| v

ERLANG

Mnesia

Copyright © 1997-9 2011 Ericsson AB. All Rights Reserved.
Mnesia 4.4.13

March 9 2011

Copyright © 1997-9 2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 9 2011

Ericsson AB. All Rights Reserved.: Mnesia | 1

1.1 Introduction

1 User's Guide

Mnesiais adistributed DataBase Management System(DBMS), appropriate for telecommunications applications and
other Erlang applications which require continuous operation and exhibit soft real-time properties.

1.1 Introduction

This book describes the Mnesia DataBase Management System (DBMS). Mnesia is a distributed Database
Management System, appropriate for telecommunications applications and other Erlang applications which require
continuous operation and soft real-time properties. It is one section of the Open Telecom Platform (OTP), which isa
control system platform for building telecommunications applications.

1.1.1 About Mnesia

The management of datain telecommunications system has many aspects whereof some, but not al, are addressed by
traditional commercial DBM Ss (Data Base Management Systems). In particular the very high level of fault tolerance
which is required in many nonstop systems, combined with requirements on the DBMS to run in the same address
space as the application, have led us to implement a brand new DBMS. called Mnesia. Mnesia is implemented in,
and very tightly connected to, the programming language Erlang and it provides the functionality that is necessary for
the implementation of fault tolerant telecommunications systems. Mnesiais a multiuser Distributed DBM S specially
made for industrial telecommunications applications written in the symbolic programming language Erlang, which
is also the intended target language. Mnesia tries to address all of the data management issues required for typical
telecommunications systems and it has a number of features that are not normally found in traditional databases.

In telecommunications applications there are different needs from the features provided by traditional DBMSs. The
applications now implemented in the Erlang language need a mixture of a broad range of features, which generally
are not satisfied by traditional DBM Ss. Mnesiais designed with requirements like the following in mind:

e Fast real-time key/value lookup

» Complicated non real-time queries mainly for operation and maintenance

« Distributed data due to distributed applications

e High fault tolerance

e Dynamic re-configuration

» Complex objects

What sets Mnesia apart from most other DBM Ssis that it is designed with the typical data management problems of
telecommuni cations applications in mind. Hence M nesia combines many concepts found in traditional databases, such
as transactions and queries with concepts found in data management systems for telecommunications applications,
such as very fast real-time operations, configurable degree of fault tolerance (by means of replication) and the ability
to reconfigure the system without stopping or suspending it. Mnesia is aso interesting due to its tight coupling to
the programming language Erlang, thus almost turning Erlang into a database programming language. This has many

benefits, the foremost is that the impedance mismatch between data format used by the DBMS and data format used
by the programming language, which is used to manipulate the data, completely disappears.

1.1.2 The Mnesia DataBase Management System (DBMS)

2 | Ericsson AB. All Rights Reserved.: Mnesia

1.1 Introduction

Features

Mnesia contains the following features which combine to produce a fault-tolerant, distributed database management
system written in Erlang:

« Database schema can be dynamically reconfigured at runtime.

» Tables can be declared to have properties such as location, replication, and persistence.

e Tables can be moved or replicated to several nodes to improve fault tolerance. The rest of the system can still
access the tables to read, write, and delete records.

« Tablelocations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

» Database transactions can be distributed, and alarge number of functions can be called within one transaction.

* Several transactions can run concurrently, and their execution is fully synchronized by the database
management system. Mnesia ensures that no two processes manipul ate data simultaneously.

» Transactions can be assigned the property of being executed on al nodesin the system, or on none.
Transactions can a so be bypassed in favor of running so called "dirty operations', which reduce overheads and
run very fast.

Details of these features are described in the following sections.

Add-on Applications

QLC and Mnesia Session can be used in conjunction with Mnesia to produce specialized functions which enhance
the operational ability of Mnesia. Both Mnesia Session and QL C have their own documentation as part of the OTP
documentation set. Below are the main features of Mnesia Session and QL C when used in conjunction with Mnesia

* QLC hasthe ahility to optimize the query compiler for the Mnesia Database Management System, essentially
making the DBM'S more efficient.

¢ QLC, can be used as a database programming language for Mnesia. It includes a notation called "list
comprehensions” and can be used to make complex database queries over a set of tables.

* Mnesia Session is an interface for the Mnesia Database Management System

e Mnesia Session enables access to the Mnesia DBM S from foreign programming languages (i.e. other languages
than Erlang).

Use Mnesiawith the following types of applications:

* Applicationsthat need to replicate data.

« Applications that perform complicated searches on data.

* Applications that need to use atomic transactions to update several records simultaneously.
* Applicationsthat use soft real-time characteristics.

