [Name==<Charge Rate Name>][Rate==<Floating Point
Multiplier>] [ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent modification of all charge rates.

Example 13-9. Changing a charge rate

$ goldsh ChargeRate Modify Type==Resource Name==Memory Rate=0.05
Successfully modified 1 ChargeRate

13.4. Deleting Charge Rates

To delete a charge rate, use the command goldsh ChargeRate Delete:

goldsh ChargeRate Delete [Name==<Charge Rate Name>]|[Rate==<Floating Point
Multiplier>]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent deletion of all charge rates.

Example 13-10. Deleting a charge rate

$ goldsh ChargeRate Delete Type==Resource Name==Memory
Successfully deleted 1 ChargeRate

73

Chapter 14. Managing Transactions

Gold logs all modifying transactions in a detailed transaction journal (queries are not recorded). Previous
transactions can be queried but not modified or deleted.

14.1. Querying Transactions

To display transaction information, use the command glstxn:

glstxn [-O object] [-A action] [-n name_or_id] [-U actor] [-a account_id] [-i
allocation_id] [-u user_name] [-p project_name] [-m machine_name] [-J job_id] [-s
start_time] [-e end_time] [-T transaction_id][-R request_id] [—show
attribute_namel,attribute_name...]...] [—showHidden] [—raw] [—debug] [-? |

—help] [—man] [—quiet]

Example 14-1. List all deposits made in 2004

$ glstxn —-A Deposit -s 2004-01-01 -e 2005-01-01

Example 14-2. List everything done by amy since the beginning of 2004

$ glstxn -U amy -s 2004-01-01

Example 14-3. List all transactions affecting Job Id PBS.1234.0

$ glstxn -J PBS.1234.0

Example 14-4. List all transactions affecting charge rates

$ glstxn -O ChargeRate

74

Chapter 15. Managing Roles

Gold uses instance-level role based access controls to determine what users can perform what functions.
Named roles are created, privileges are associated with the roles, and users are assigned to these roles.

15.1. Querying Roles

To display the currently defined roles, use the command goldsh Role Query:

goldsh Role Query [Show:=<"Fieldl,Field2,...">][Name==<Role
Name>] [Description==<Description>] [ShowUsage:=True]

Example 15-1. Listing all roles

$ goldsh Role Query
Name Description

SystemAdmin Can update or view any object

Anonymous Things that can be done by anybody

OVERRIDE A custom authorization method will be invoked
ProjectAdmin Can update or view a project they are admin for
UserServices User Services

Scheduler Scheduler relevant Transactions

15.2. Querying Role Users

To list what users can perform what roles, use the command goldsh RoleUser Query:

goldsh RoleUser Query [Show:=<"Fieldl,Field2,...">][Role==<Role
Name>] [Name==<User Name>][ShowUsage:=True]

Example 15-2. Listing all role users

$ goldsh RoleUser Query

Role Name

SystemAdmin gold
Anonymous ANY
OVERRIDE ANY

75

Chapter 15. Managing Roles
Scheduler maui

SystemAdmin root
UserServices amy

15.3. Querying Role Actions

To list what actions can be performed by what roles, use the command goldsh RoleAction Query:

goldsh RoleAction Query [Show:=<"Fieldl,Field2,...">][Role==<Role
Name>] [Object==<Object Name>][Name==<Action Name>] [Instance==<Instance
Name>] [ShowUsage:=True]

Example 15-3. Listing all role actions

$ goldsh RoleAction Query

Role Object Name Instance
Anonymous ANY Query ANY
Anonymous Account Balance ANY
Anonymous Password ANY SELF
OVERRIDE Account Balance ANY
ProjectAdmin Project ANY ADMIN
Scheduler Job Charge ANY
Scheduler Job Quote ANY
Scheduler Job Reserve ANY
SystemAdmin ANY ANY ANY
UserServices Job Refund ANY
UserServices Machine ANY ANY
UserServices Project ANY ANY
UserServices ProjectMachine ANY ANY
UserServices ProjectUser ANY ANY
UserServices User ANY ANY

15.4. Creating Roles

To create a new role, use the command goldsh Role Create:

goldsh Role Create Name=<Role Name> [Description=<Description>][ShowUsage:=True]

76

Chapter 15. Managing Roles

Example 15-4. Creating a Manager role

$ goldsh Role Create Name=Manager Description="Manages Roles and
Responsibilities"

Name Description

Manager Manages Roles and Responsibilities
Successfully created 1 Role

15.5. Associating an Action with a Role

To add an action to a role, use the command goldsh RoleAction Create:

goldsh RoleAction Create Role=<Role Name> Object=<Object Name> Name=<Action
Name> [Instance=<Instance Name>] [ShowUsage:=True]

The Instance indicates which specific instances of the object the action(s) can be performed on. Instances are in-
terpreted as the value of the solitary primary key for an object. Unless otherwise specified, the instance will de-
fault to a value of ANY.

Valid values for Instance include:

ANY Any or all of the object instances

NONE No object instances

SELF Only objects identified with myself (like my own username)

ADMIN Only object instances that I am an admin for

<specific> A specific named instance

For example, the Role Action:

ChemistryAdmin Project Modify Chemistry

allows users having the ChemistryAdmin role to modify the Chemistry Project.

Example 15-5. Allow the Manager to change role responsibilities

$ goldsh RoleAction Create Role=Manager Object=RoleAction Name=ANY

Role Object Name Instance

77

Chapter 15. Managing Roles

Manager RoleAction ANY ANY
Successfully created 1 RoleAction

15.6. Adding a Role to a User

To associate a user with a role, use the command goldsh RoleUser Create:

goldsh RoleUser Create Role=<Role Name> Name=<User Name> [ShowUsage:=True]

Example 15-6. Adding a user to the Manager role

$ goldsh RoleUser Create Role=Manager Name=dave
Role Name

Manager dave
Successfully created 1 RoleUser

Note: A user must first be defined to Gold before they can be added to a role (see Creating Users).

15.7. Removing an Action from a Role

To disassociate an action from a role, use the command goldsh RoleAction Delete:

goldsh RoleAction Delete [Role==<Role Name>] [Object==<Object Name>][Name==<Action
Name>] [Instance==<Instance Name>] [ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent deletion of all role actions.