On the other hand, Mnesia may not be appropriate with the following types of applications:

e Programsthat process plain text or binary datafiles

« Applications that merely need alook-up dictionary which can be stored to disc can utilize the standard library
module det s, which isadisc based version of the module et s.

» Applications which need disc logging facilities can utilize the module di sc_| og by preference.
* Not suitable for hard real time systems.

Scope and Purpose

Thismanual isincluded in the OTP document set. It describes how to build Mnesia database applications, and how to
integrate and utilize the Mnesia database management system with OTP. Programming constructs are described, and
numerous programming examples are included to illustrate the use of Mnesia.

Ericsson AB. All Rights Reserved.: Mnesia | 3

1.2 Getting Started with Mnesia

Prerequisites

Readers of this manual are assumed to be familiar with system development principles and database management
systems. Readers are al so assumed to be familiar with the Erlang programming language.

About This Book
This book contains the following chapters:

e Chapter 2, "Getting Started with Mnesia', introduces Mnesia with an example database. Examples are shown of
how to start an Erlang session, specify a Mnesia database directory, initialize a database schema, start Mnesia,
and create tables. Initial prototyping of record definitionsis also discussed.

e Chapter 3, "Building aMnesia Database", more formally describes the steps introduced in Chapter 2, namely
the Mnesia functions which define a database schema, start Mnesia, and create the required tables.

» Chapter 4, "Transactions and other access contexts", describes the transactions properties which make Mnesia
into afault tolerant, real-time distributed database management system. This chapter also describes the concept
of locking in order to ensure consistency in tables, and so called "dirty operations’, or short cuts which bypass
the transaction system to improve speed and reduce overheads.

e Chapter 5, "Miscellaneous Mnesia Features", describes features which enable the construction of more complex
database applications. These features includes indexing, checkpoints, distribution and fault tolerance, disc-less
nodes, replication manipulation, local content tables, concurrency, and object based programming in Mnesia.

» Chapter 6, "Mnesia System Information”, describes the files contained in the Mnesia database directory,
database configuration data, core and table dumps, as well as the important subject of backup, fall-back, and
disaster recovery principles.

e Chapter 7, "Combining Mnesiawith SNMP", is a short chapter which outlines Mnesia integrated with SNMP.

e Appendix A, "Mnesia Errors Messages', lists Mnesia error messages and their meanings.

» Appendix B, "The Backup Call Back Interface", is aprogram listing of the default implementation of this
facility.

e Appendix C, "The Activity Access Call Back Interface”, is a program outlining of one possible implementations
of thisfacility.

1.2 Getting Started with Mnesia

This chapter introduces Mnesia. Following a brief discussion about the first initial setup, a Mnesia database example
is demonstrated. This database example will be referenced in the following chapters, where this example is modified
in order to illustrate various program constructs. In this chapter, the following mandatory procedures are illustrated
by examples:

e Starting an Erlang session and specifying a directory for the Mnesia database.

» Initializing a database schema.

e Starting Mnesia and creating the required tables.

1.2.1 Starting Mnesia for the first time
Following is asimplified demonstration of a Mnesia system startup. Thisis the dialogue from the Erlang shell:

uni x> erl -mesia dir ""/tnp/funky"'
Erl ang (BEAM enul ator version 4.9

Eshell V4.9 (abort with "G

1>

1> mesi a: creat e_schema([node()]) .
ok

4 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

2> mesi a:start().

ok

3> mmesi a: create_tabl e(funky, []).
{at om c, ok}

4> mesi a:info().

---> Processes hol ding | ocks <---
---> Processes waiting for |ocks <---
---> Pending (renote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---

---> Active tables <---

f unky : with O records occupying 269 words of nem
schema : wWith 2 records occupying 353 words of nem
===> Systeminfo in version "1.0", debug | evel = none <===

opt _disc. Directory "/tnp/funky" is used

use fall-back at restart = fal se

runni ng db nodes = [nonode@ohost]

st opped db nodes [1

renot e [1

ram copi es [funky]

di sc_copi es [schema]

di sc_onl y_copi es [1

[{nonode@ohost, di sc_copi es}] = [schensn]
[{nonode@ohost, ram copi es}] = [funky]

1 transactions conmtted, O aborted, O restarted, 1 |ogged to disc
0 held locks, 0 in queue; O l|ocal transactions, O renote
0 transactions waits for other nodes: []

ok

In the example above the following actions were performed:

The Erlang system was started from the UNIX prompt with aflag- rmesia dir ' "/tnp/ funky"' . This
flag indicates to Mnesia which directory will store the data.

A new empty schemawas initialized on the local node by evaluating

mmesi a: creat e_schena([node()]). Theschema containsinformation about the database in general.
Thiswill be thoroughly explained later on.

The DBMS was started by evaluating nmesi a: start ().

A first table was created, called f unky by evaluating the expression nmesi a: cr eat e_t abl e(f unky,
[1) . Thetable was given default properties.

mesi a: i nf o() was evaluated and subsequently displayed information regarding the status of the database
on the terminal.

1.2.2 An Introductory Example

A Mnesiadatabase is organized as a set of tables. Each table is popul ated with instances (Erlang records). A table al'so
has a number of properties, such as location and persistence.

In this example we shall:

Start an Erlang system, and specify the directory where the database will be located.

Initiate a new schemawith an attribute that specifies on which node, or nodes, the database will operate.
Start Mnesiaitself.

Create and popul ate the database tables.

The Example Database

In this database example, we will create the database and relationships depicted in the following diagram. We will
call this database the Company database.

Ericsson AB. All Rights Reserved.: Mnesia | 5

1.2 Getting Started with Mnesia

Figure 2.1: Company Entity-Relation Diagram

The database model 1ooks as follows:

* Therearethree entities: employee, project, and department.
» There are three relationships between these entities:

* A department is managed by an employee, hence the manager relationship.
« Anemployee works at a department, hence the at_dep relationship.
» Each employee works on a number of projects, hence the in_proj relationship.

Defining Structure and Content

We first enter our record definitions into a text file named conpany. hr | . Thisfile defines the following structure
for our sample database:

-record(enpl oyee, {enp_no,
nane,
sal ary,
sex,
phone,
room no}) .

-record(dept, {id,
nane}) .

-record(project, {nane,
nunber}).

-record(manager, {enp,
dept}).

-record(at _dep, {enp,
dept _id}).

-record(in_proj, {enp,

proj _nane}).

The structure defines six tables in our database. In Mnesia, the function rMesi a: cr eat e_t abl e(Nane,
Ar gLi st) isusedto create tables. Nane isthe table name Note: The current version of Mnesiadoes not require that
the name of the table is the same as the record name, See Chapter 4: Record Names Versus Table Names.

For example, the table for employees will be created with the function mesi a: cr eat e_t abl e(enpl oyee,
[{attributes, record_info(fields, enployee)}]). Thetablenameenpl oyee matchesthe name

6 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

for records specifiedin Ar gLi st . Theexpressionr ecord_i nfo(fi el ds, Recor dNane) isprocessed by the
Erlang preprocessor and evaluates to a list containing the names of the different fields for a record.

The Program

The following shell interaction starts Mnesia and initializes the schema for our conpany database:

% erl -mesia dir '"/ldisc/scratch/ Mesia. Conpany"'
Erl ang (BEAM enul ator version 4.9

Eshell V4.9 (abort with ~"Q

1> mesi a: creat e_schema([node()]).
ok

2> mesi a:start().

ok

The following program module creates and populates previously defined tables:

-include_lib("stdlib/include/qglc.hrl").
-include("conpany. hrl").

init() ->

mmesi a: creat e_t abl e(enpl oyee,
[{attributes, record_info(fields, enployee)}]),
mmesi a: creat e_t abl e(dept,
[{attributes, record_info(fields, dept)}]),
mesi a: creat e_t abl e(proj ect,
[{attributes, record_info(fields, project)}]),
mmesi a: creat e_t abl e(manager, [{type, bag},
{attributes, record_info(fields, nanager)}]),
mesi a: creat e_t abl e(at _dep,
[{attributes, record_info(fields, at_dep)}]),
mesi a: create_table(in_proj, [{type, bag},
{attributes, record_info(fields, in_proj)}]).

The Program Explained

The following commands and functions were used to initiate the Company database:

%erl -mesia dir /1di sc/scrat ch/ Mhesi a. Conpany"' . ThisisaUNIX command line
entry which starts the Erlang system. Theflag - mesi a dir Di r specifiesthelocation of the database
directory. The system responds and waits for further input with the prompt 1>.

mesi a: creat e_schena([node()]). Thisfunction hasthe format

mesi a: cr eat e_schena(D scNodeli st) andinitiates anew schema. In this example, we have
created a non-distributed system using only one node. Schemas are fully explained in Chapter 3:Defining a
Schema.

mesi a: start (). Thisfunction starts Mnesia. Thisfunction isfully explained in Chapter 3: Sarting
Mnesia.

Continuing the dialogue with the Erlang shell will produce the following the following:

3> conpany:init().

Ericsson AB. All Rights Reserved.: Mnesia | 7

1.2 Getting Started with Mnesia

{at om c, ok}

4> mesi a:info().