78

Chapter 15. Managing Roles

Example 15-7. Don’t let UserServices Create or Update Projects

$ goldsh RoleAction Delete Role==UserServices Object==Project Name==ANY
Role Object Name Instance

UserServices Project ANY ANY
Successfully deleted 1 RoleActions

15.8. Removing a Role from a User

To disassociate a user and a role, use the command goldsh RoleUser Delete:

goldsh RoleUser Delete [Role==<Role Name>][Name==<User Name>] [ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent deletion of all role users.

Example 15-8. Removing dave as a Manager

$ goldsh RoleUser Delete Role==Manager Name==dave
Role Name

Manager dave
Successfully deleted 1 RoleUser

15.9. Deleting Roles

To delete a role, use the command goldsh Role Delete:

goldsh Role Delete [Name==<Role Name>] [Description==<Description>][ShowUsage:=True]

79

Chapter 15. Managing Roles

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent modification of all roles.

Example 15-9. Deleting the Manager role

$ goldsh Role Delete Name==Manager

Name Description

Manager Manages Roles and Responsibilities
Successfully deleted 1 Roles and 3 associations

80

Chapter 16. Managing Passwords

Passwords must be established for each user who wishes to use the web-based GUI. Passwords must be
at least eight characters and are stored in encrypted form. Valid operations on passwords include
creating, modifying and deleting passwords.

16.1. Creating Passwords

To create a new password, use the command goldsh Password Create:

goldsh Password Create User=<User Name> Password=<Encrypted Password>
[ShowUsage:=True]

Example 16-1. Creating a password

$ goldsh Password Create User=amy Password=mysecret
User Password

amy NnONaSpwELQ+FKa360g916EczO+kUEON
Successfully created 1 Password

16.2. Querying Passwords

To display password information, use the command goldsh Password Query:

goldsh Password Query [Show:=<"Fieldl,Field2,...">][User==<User
Name>] [ShowUsage:=True]

Example 16-2. List the users who have set passwords

$ goldsh Password Query Show:=User
User

81

Chapter 16. Managing Passwords

16.3. Modifying Passwords

To change a password, use the command goldsh Password Modify:

goldsh Password Modify [Password=<Encrypted Password>][Name==<User
Name>] [ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent modification of all passwords.

Example 16-3. Changing amy’s password

$ goldsh Password Modify User==amy Password=changeme

User Password

amy HZYzwD2001lXIE/gxRYyFKP2sumkCluHm
Successfully modified 1 Passwords

16.4. Deleting Passwords

To delete a password, use the command goldsh Password Delete:

goldsh Password Delete [Name==<User Name>]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent deletion of all passwords.

Example 16-4. Deleting a password

$ goldsh Password Delete User==amy
User Password

amy HZYzwD2001lXIE/gxRYyFKP2sumkCluHm

82

Chapter 16. Managing Passwords

Successfully deleted 1 Passwords

83

Chapter 17. Using the Gold Shell (goldsh)

goldsh is an interactive control program that can access all of the advanced functionality in Gold.

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to many objects with a single command. Inadvertant mistakes could
result in modifications that are very difficult to reverse.

17.1. Usage

Gold commands can be invoked directly from the command line as arguments, or read from stdin
(interactively or redirected from a file).

goldsh [—debug] [-? | —help] [--man] [—raw] [—quiet] [-v | —verbose] [<Command>]

Example 17-1. Specifying the command as direct arguments

$ goldsh System Query
Name Version Organization Description

Gold 2.0.b1.0 Beta Release

Example 17-2. Using the interactive prompt

$ goldsh

gold> System Query

Name Version Organization Description

Gold 2.0.b1.0 Beta Release

gold> quit

84

Chapter 17. Using the Gold Shell (goldsh)

Example 17-3. Reading commands from a file

$ cat >commands.gold <<EOF

System Query
quit
EOF

$ goldsh <commands.gold

Name Version Organization Description

Gold 2.0.b1.0 Beta Release

17.2. Command Syntax

Gold commands are of the form:

<Object> [,<Object>..] <Action> [[<Conjunction>] [<Open_Parenthesis>...]
[<Object>.] <Name> <Operator> [<Object>.]<Value> [<Close_Parenthesis>...]...]

The basic form of a command is <Object> <Action> [<Name><Operator>< Value>]*. When an
action is performed on more than one object, such as in a multi-object query, the objects are specified in
a comma-separated list. Commands may accept zero or more predicates which may function as fields to
return, conditions, update values, processing options, etc. Predicates, in their simplest form, are
expressed as Name, Operator, Value tuples. Predicates may be combined via conjunctions with grouping
specified with parentheses. When performing multi-object queries, names and values may need to be
associated with their respective objects.

Valid conjunctions include:

&&
and
Il
or
&!
and not

85

or not

Chapter 17. Using the Gold Shell (goldsh)

Open parentheses may be any number of literal open parentheses ’(’.

Name is the name of the condition, assignment, or option. When performing a multi-object query, a

name may need to be prepended by its associated object separated by a period.

Valid operators include:

equals

less than

greater than

less than or equal to

greater than or equal to

not equal to

matches

is assigned

is incremented by

is decremented by

option

86

Chapter 17. Using the Gold Shell (goldsh)

not option

Value is the value of the selection list, condition, assignment, or option. When performing a multi-object
query, a value may need to be prepended by its associated object (called the subject) separated by a
period.

Close parentheses may be any number of literal closing parentheses ’)’.

17.3. Valid Objects

To list the objects available for use in Gold commands, issue the gold command: Object Query

Example 17-4. Listing all objects

gold> Object Query Show:="Sort (Name)"
Name

ANY

Account
AccountAccount
AccountMachine
AccountOrganization
AccountProject
AccountUser

Action

Allocation
Attribute
ChargeRate

Job

Machine

NONE

Object

Organization
Password

Project
ProjectMachine
ProjectUser
Quotation
QuotationChargeRate
Reservation

Role

RoleAction

RoleUser

System

Transaction

87

Usage
User

Chapter 17. Using the Gold Shell (goldsh)

17.4. Valid Actions for an Object

To list the actions that can be performed on an object, use the gold command: Action Query

Example 17-5. Listing all actions associated with the Account object

gold> Action Query Object==Account Show:="Sort (Name)"

Name

Balance
Create
Delete
Deposit
Modify
Query
Transfer
Undelete
Withdraw

17.5. Valid Predicates for an Object and Action

By appending the option "ShowUsage:=True" to a command, the syntax of the command is returned,
expressed in SSSRMAP XML Message Format.