---> Processes hol ding | ocks <---

---> Processes waiting for |ocks <---

---> Pending (renote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

i n_proj : wWith O records occuping 269 words of nem

at _dep : wWith O records occuping 269 words of nem
manager : wWith O records occuping 269 words of nem
pr oj ect : wWith O records occupi ng 269 words of nem
dept : wWith O records occuping 269 words of nem
enpl oyee > wWith O records occuping 269 words of nem
schema : With 7 records occuping 571 words of nem
===> Systeminfo in version "1.0", debug |evel = none <===

opt _disc. Directory "/Ildisc/scratch/ Vesia. Conpany" is used.

use fall-back at restart = fal se

runni ng db nodes = [nonode@ohost]

st opped db nodes [1

renot e [1

ram copi es
[at _dep, dept, enpl oyee, i n_proj , manager, proj ect]

di sc_copi es = [schemg]

di sc_only_copies = []

[{nonode@ohost, di sc_copi es}] = [schensn]

[{nonode@ohost, ram copi es}] =
[empl oyee, dept, proj ect, nanager, at _dep, i n_proj]

6 transactions conmitted, O aborted, O restarted, 6 |ogged to disc

0 held |l ocks, 0 in queue; O l|ocal transactions, O renote

0 transactions waits for other nodes: []

ok

A set of tablesis created:

* mmesi a: creat e_t abl e(Nanme, ArgLi st) . Thisfunction is used to create the required database tables.
The options available with Ar gLi st are explained in Chapter 3: Creating New Tables.

The conpany: i ni t/ 0 function creates our tables. Two tables are of type bag. Thisisthe nanager relation as
well thei n_pr oj relation. Thisshall be interpreted as: An employee can be manager over severa departments, and
an employee can participate in several projects. However, theat _dep relationisset because an employee can only
work in one department. In this data model we have examples of relations that are one-to-one (set), as well as one-
to-many (bag).

mesi a: i nfo() now indicates that a database which has seven local tables, of which, six are our user defined
tables and one is the schema. Six transactions have been committed, as six successful transactions were run when
creating the tables.

To write a function which inserts an employee record into the database, there must be an at _dep record and a set of
i n_proj recordsinserted. Examine the following code used to complete this action:

insert_enp(Enp, Deptld, ProjNanes) ->
Enanme = Enp#enpl oyee. nane,
Fun = fun() ->
mesi a: wi te(Enp),
At Dep = #at_dep{enp = Enane, dept_id = Deptld},
mesi a: wri t e(At Dep),
nk_proj s(Enane, Proj Nanmes)

8 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

end,
mesi a: transacti on(Fun) .

nk_proj s(Enane, [ProjNane|Tail]) ->
mesi a: wite(#in_proj{enp = Enane, proj_name = Proj Nane}),
nk_proj s(Enane, Tail);

nk_projs(_, []) -> ok.

* insert_enp(Enp, Deptld, ProjNames) ->.Theinsert_enp/3 argumentsare:

» Enp isan employee record.
e Dept | d istheidentity of the department where the employee is working.
* Proj Nanes isalist of the names of the projects where the employee are working.
Thei nsert _enp(Enp, Deptld, ProjNanmes) ->functioncreatesafunctional object. Functional objectsare
identified by the term Fun. The Fun is passed as asingle argument to the function nmesi a: t r ansact i on(Fun) .
This means that Fun is run as a transaction with the following properties:
e Fun either succeeds or fails completely.
« Code which manipulates the same data records can be run concurrently without the different processes
interfering with each other.

The function can be used as:

Enp = #enpl oyee{enp_no= 104732,
name = kl acke,
salary = 7,
sex = mal e,
phone = 98108,
roomno = {221, 015}},
insert_enp(Me, 'B/SFR, [Erlang, mmesia, otp]).

Note:

Functional Objects (Funs) are described in the Erlang Reference Manual, "Fun Expressions’.

Initial Database Content
After the insertion of the employee named k| acke we have the following records in the database:

emp_no name saary sex phone room_no

104732 klacke 7 male 99586 {221, 015}

Table 2.1: Employee

An employee record has the following Erlang record/tuple representation: { enpl oyee, 104732, kl acke, 7,
mal e, 98108, {221, 015}}

Ericsson AB. All Rights Reserved.: Mnesia | 9

1.2 Getting Started with Mnesia

emp

dept_name

klacke

B/SFR

Table 2.2: At_dep

At_dep hasthe following Erlang tuple representation: { at _dep, kl acke, ' B/ SFR }.

emp proj_name

klacke Erlang

klacke otp

klacke mnesia

Table 2.3: In_proj

In_proj has the following Erlang tuple representation: {i n_proj, klacke, 'Erlang', klacke, 'otp',

kl acke, 'mesia'}
There is no difference between rows in a table and Mnesia records. Both concepts are the same and will be used
interchangeably throughout this book.