Example 17-6. Show the usage for Allocation Query

gold> Allocation Query ShowUsage:=True

<Request action="Query">
<Object>Allocation<Object>

[<Get
[<Get
[<Get
[<Get
[<Get
[<Get
[<Get
[<Get
[

name="Id" [op="Sort|Tros|Count |GroupBy |Max|Min"]></Get>]

name="Account" [op="Sort|Tros|Count |GroupBy |Max |Min"]></Get>]
name="StartTime" [op="Sort|Tros|Count|GroupBy |Max|Min"]></Get>]
name="EndTime" [op="Sort|Tros|Count |GroupBy |Max |Min"]></Get>]

name="Amount" [op="Sort|Tros|Count |GroupBy|Max|Min|Sum|Average"]></Get>]
name="Deposited" [op="Sort|Tros|Count|GroupBy |Max|Min|Sum|Average"]></Get>]
name="Active" [op="Sort|Tros|Count|GroupBy"]></Get>]

name="Description" [op="Sort|Tros|Count |GroupBy |Max|Min"]></Get>]

<Where name="Id" [op="EQINE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"] [group="<Integer

88

Chapter 17. Using the Gold Shell (goldsh)

<Option name="ShowHidden">True|False (False)</Option>]

<Option name="ShowUsage">True|False (False)</Option>]

<Option name="Time">YYYY-MM-DD [hh:mm:ss]</Option>]

<Option name="Unique">True|False (False)</Option>]

[<Option name="Limit">Integer Number}</Option>]
<Request>

[<Where name="Account" [op="EQ|NE|GT|GE|LT|LE|Match (EQ)"] [conj="And|Or (And)"] [grour
[<Where name="StartTime" [op="EQ|INE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"] [group="<:
[<Where name="EndTime" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"] [group="<Int
[<Where name="Amount" [op="EQ|NE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"] [group="<Inte
[<Where name="Deposited" [op="EQINE|GT|GE|LT|LE (EQ)"] [conj="And|Or (And)"] [group="<:
[<Where name="Active" [op="EQ|NE (EQ)"] [conj="And|Or (And)"] [group="<Integer Number>
[<Where name="Description" [op="EQ|NE|GT|GE|LT|LE|Match (EQ)"] [conj="And|Or (And)"] [c
[
[
[
[

17.6. Common Options

There are a number of options that may be specified for all commands. These options include:
ShowUsage

ShowUsage

This option may be included with any command to cause the command to return a usage message in
SSSRMAP XML Message Format.

17.7. Common Actions Available for most Objects

There are a number of actions that are available for most objects. These actions include Query, Create,
Modify, Delete and Undelete. Commands involving these actions inherit some common structure unique
to the action type.

17.7.1. Query Action

The Query action is used to query objects. It accept predicates that describe the attributes (fields) to
return (including aggregation operations on those attributes), conditions that select which objects to
return the attributes for, and other options unique to queries.

Selections

Selections use the Show option to specify a list of the attributes to return for the selected object. If selec-
tions are not specified, a default set of attributes (those not marked as hidden) will be returned.

Name = Show

89

Chapter 17. Using the Gold Shell (goldsh)

Op = =
Value = "attributel,attribute2,attribute3,..."

Aggregation operators may be applied to attributes by enclosing the target attribute in parenthesis and prepend-
ing the name of the desired operator. The aggregation operators that can be applied depend on the datatype of the attribut

Valid selection operators include:

Sort Ascending sort

Tros Descending sort

Count Count

Max Maximum value

Min Minimum value

Average Average value

Sum Sum

GroupBy Group other aggregations by this attribute

For example: Allocation Query Show:="Sum(Amount),GroupBy(Account)"

Conditions

Conditions are used to select which objects the action is to be performed on.

Name = Name of the attribute to be tested
Op = conditional operator
Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to

1= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to file glob-
bing. * matches zero or more unspecified characters and ? matches exactly one unspecified character. For ex-
ample mscf* matches objects having the specified attributes whose values start with the letters mscf, while mscf? matche
jects having the specified attributes whose values start with mscf and have a total of exactly five charac-
ters.

Options

Options indicate processing options that affect the result.

Name = Name of the option
Op = .=

90

Chapter 17. Using the Gold Shell (goldsh)
Value = Value of the option
Valid options for query actions include:
ShowHidden:=TruelFalse (False) Includes hidden attributes in the result
Time:="YYYY-MM-DD [hh:mm:ss]" Run the command as if it were the specified time

Unique:=TruelFalse (False) Display only unique results (like DISTINCT in SQL)
Limit:={Integer Number} Limit the results to the number of objects specified

Example 17-7. Return the number of inactive reservations

gold> Reservation Query EndTime<now Show:="Count (Id)"
Id

17.7.2. Create Action

The Create action is used to create a new object. It accepts predicates that describe the values of the
attributes to be set.

Assignments

Assignments specify values to be assigned to attributes in the new object.

Name = Name of the attribute being assigned a value
Op = =(is assigned)
Value = The new value being assigned to the attribute

Example 17-8. Add a new project member

gold> ProjectUser Create Project=chemistry Name=scottmo

Project Name Active Admin

chemistry scottmo True False
Successfully created 1 ProjectUser

91

Chapter 17. Using the Gold Shell (goldsh)

17.7.3. Modify Action

The Modify action is used to modify existing objects. It accepts predicates that select which objects will
be modified and predicates that describe the values of the attributes to be set.

Assignments
Assignments specify values to be assigned to attributes in the selected objects.
Name = Name of the attribute being assigned a value

Op = assignment operators {=, +=, -=}
Value = The value being assigned to the attribute

Valid assignment operators include:

= is assigned
+= is incremented by
-= is decremented by

Conditions

Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator

Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to

I= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to file glob-

bing. * matches zero or more unspecified characters and ? matches exactly one unspecified character. For ex-
ample mscf* matches objects having the specified attributes whose values start with the letters mscf, while mscf? matche

jects having the specified attributes whose values start with mscf and have a total of exactly five charac-
ters.

Example 17-9. Change/set scottmo phone number and email address

gold> User Modify Name==scottmo PhoneNumber=" (509) 376-2204"
EmailAddress="Scott.Jackson@pnl.gov"

92

Chapter 17. Using the Gold Shell (goldsh)

Name Active CommonName PhoneNumber EmailAddress DefaultProject Descri

scottmo True Jackson, Scott M. (509) 376-2204 Scott.Jackson@pnl.gov

Successfully modified 1 Users

Example 17-10. Extend all reservations against project chemistry by 10 days

gold> Reservation Modify EndTime+="10 days" Project==chemistry

Id Account Amount Name Job User Project Machine EndTime Description

1 2 57600 PBS.1234.0 1 amy chemistry colony 2004-11-06 10:47:30
Successfully modified 1 Reservations

17.7.4. Delete Action

The Delete action is used to delete objects. It accepts predicates that select which objects are to be
deleted.

Conditions

Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator

Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to

1= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to file glob-
bing. * matches zero or more unspecified characters and ? matches exactly one unspecified character. For ex-
ample mscf* matches objects having the specified attributes whose values start with the letters mscf, while mscf? matche
jects having the specified attributes whose values start with mscf and have a total of exactly five charac-
ters.

93

Chapter 17. Using the Gold Shell (goldsh)

Example 17-11. Get rid of the pesky Jacksons

gold> User Delete CommonName~"Jacksonx"
Name Active CommonName PhoneNumber EmailAddress DefaultProject Descri

scottmo True Jackson, Scott M. (509) 376-2204 Scott.Jackson@pnl.gov

Successfully deleted 1 Users and 1 associations

17.7.5. Undelete Action

The Delete action is used to restore deleted objects. It accepts predicates that select which objects are to
be undeleted.

Conditions

Conditions are used to select which objects the action is to be performed on.
Name = Name of the attribute to be tested
Op = conditional operator

Value = The object or value against which the attribute is tested

Valid condition operators include:

== Equal to

= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
~ Matches

Matching uses the wildcards * and ? (equivalent to SQL % and _ respectively) in a manner similar to file glob-
bing. * matches zero or more unspecified characters and ? matches exactly one unspecified character. For ex-
ample mscf* matches objects having the specified attributes whose values start with the letters mscf, while mscf? matche
jects having the specified attributes whose values start with mscf and have a total of exactly five charac-
ters.

Example 17-12. Let’s resurrect the deleted users that were active

gold> User Undelete Active==True

Name Active CommonName PhoneNumber EmailAddress DefaultProject Descri

scottmo True Jackson, Scott M. (509) 376-2204 Scott.Jackson@pnl.gov

94

Chapter 17. Using the Gold Shell (goldsh)

Successfully undeleted 1 Users and 1 associations

17.8. Multi-Object Queries

Gold supports multi-object queries (table joins). Multiple objects are specified via a comma-separated
list and attributes need to be prefixed by the associated object.

Example 17-13. Print the current and total allocation summed by project

gold> Allocation,AccountProject Query
Show:="GroupBy (AccountProject .Name) , Sum(Allocation.Amount) , Sum(Allocation.Deposited)"
Allocation.Account==AccountProject.Account Allocation.Active==True

Name Amount Deposited

biology 193651124 360000000
chemistry 296167659 360000000

Example 17-14. Show all active projects for amy or bob

gold> Project,ProjectUser Query Show:="Project.Name" (ProjectUser.Name==bob
|| ProjectUser.Name==amy) && Project.Name==ProjectUser.Project &&
Project.Active==True Unique:=True

Name

biology
chemistry

95

Chapter 18. Customizing Gold Objects

Gold provides the ability to dynamically create new objects or customize or delete existing objects
through the gold control program (goldsh).

Note: The object customizations described in this chapter will be noticeable in subsequent goldsh
queries (and in the web GUI after a fresh login). For installations with a database that supports
multiple connections (e.g. PostgreSQL) these changes will be visible immediately while others (e.g.
SQLite) will require the gold server to be restarted. Client commands may need to be modified to
properly interact with changed objects or attributes.

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to many objects with a single command. Inadvertent mistakes could
result in modifications that are very difficult to reverse.

18.1. Removing an Attribute from an Object

To delete an attribute from an object, use the command goldsh Attribute Delete:

goldsh Attribute Delete Object==<0Object Name> Name==<Attribute Name>
[ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent deletion of all attributes.

Caution

When using Gold as an Allocation Manager, certain objects and attributes are
assumed to exist. For example, a call to Job Charge would fail if you had deleted
the Allocation Amount attribute. The Attribute Undelete command might come in
useful in such a case.

96

Chapter 18. Customizing Gold Objects

Example 18-1. Removing the Organization attribute from Machine

$ goldsh Attribute Delete Object==Machine Name==Organization
Successfully deleted 1 Attribute

Example 18-2. Perhaps we don’t care to track the Executable attribute in a Job

$ goldsh Attribute Delete Object==Job Name==Executable
Successfully deleted 1 Attribute

18.2. Adding an Attribute to an Object

To create a new attribute for an object, use the command goldsh Attribute Create:

goldsh Attribute Create Object=<Object Namee> Name=<Attribute Name>
[DataType=AutoGenlTimeStamplBoolean|FloatlInteger|Currencyl(String)] [Prima-

ryKey=Truel(False)] [Required=Truel(False)] [Fixed=Truel(False)] [Values=<Foreign Key or List
of Values>] [DefaultValue=<Default Value>][Sequence=<Integer

Number>] [Hidden=<True/ (False)>] [Description=<Description>] [ShowUsage:=True]

Example 18-3. Adding a Country Attribute to User

$ goldsh Attribute Create Object=User Name=Country
Values=" (Brazil, China, France,Russia,USA)" DefaultValue=USA

Successfully created 1 Attribute

Example 18-4. We need to track submission time in Jobs

$ goldsh Attribute Create Object=Job Name=SubmissionTime DataType=TimeStamp
Successfully created 1 Attribute

97

Chapter 18. Customizing Gold Objects

18.3. Modifying an Attribute

To modify an attribute, use the command goldsh Attribute Modify:

goldsh Attribute Modify Object==<0Object Name> Name==<Attribute Name>
[Required=Truel(False)] [Fixed=Truel(False)] [Values=<Foreign Key or List of
Values>] [DefaultValue=<Default Value>][Sequence=<Integer

Number>] [Hidden=<True/ (False)>] [Description=<Description>] [ShowUsage:=True]

Caution

The goldsh control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in the
inadvertent modification of all attributes.