A Mnesiatable is populated by Mnesiarecords. For example, thetuple{ boss, kl acke, bj arne} isanrecord.
The second element in thistupleisthe key. In order to uniquely identify atable row both the key and the table nameis
needed. Theterm object identifier, (oid) issometimesused for the arity two tuple{ Tab, Key}. Theoid for the{ boss,
kl acke, bj arne} recordisthe arity two tuple{ boss, kl acke}. Thefirst element of the tuple is the type of
the record and the second element is the key. An oid can lead to zero, one, or more records depending on whether
thetabletypeisset or bag.

Wewerealsoabletoinsertthe{ boss, kl acke, bj arne} recordwhich containsanimplicit referenceto another
employee which does not yet exist in the database. Mnesia does not enforce this.

Adding Records and Relationships to the Database
After adding additional record to the Company database, we may end up with the following records:

Employees
{enpl oyee, 104465, "Johnson Torbj orn", 1, male, 99184, {242,6038}}.
{enpl oyee, 107912, "Carlsson Tuul a", 2, femal e, 94556, {242,056}}.
{enpl oyee, 114872, "Dacker Bjarne", 3, male, 99415, {221,035}}.
{enpl oyee, 104531, "Ni|sson Hans", 3, male, 99495, {222,6026}}.
{enpl oyee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222, 022}}.
{enpl oyee, 104732, "Wkstrom Cl aes", 2, male, 99586, {221,015}}.
{enpl oyee, 117716, "Fedoriw Anna", 1, femal e, 99143, {221, 031}}.
{enpl oyee, 115018, "Mattsson Hakan", 3, male, 99251, {203,348}}.

Dept

10 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

{dept, 'B/SF', "Open Telecom Platforni}.
{dept, 'B/SFP', "OIP - Product Devel opment"}.
{dept, 'B/SFR , "Conputer Science Laboratory"}.

Projects

%% proj ects

{project, erlang, 1}.
{project, otp, 2}.

{project, beam 3}.
{project, mesia, 5}.
{project, wolf, 6}.
{project, docunentation, 7}.
{project, ww, 8}.

The above three tables, titled enpl oyees, dept , and pr 0] ect s, are the tables which are made up of real records.
Thefollowing database content is stored in the tableswhich isbuilt on relationships. Thesetablesaretitled nanager ,
at _dep,andin_proj.

Manager
{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR}.

At_dep
{at _dep, 104465, 'B/SF'}.
{at _dep, 107912, 'B/SF'}.
{at_dep, 114872, 'B/SFR}.
{at_dep, 104531, 'B/SFR}.
{at _dep, 104659, 'B/SFR}.
{at _dep, 104732, 'B/SFR}.
{at_dep, 117716, 'B/SFP'}.
{at_dep, 115018, 'B/SFP'}.

In_proj

{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mmesi a}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mmesi a}.
{in_proj, 104732, erlang}.

Ericsson AB. All Rights Reserved.: Mnesia | 11

1.2 Getting Started with Mnesia

{in_proj, 117716, otp}.

{in_proj, 117716, docunentati on}.
{in_proj, 115018, otp}.

{in_proj, 115018, mesi a}.

The room number is an attribute of the employee record. Thisis a structured attribute which consists of atuple. The
first element of the tuple identifies a corridor, and the second element identifies the actua room in the corridor. We
could have chosen to represent thisasarecord - r ecor d(room {corr, no}). instead of an anonymoustuple
representation.

The Company database is now initialized and contains data.

Writing Queries

Retrieving data from DBMS should usually be done with rmesi a: r ead/ 3 or mesi a: r ead/ 1 functions. The
following function raises the salary:

rai se(Eno, Raise) ->

F=fun() ->
[E] = mmesi a: read(enpl oyee, Eno, wite),
Sal ary = E#enpl oyee. sal ary + Rai se,
New = E#enpl oyee{sal ary = Sal ary},
mesi a: wri t e(New)

end,
mesi a: transacti on(F).

Since we want to update the record using mesi a: wri t e/ 1 after we have increased the salary we acquire awrite
lock (third argument to read) when we read the record from the table.

It isnot alwaysthe case that we can directly read the values from the table, we might need to search the table or several
tablesto get the data we want, this is done by writing database queries. Queries are always more expensive operations
than direct lookups done with mesi a: r ead and should be avoided in performance critical code.

There are two methods for writing database queries:
* Mnesiafunctions
e QLC

The following function extracts the names of the femal e employees stored in the database:
\ 011 nmmesi a: sel ect (enpl oyee, [{#enpl oyee{sex = female, nane = '$1', ="' _"},[], ['$1'1}]).