Example 18-5. Change User Organization values to not be restricted by foreign key

$ goldsh Attribute Modify Object==User Name==Organization Values=NULL
Successfully modified 1 Attribute

18.4. Creating a Custom Object

To create a new object, use the command goldsh Object Create:

goldsh Object Create Name=<0Object Namee> [Association=Truel(False)] [Parent=<Parent
Object>] [Child=<Child Object>] [Description=<Description>] [ShowUsage:=True]

Example 18-6. Creating a Node Object

$ goldsh Object Create Name=Node Description="Node Information"
Successfully created 1 Object

Example 18-7. We need to track submission time in Jobs

$ goldsh Attribute Create Object=Job Name=SubmissionTime DataType=TimeStamp
Successfully created 1 Attribute

98

Chapter 18. Customizing Gold Objects

18.5. Adding an Action to an Object

To specify that an action is allowed for an object, use the command goldsh Action Create:

goldsh Action Create Object=<Object Namee> Name=<Action Name>
[Display=Truel(False)] [Description=<Description>] [ShowUsage:=True]

Example 18-8. Adding a Modify Action to Transaction

$ goldsh Action Create Object=Transaction Name=Modify Description=Modify

Successfully created 1 Action

18.6. Examples Creating Custom Objects

Creating a custom object involves defining a new object, adding attributes to the object, and adding
actions to the object.

Example 18-9. Creating a License object to track license usage and charges.

Invoke the gold control program in interactive mode.
$ goldsh
Create the License Object.

gold> Object Create Name=License Description=License
Successfully created 1 Object

Next we can define its attributes. We’ll give each record a unique id (so the record can be more easily
modified), a license type that can be one of (Matlab,Mathematica,Compiler,AutoCAD,Oracle), the user
who is using it, the start and end time, how many instances of the license were used, and how much was
charged.

gold> Attribute Create Object=License Name=Id DataType=AutoGen
PrimaryKey=True Description="Record Id4d"
Successfully created 1 Attribute

99

Chapter 18. Customizing Gold Objects

gold> Attribute Create Object=License Name=Type DataType=String Required=True
Values=" (Matlab,Mathematica, Compiler, AutoCAD, Oracle)" Fixed=True
Description="License Type"

Successfully created 1 Attribute

gold> Attribute Create Object=License Name=User Required=True Values="(@User"
Description="User Name"
Successfully created 1 Attribute

gold> Attribute Create Object=License Name=StartTime DataType=TimeStamp
Description="Start Time"
Successfully created 1 Attribute

gold> Attribute Create Object=License Name=EndTime DataType=TimeStamp
Description="End Time"
Successfully created 1 Attribute

gold> Attribute Create Object=License Name=Count DataType=Integer
Description="Number of Licenses Used"
Successfully created 1 Attribute

gold> Attribute Create Object=License Name=Charge DataType=Currency
Description="Amount Charged"
Successfully created 1 Attribute

Finally, we designate the actions we will allow on the object. The standard set of actions includes Create,
Query, Delete, Modify and Undelete. Since we would like to manage licenses from the web GUI we will
set Display=True.

gold> Action Create Object=License Name=Create Display=True
Description=Create

Successfully created 1 Action

gold> Action Create Object=License Name=Query Display=True Description=Query

Successfully created 1 Action

100

Chapter 18. Customizing Gold Objects
gold> Action Create Object=License Name=Modify Display=True

Description=Modify

Successfully created 1 Action

gold> Action Create Object=License Name=Delete Display=True
Description=Delete

Successfully created 1 Action

gold> Action Create Object=License Name=Undelete Display=True
Description=Undelete

Successfully created 1 Action

When we are done we can exit the goldsh prompt.

gold> quit

That’s about it. Licenses should now be able to be managed via the GUI and goldsh. The data source will
need to use one of the methods of interacting with Gold (see Methods of interacting with Gold) in order
to push license record usage info to Gold.

Apart from being used as an Allocation Manager, Gold can be used as a generalized information service.
It can be used to manage just about any object oriented information over the web. For example, Gold
could be used to provide meta-schedulers with machine/user mappings, or node/resource information.

Example 18-10. Using Gold as a Grid Map File.

Invoke the gold control program in interactive mode.

$ goldsh

Create the GridMap Object.

gold> Object Create Name=GridMap Description="Online Grid Map File"
Successfully created 1 Object

Next, we can define its attributes. Each entry will consist of a userid (which will serve as the primary
key) and a required public X.509 certificate.

101

Chapter 18. Customizing Gold Objects

gold> Attribute Create Object=GridMap Name=User PrimaryKey=True Values=@User
Description="User Name"
Successfully created 1 Attribute

gold> Attribute Create Object=GridMap Name=Certificate DataType=String
Required=True Description="X.509 Public Key"
Successfully created 1 Attribute

Finally, we designate the actions we will allow on the object. Since we would like to manage certificates
from the web GUI we will set Display=True.

gold> Action Create Object=GridMap Name=Create Display=True
Description=Create

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Query Display=True Description=Query

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Modify Display=True
Description=Modify

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Delete Display=True
Description=Delete

Successfully created 1 Action

gold> Action Create Object=GridMap Name=Undelete Display=True
Description=Undelete

Successfully created 1 Action

Exit the goldsh prompt.
gold> quit
From this point, a peer service will need to use one of the methods of interacting with Gold (see Methods

of interacting with Gold) in order to query the GridMap information.

102

Chapter 18. Customizing Gold Objects

103

Chapter 19. Integration with the Resource
Management System

19.1. Dynamic versus Delayed Accounting

19.1.1. Delayed Accounting

In the absence of a dynamic system, some sites enforce allocations by periodically (weekly or nightly)
parsing resource manager job logs and then applying debits against the appropriate project accounts.
Although Gold can easily support this type of system by the use of the qcharge command in
post-processing scripts, this approach will allow a user or project to use resources significantly beyond
their designated allocation and generally suffers from stale accounting information.

19.1.2. Dynamic Accounting

Gold’s design allows it to interact dynamically with your resource management system. Charges for
resource utilization can be made immediately when the job finishes (or even incrementally throughout
the job). Additionally, reservations can be issued at the start of a job to place a hold against the user’s
account, thereby ensuring that a job will only start if it has sufficient reserves to complete. The remainder
of this document will describe the interactions for dynamic accounting.

19.2. Interaction Points

19.2.1. Job Quotation @ Job Submission Time [Optional —
Recommended]

When a job is submitted to a grid scheduler or resource broker, it may be useful to determine how much
it will cost to run on a particular resource by requesting a job quote. If the quote succeeds, it will return a
quote id along with the quoted amount for the job. This quote id may be used later to guarantee that the
same charge rates used to form the quote will also be used in the final job charge calculation.

Even when a job is exclusively scheduled locally, it is useful to obtain a quote at the time of submission
to the local resource manager to ensure the user has sufficient funds to run the job and that it meets the
access policies necessary for the charge to succeed. A warning can be issued if funds are low or the job
might be rejected with an informative message in the case of insufficient funds or any other problems

104

Chapter 19. Integration with the Resource Management System

with the account. Without this interaction, the job might wait in the queue for days only to fail when it
tries to start.

To make a job quotation with Gold at this phase requires that:

« the grid scheduler has built-in Gold allocation manager support {Silver}, or
« the resource manager supports a submit filter { LoadLeveler(SUBMIT_FILTER), LSF(esub)}, or

« a wrapper could be created for the submit command {PBS(qsub)}.

19.2.2. Job Reservation @ Job Start Time [Optional — Highly
Recommended]

Just before a job starts, a hold (reservation) is made against the appropriate account(s), temporarily
reducing the user’s available balance by an amount based on the resources requested and the estimated
wallclock limit. If this step is ommitted, it would be possible for users to start more jobs than they have
funds to support.

If the reservation succeeds, it will return a message indicating the amount reserved for the job. In the
case where there are insufficient resources to run the job or some other problem with the reservation, the
command will fail with an informative message. Depending on site policy, this may or may not prevent
the job from starting.

To make a job reservation with Gold at this phase requires that:

« the scheduler or resource manager has built-in Gold allocation manager support {Maui(AMCFG)}, or

- the resource manager is able to run a script at job start time {LoadLeveler(prolog), PBS(prologue),
LSF(pre_exec)}.

19.2.3. Job Charge @ Job End Time [Required]

When a job ends, a charge is made to the user’s account(s). Any associated reservations are automatically
removed as a side-effect. Depending on site policy, a charge can be elicited only in the case of a
successful completion, or for all or specific failure cases as well. Ideally, this step will occur immediately
after the job completes (dynamic accounting). This has the added benefit that job run times can often be
reconstructed from Gold job reservation and charge timestamps in case the resource management job
accounting data becomes corrupt.

If the charge succeeds, it will return a message indicating the amount charged for the job.

105

Chapter 19. Integration with the Resource Management System

To make a job charge with Gold at this phase requires that:

« the scheduler or resource manager has built-in Gold allocation manager support {Maui(AMCFG)}, or

- the resource manager is able to run a script at job start time {LoadLeveler(epilog), PBS(epilogue),
LSF(post_exec)}, or

« the resource manament system supports some kind of feedback or notification machanism occurring at
the end of a job (an email can be parsed by a mail filter).

19.3. Methods of interacting with Gold

There are essentially six ways of programatically interacting with Gold. Let’s consider a simple job
charge in each of the different ways.

19.3.1. Configuring an application that already has hooks for
Gold

The easiest way to use Gold is to use a resource management system with built-in support for Gold. For
example, the Maui Scheduler and Silver Grid Scheduler can be configured to directly interact with Gold
to perform the quotes, reservations and charges by setting the appropriate parameters in their config files.

Example 19-1. Configuring Maui to use Gold

Add an appropriate AMCFG line into maui.cfg to tell Maui how to talk to Gold

$ wvi /usr/local/maui/maui.cfg
AMCFG[bank] TYPE=GOLD HOST=control_nodel PORT=7112 SOCKETPROTOCOL=HTTP WIREPROTOCOL=XML CHA

Add a CLIENTCEFG line into maui-private.cfg to specify the shared secret key. This secret key will be
the same secret key specified in the "make auth_key" step.

$ vi /usr/local/maui/maui-private.cfg
CLIENTCFG[AM:bank] CSKEY=sss CSALGO=HMAC

Gold will need to allow the the user id that maui runs under to perform scheduler related commands (Job
Charge, Reserve, Quote, etc).

106

Chapter 19. Integration with the Resource Management System

$ gmkuser —-d "Maui Scheduler" maui

Successfully created 1 User

$ goldsh RoleUser Create Role=Scheduler Name=maui

Role Name

Scheduler maui
Successfully created 1 RoleUser

19.3.2. Using the appropriate command-line client

From inside a script, or by invoking a system command, you can use a command line client (one of the

n.n

g" commands in gold’s bin directory).

Example 19-2. To issue a charge at the completion of a job, you would use gcharge:

gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234

19.3.3. Using the Gold control program

The Gold control program, goldsh, will issue a charge for a job expressed in xml (SSS Job Object).

Example 19-3. To issue a charge you must invoke the Charge action on the Job object:

goldsh Data:="<Job><JobId>PBS.1234.0</JobId><ProjectId>chemistry</ProjectId>
<UserId>amy</UserId><MachineName>colony</MachineName>
<Processors>2</Processors><WallDuration>1234</WallDuration>"

19.3.4. Use the Perl API

If your resource management system is written in Perl or if it can invoke a Perl script, you can access the
full Gold functionality via the Perl APIL.