Select must always run within an activity such as atransaction. To be able to call from the shell we might construct
afunction as;

all _females() ->
F = fun() ->
Femal e = #enpl oyee{sex = fenale, nane = '$1', _ ="' _'},
mmesi a: sel ect (enpl oyee, [{Female, [], ['$1']}])
end,
mesi a: transacti on(F).

12 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

The select expression matches all entriesin table employee with the field sex set to female.
This function can be called from the shell as follows:

(kl acke@i n) 1> conpany: al | _femal es().
{atom c, ["Carlsson Tuula", "Fedoriw Anna"]}

See aso the Pattern Matching chapter for a description of select and its syntax.

This section contains simple introductory examples only. Refer to QLC reference manual for afull description of the
QLC query language. Using QLC might be more expensive than using Mnesia functions directly but offers a nice
syntax.

The following function extracts alist of female employees from the database:

Q = gl c: q([E#enpl oyee. name || E <- mmesi a:tabl e(enpl oyee),
\011 E#enpl oyee. sex == fenal €]),
\011 qlc:e(Q,

Accessing mnesia tables from a QLC list comprehension must aways be done within a transaction. Consider the
following function:

fermal es() ->
F =fun() ->
Q = gl c: q([E#enpl oyee. name || E <- mmesi a: t abl e(enpl oyee),
E#enpl oyee. sex == fenuale]),

glc:e(Q
end,
mmesi a: transacti on(F).

This function can be called from the shell as follows:

(kl acke@i n) 1> conpany: f emal es() .
{atom c, ["Carlsson Tuula", "Fedoriw Anna"]}

Intraditional relational database terminology, the above operation would be called asel ection, followed by aprojection.
The list comprehension expression shown above contains a number of syntactical elements.

o thefirst[bracket should be read as "build the list"
e the|| "suchthat" and the arrow <- should be read as "taken from"

Hence, the above list comprehension demonstrates the formation of thelist E#enpl oyee. nane such that E istaken
from the table of employees and the sex attribute of each recordsis equa with the atom f emal e.

The whole list comprehension must be given to theql ¢: g/ 1 function.

It is possible to combine list comprehensions with low level Mnesia functions in the same transaction. If we want to
raise the salary of all female employees we execute:

Ericsson AB. All Rights Reserved.: Mnesia | 13

1.3 Building A Mnesia Database

rai se_femal es(Amount) ->

F = fun() ->

Q=gqglc:q([E || E <- mmesi a:tabl e(enpl oyee),
E#enpl oyee. sex == fenmal e]),
Fs = qglc:e(Q,
over_wite(Fs, Anount)
end,
mesi a: transacti on(F).

over wite([El Tail], Anount) ->
Sal ary = E#enpl oyee. sal ary + Anount,
New = E#enpl oyee{sal ary = Sal ary},
mesi a: wi t e(New),
1 + over_wite(Tail, Amount);

over wite([],) ->
0.

Thefunctionr ai se_f enmal es/ 1 returnsthetuple{ at om ¢, Nunber},whereNunber isthe number of femae
employees who received a salary increase. Should an error occur, the value { abor t ed, Reason} isreturned. In
the case of an error, Mnesia guarantees that the salary is not raised for any employees at al.

33>conpany: rai se_f emal es(33).
{atom c, 2}

1.3 Building A Mnesia Database

This chapter detailsthe basi ¢ stepsinvolved when designing a M nesia database and the programming constructs which
make different solutions available to the programmer. The chapter includes the following sections:

* defining aschema

e thedatamodel

e dtarting Mnesia

e creating new tables.

1.3.1 Defining a Schema

The configuration of a Mnesia system is described in the schema. The schema is a special table which contains
information such as the table names and each table's storage type, (i.e. whether a table should be stored in RAM, on
disc or possibly on both, aswell asitslocation).

Unlike data tables, information contained in schema tables can only be accessed and modified by using the schema
related functions described in this section.

Mnesia has various functions for defining the database schema. It is possible to move tables, delete tables, or
reconfigure the layout of tables.

Animportant aspect of these functionsisthat the system can access atable whileit isbeing reconfigured. For example,
it is possible to move a table and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

The following section describes the functions available for schema management, all of which return atuple:

e {atomc, ok};or,

14 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Building A Mnesia Database

{aborted, Reason} if unsuccessful.