107

Chapter 19. Integration with the Resource Management System

Example 19-4. To make a charge via this interface you might do something like:

use Gold;

my S$request = new Gold::Request (object => "Job", action => "Charge");
my $job = new Gold::Datum("Job");

$job->setValue ("JobId", "PBS.1234.0");

$job->setValue ("ProjectId", "chemistry");

$job->setValue
$job->setValue
$job->setValue ("Processors", "2");

$job->setValue ("WallDuration", "1234");

Srequest->setDatum($job) ;

my Sresponse = S$request->getResponse () ;

print S$Sresponse->getStatus(), ": ", Sresponse->getMessage(), "\n";

"UserId", "amy");
"MachineName", "colony");

(
(
(
(

19.3.5. Communicating via the SSSRMAP Protocol

Finally, it is possible to interact with Gold by directly using the SSSRMAP Wire Protocol and Message
Format over the network (see SSS Resource Management and Accounting Documentation
(http://sss.scl.ameslab.gov/docs.shtml)). This will entail building the request body in XML, appending an
XML digital signature, combining these in an XML envelope framed in an HTTP POST, sending it to the
server, and parsing the similarly formed response. The Maui Scheduler communicates with Gold via this
method.

Example 19-5. The message might look something like:

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<7xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Charge" object="Job">
<Data>
<Job>
<Jobld>PBS.1234.0</Jobld>
<Projectld>chemistry </Projectld >
<Userld>amyh</Userld>
<MachineName>colony</MachineName >
<Processors>2</Processors>
<WallDuration>1234 </WallDuration>
</Job>
</Data>

108

Chapter 19. Integration with the Resource Management System

</Request>
<//Body>
<Signature>
<DigestValue>azu4obZswzBt890gATukBeLyt6 Y=</DigestValue >
<SignatureValue>Y XE/CO8XX3RX4PMU 1bWju+5/ESM=</Signature Value >
<SecurityToken type="Symmetric" > </SecurityToken>
</Signature>
</Envelope>
0

109

Chapter 20. Configuration Files

Gold uses two configuration files: one for the server (goldd.conf) and one for the clients (gold.conf). For
configuration parameters that have hard-coded defaults, the default value is specified within brackets.

20.1. Server Configuration

The following configuration parameters may be set in the server configuration file (goldd.conf).

« account.autogen [true] — If set to true, when a new project is created Gold will automatically create
an associated default account. Additionally, if you try to make a deposit and no accounts match the
specifications, an account will be created using the specified criteria and a deposit will be made into
that account.

- allocation.autogen [true] — If set to true, when a new account is created Gold will automatically
create an associated default allocation with zero credits.

- database.datasource [DBI:Pg:dbname=gold;host=localhost] — The Perl DBI data source name for
the database you wish to connect to.

- database.password — The password to be used for the database connection (if any).
- database.user — The username to be used for the database connection (if any).

« response.chunksize [0] — Indicates the line length in the data response that will trigger message
segmentation (or truncation). A value of O (zero) means unlimited, i.e. that the server will not truncate
or segment large responses unless overriden by a chunksize specification in a client request. The
response chunksize will be taken to be the smaller of the client and server chunksize settings.

110

Chapter 20. Configuration Files

currency.precision [0] — Indicates the number of decimal places in the resource credit currency. For
example, if you are will be dealing with processor-seconds of an integer resource unit, use 0 (which is
the default). If you will be charging dollars and cents, then use 2. This parameter should be the same in
the goldd.conf and gold.conf files.

« log4perl.appender.Log.filename — Used by logdperl to set the base name of the log file.

log4perl.appender.Log.max — Used by logdperl to set the number of rolling backup logs.

log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to before it is
rotated.

log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written to the log. The
logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR and FATAL.

log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written to the
screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR and FATAL.

machine.autogen [false] — If set to true, Gold will automatically create new machines when they
are first encountered in a job function (charge, reserve, or quote). Additionally, a new machine will be
automatically created if you try to add an undefined machine as a member of a project or account.

machine.default [NONE] — If not set to NONE, Gold will use the specified default for the machine
in a job function (charge, reserve, or quote) in which a machine was not specified.

project.autogen [false] — If set to true, Gold will automatically create new projects when they are
first encountered in a job function (charge, reserve, or quote). Additionally, a new project will be
automatically created if you try to add an undefined project as a member of an account.

111

Chapter 20. Configuration Files

project.default [NONE] — If not set to NONE, Gold will use the specified default for the project in a
job function (charge, reserve, or quote) in which a project was not specified and no default project can
be found for the user.

security.authentication [true] — Indicates whether incoming message authentication is required.

security.encryption [false] — Indicates whether incoming message encryption is required.

server.host [localhost] — The hostname on which the gold server runs.

server.port [7112] — The port the gold server listens on.

super.user [root] — The primary gold system admin which by default can perform all actions on all
objects. The super user is sometimes used as the actor in cases where an action is invoked from within
another action.

user.autogen [false] — If set to true, Gold will automatically create new users when they are first
encountered in a job function (charge, reserve, or quote). Additionally, a new user will be
automatically created if you try to add an undefined user as a member of a project or account.

« user.default [NONE] — If not set to NONE, Gold will use the specified default for the user in a job
function (charge, reserve, or quote) in which a user was not specified.

112

Chapter 20. Configuration Files

20.2. Client Configuration

The following configuration parameters may be set in the client configuration file (gold.conf).

+ log4perl.appender.Log.filename — Used by log4perl to set the base name of the log file.

« log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup logs.

+ log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to before it is
rotated.

+ log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written to the log. The
logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR and FATAL.

+ log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written to the
screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN, ERROR and FATAL.

« response.chunking [true] — Indicates whether large responses should be chunked (segmented). If
set to false, large responses will be truncated.

« response.chunksize [0] — Indicates the line length in the data response that will trigger message
segmentation (or truncation). A value of 0 (zero) means unlimited, i.e. that the client will accept the
chunksize set by the server. The response chunksize will be taken to be the smaller of the client and
server chunksize settings.

« currency.precision [0] — Indicates the number of decimal places in the resource credit currency. For
example, if you are will be dealing with processor-seconds of an integer resource unit, use 0 (which is

113

Chapter 20. Configuration Files

the default). If you will be charging dollars and cents, then use 2. This parameter should be the same in
the goldd.conf and gold.conf files.

« security.authentication [true] — Indicates whether outgoing message are signed.

security.encryption [false] — Indicates whether outgoing messages are encrypted.

security.token.type [Symmetric] — Indicates the default security token type to be used in both
authentication and encryption.

server.host [localhost] — The hostname on which the gold server runs.

server.port [7112] — The port the gold server listens on.

114

	Gold User's Guide
	Table of Contents
	List of Examples
	Notice
	Chapter 1. Overview
	1.1. Background
	1.2. Features
	1.3. Interfaces
	1.3.1. Command Line Clients
	1.3.2. Interactive Control Program
	1.3.3. Webbased Graphical User Interface
	1.3.4. Perl API
	1.3.5. SSSRMAP Wire Protocol

	Chapter 2. Installation
	2.1. Preparation
	2.1.1. Select a Database

	2.2. Install Prerequisites
	2.2.1. PostgreSQL database 7.2 or higher (or other tested database) [REQUIRED]
	2.2.2. Perl 5.6.1 or higher (with suidperl) [REQUIRED]
	2.2.3. libxml2 2.4.25 or higher [REQUIRED]
	2.2.4. Gnu readline 2.0 or higher [OPTIONAL]
	2.2.5. Apache Httpd Server 2.0 or higher [OPTIONAL]
	2.2.6. OpenSSL 0.9.5a or higher [OPTIONAL]
	2.2.7. modssl 2.26 or higher [OPTIONAL]

	2.3. Configuration
	2.4. Compilation
	2.5. Perl Module Dependencies
	2.6. Installation
	2.7. General Setup
	2.8. Database Setup
	2.9. Web Server Setup
	2.10. Bootstrap
	2.11. Startup
	2.12. Initialization

	Chapter 3. Getting Started
	3.1. Define Users
	3.2. Define Machines
	3.3. Define Projects
	3.4. Add Users to the Projects
	3.5. Make Deposits
	3.6. Check The Balance
	3.7. Integrate Gold with your Resource Management System
	3.8. Obtain A Job Quote
	3.9. Make A Job Reservation
	3.10. Charge for a Job
	3.11. Refund a Job
	3.12. List Transactions
	3.13. Examine Account Statement
	3.14. Examine Project Usage

	Chapter 4. Getting More Advanced
	4.1. Define Projects
	4.2. Define Accounts
	4.3. Make Deposits
	4.4. Check The Balance
	4.5. Define Charge Rates
	4.6. Obtain A Guaranteed Job Quote
	4.7. Make A Quoted Job Reservation
	4.8. Charge for a Quoted Job
	4.9. Partially Refund a Job
	4.10. Examine Account Statement

	Chapter 5. Managing Users
	5.1. Creating Users
	5.2. Querying Users
	5.3. Modifying Users
	5.4. Deleting Users

	Chapter 6. Managing Machines
	6.1. Creating Machines
	6.2. Querying Machines
	6.3. Modifying Machines
	6.4. Deleting Machines

	Chapter 7. Managing Projects
	7.1. Creating Projects
	7.2. Querying Projects
	7.3. Modifying Projects
	7.4. Deleting Projects
	7.5. Project Usage Summary

	Chapter 8. Managing Accounts
	8.1. Creating Accounts
	8.2. Querying Accounts
	8.3. Modifying Accounts
	8.4. Making Deposits
	8.5. Querying The Balance
	8.6. Personal Balance
	8.7. Making Withdrawals
	8.8. Making Transfers
	8.9. Obtaining an Account Statement
	8.10. Deleting Accounts

	Chapter 9. Managing Allocations
	9.1. Creating Allocations
	9.2. Querying Allocations
	9.3. Modifying Allocations
	9.4. Deleting Allocations

	Chapter 10. Managing Reservations
	10.1. Creating Reservations
	10.2. Querying Reservations
	10.3. Modifying Reservations
	10.4. Deleting Reservations

	Chapter 11. Managing Quotations
	11.1. Creating Quotations
	11.2. Querying Quotations
	11.3. Modifying Quotations
	11.4. Deleting Quotations

	Chapter 12. Managing Jobs
	12.1. Creating Jobs
	12.2. Querying Jobs
	12.3. Modifying Jobs
	12.4. Deleting Jobs
	12.5. Obtaining Job Quotes
	12.6. Making Job Reservations
	12.7. Charging Jobs
	12.8. Issuing Job Refunds

	Chapter 13. Managing Charge Rates
	13.1. Creating ChargeRates
	13.2. Querying ChargeRates
	13.3. Modifying Charge Rates
	13.4. Deleting Charge Rates

	Chapter 14. Managing Transactions
	14.1. Querying Transactions

	Chapter 15. Managing Roles
	15.1. Querying Roles
	15.2. Querying Role Users
	15.3. Querying Role Actions
	15.4. Creating Roles
	15.5. Associating an Action with a Role
	15.6. Adding a Role to a User
	15.7. Removing an Action from a Role
	15.8. Removing a Role from a User
	15.9. Deleting Roles

	Chapter 16. Managing Passwords
	16.1. Creating Passwords
	16.2. Querying Passwords
	16.3. Modifying Passwords
	16.4. Deleting Passwords

	Chapter 17. Using the Gold Shell (goldsh)
	17.1. Usage
	17.2. Command Syntax
	17.3. Valid Objects
	17.4. Valid Actions for an Object
	17.5. Valid Predicates for an Object and Action
	17.6. Common Options
	17.7. Common Actions Available for most Objects
	17.7.1. Query Action
	17.7.2. Create Action
	17.7.3. Modify Action
	17.7.4. Delete Action
	17.7.5. Undelete Action

	17.8. MultiObject Queries

	Chapter 18. Customizing Gold Objects
	18.1. Removing an Attribute from an Object
	18.2. Adding an Attribute to an Object
	18.3. Modifying an Attribute
	18.4. Creating a Custom Object
	18.5. Adding an Action to an Object
	18.6. Examples Creating Custom Objects

	Chapter 19. Integration with the Resource Management System
	19.1. Dynamic versus Delayed Accounting
	19.1.1. Delayed Accounting
	19.1.2. Dynamic Accounting

	19.2. Interaction Points
	19.2.1. Job Quotation @ Job Submission Time [Optional Recommended]
	19.2.2. Job Reservation @ Job Start Time [Optional Highly Recommended]
	19.2.3. Job Charge @ Job End Time [Required]

	19.3. Methods of interacting with Gold
	19.3.1. Configuring an application that already has hooks for Gold
	19.3.2. Using the appropriate commandline client
	19.3.3. Using the Gold control program
	19.3.4. Use the Perl API
	19.3.5. Communicating via the SSSRMAP Protocol

	Chapter 20. Configuration Files
	20.1. Server Configuration
	20.2. Client Configuration