Schema Functions

mesi a: cr eat e_schema(NodeLi st) . Thisfunction is used to initialize a new, empty schema. Thisis
amandatory requirement before Mnesia can be started. Mnesiais atruly distributed DBMS and the schemais
asystem table that is replicated on all nodesin a Mnesia system. The function will fail if a schemais aready
present on any of the nodesin NodeLi st . Thisfunction requires Mnesiato be stopped onthe all db_nodes
contained in the parameter NodeLi st . Applications call this function only once, sinceit is usually a one-time
activity to initialize a new database.

mesi a: del et e_schena(D scNodeli st) . Thisfunction erases any old schemas on the nodes in
Di scNodelLi st . It dso removes all old tables together with al data. This function requires Mnesiato be
stopped on al db_nodes.

mesi a: del et e_t abl e(Tab) . Thisfunction permanently deletes all replicas of table Tab.
mmesi a: cl ear _t abl e(Tab) . Thisfunction permanently deletes all entriesin table Tab.

mmesi a: nove_t abl e_copy(Tab, From To). Thisfunction movesthe copy of table Tab from node
Fr omto node To. The table storage type, {t ype} ispreserved, so if aRAM table is moved from one node to
another node, it remains a RAM table on the new node. It is still possible for other transactions to perform read
and write operation to the table while it is being moved.

mesi a: add_t abl e_copy(Tab, Node, Type). Thisfunction createsareplicaof thetable

Tab at node Node. The Type argument must be either of the atomsr am copi es, di sc_copi es, or

di sc_only_copi es. If we add a copy of the system table schena to a node, this means that we want the
Mnesia schemato reside there aswell. This action then extends the set of nodes that comprise this particular
Mnesia system.

mesi a: del _tabl e_copy(Tab, Node). Thisfunction deletesthe replica of table Tab at node Node.
When the last replica of atableis removed, the tableis deleted.

mesi a: transform tabl e(Tab, Fun, NewAttributeList, NewRecordNane). Thisfunction
changes the format on all recordsin table Tab. It applies the argument Fun to al recordsin the table. Fun shall
be a function which takes an record of the old type, and returns the record of the new type. The table key may
not be changed.

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
fun(X) when record(X, old) ->
#new key = X#ol d. key,
val = X#ol d. val,
extra = 42}
end,
{atom c, ok} = mmesia:transformtabl e(foo, Transforner,
record_info(fields, new),

new) ,

The Fun argument can aso be the atom i gnor e, it indicates that only the meta data about the table will be
updated. Usage of i gnor e is not recommended (since it creates inconsi stencies between the meta data and the
actual data) but included as a possibility for the user do to his own (off-line) transform.

change tabl e _copy_type(Tab, Node, ToType). Thisfunction changesthe storage type of atable.
For example, aRAM table is changed to adisc_table at the node specified as Node.

Ericsson AB. All Rights Reserved.: Mnesia | 15

1.3 Building A Mnesia Database

1.3.2 The Data Model

The data model employed by Mnesia is an extended relational data model. Data is organized as a set of tables and
relations between different data records can be modeled as additional tables describing the actual relationships. Each
table contains instances of Erlang records and records are represented as Erlang tuples.

Object identifiers, also known as oid, are made up of atable name and akey. For example, if we have an employee
record represented by thetuple{ enpl oyee, 104732, klacke, 7, male, 98108, {221, 015}}.This
record has an object id, (Oid) whichisthetuple{ enpl oyee, 104732}.

Thus, each table is made up of records, where the first element is a record name and the second element of the table
is a key which identifies the particular record in that table. The combination of the table name and a key, is an arity
two tuple { Tab, Key} cdled the Oid. See Chapter 4:Record Names Versus Table Names, for more information
regarding the relationship between the record name and the table name.

What makes the Mnesia data model an extended relational model is the ability to store arbitrary Erlang terms in the
attribute fields. One attribute value could for example be a whole tree of oids leading to other terms in other tables.
This type of record is hard to model in traditional relational DBM Ss.

1.3.3 Starting Mnesia

Before we can start Mnesia, we must initialize an empty schema on all the participating nodes.

e The Erlang system must be started.

* Nodes with disc database schema must be defined and implemented with the function
creat e_schema(Nodeli st).

When running a distributed system, with two or more participating nodes, then the mesi a: start (). function
must be executed on each participating node. Typically this would be part of the boot script in an embedded
environment. In atest environment or an interactive environment, nmesi a: st art () can also be used either from
the Erlang shell, or another program.

Initializing a Schema and Starting Mnesia

To use a known example, we illustrate how to run the Company database described in Chapter 2 on two separate
nodes, whichwe call a@i n and b@keppet . Each of these nodes must have have aMnesia directory aswell asan
initialized schema before Mnesia can be started. There are two ways to specify the Mnesia directory to be used:

e Specify the Mnesiadirectory by providing an application parameter either when starting the Erlang shell or in the
application script. Previously the following example was used to create the directory for our Company database:

%rl -mesia dir '"/Ildisc/scratch/ Mesia. Conpany"'

* If no command lineflag is entered, then the Mnesia directory will be the current working directory on the node
where the Erlang shell is started.
To start our Company database and get it running on the two specified nodes, we enter the following commands:

e Onthenodecaled gin:

gin %rl -sname a -mesia dir '"/I|disc/scratch/ Mesia.conpany"’

* Onthenode called skeppet:

16 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Building A Mnesia Database

skeppet %erl -sname b -mmesia dir '"/Idisc/scratch/Mesia.conpany"’

e On one of the two nodes:

(a@i nl) >mesi a: creat e_schema([a@i n, b@keppet]).

e Thefunctionmesi a: st art () iscalled on both nodes.
* Toinitialize the database, execute the following code on one of the two nodes.

Asillustrated above, the two directories reside on different nodes, becausethe/ | di sc/ scr at ch (the "local” disc)
exists on the two different nodes.

By executing these commands we have configured two Erlang nodes to run the Company database, and
therefore, initialize the database. This is required only once when setting up, the next time the system is started
mesi a: st art () iscalled on both nodes, to initialize the system from disc.

In asystem of Mnesianodes, every nodeisaware of the current location of all tables. Inthisexample, dataisreplicated
on both nodes and functions which manipulate the datain our tables can be executed on either of the two nodes. Code
which manipulate M nesia data behaves identically regardless of where the data resides.

Thefunctionmmesi a: st op() stopsMnesiaonthe node wherethefunctionisexecuted. Boththest ar t / 0 and the
st op/ 0 functions work on the "local" Mnesia system, and there are no functions which start or stop a set of nodes.

The Start-Up Procedure
Mnesiais started by calling the following function:

mesi a: start ().

This function initiates the DBM S locally.
The choice of configuration will alter the location and load order of the tables. The alternatives are listed below:

e Tablesthat are stored locally only, are initialized from the local Mnesia directory.

» Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying
the entire table from the other node depending on which of the different replicas is the most recent. Mnesia
determines which of the tables is the most recent.

» Tablesthat reside on remote nodes are available to other nodes as soon as they are loaded.
Table initidization is asynchronous, the function call mesi a: st art () returns the atom ok and then starts to
initialize the different tables. Depending on the size of the database, this may take some time, and the application

programmer must wait for the tables that the application needs before they can be used. This achieved by using the
function:

e mesia:wait_for_tabl es(TabList, Timeout)
This function suspends the caller until al tables specified in TabLi st are properly initiated.

A problem can arise if areplicated table on one node isinitiated, but Mnesia deduces that another (remote) replicais
more recent than the replica existing on the local node, the initialization procedure will not proceed. In this situation,
acal totomesi a: wai t _f or _t abl es/ 2 suspends the caller until the remote node has initiated the table from
itslocal disc and the node has copied the table over the network to the local node.

Ericsson AB. All Rights Reserved.: Mnesia | 17

1.3 Building A Mnesia Database

This procedure can be time consuming however, the shortcut function shown below will load all the tables from disc
at afaster rate:

« mesia:force_| oad_tabl e(Tab) . Thisfunction forces tables to be loaded from disc regardliess of the
network situation.

Thus, we can assumethat if an application wishesto usetablesa and b, then the application must perform some action
similar to the below code before it can utilize the tables.

case mesia:wait_for_tables([a, b], 20000) of

{ti meout, Remai ni ngTabs} ->
pani c(Remai ni ngTabs) ;
ok ->
synced
end.
Warning:

When tables are forcefully loaded from the local disc, al operations that were performed on the replicated table
while the local node was down, and the remote replicawas alive, are lost. This can cause the database to become
inconsistent.

If the start-up procedure fails, the rmesi a: st art () function returns the cryptic tuple { er r or, { shut down,
{mmesi a_sup,start,[nornmal,[]]}}}.Usecommand line arguments-boot start sasl as argument to the erl
script in order to get more information about the start failure.

1.3.4 Creating New Tables

Mnesia provides one function to create new tables. This function is. nmesi a: cr eat e_t abl e(Nane,
ArgList).

When executing this function, it returns one of the following responses:

« {atom c, ok} if thefunction executes successfully

« {aborted, Reason} if thefunctionfails.

The function arguments are:

* Nane isthe atomic name of the table. It is usually the same name as the name of the records that constitute the
table. (Seer ecor d_narme for more details.)
e Argli st isalist of { Key, Val ue} tuples. The following arguments are valid:

« {type, Type} whereType must beeither of theatomsset , or der ed_set or bag. The default value
isset . Note: currently ‘ordered set' is not supported for 'disc_only copies' tables. A table of type set or
order ed_set has either zero or one record per key. Whereas a table of type bag can have an arbitrary
number of records per key. The key for each record is always the first attribute of the record.

The following example illustrates the difference between type set and bag:

f() ->F = fun() ->
\011 mesia:wite({foo, 1, 2}), mesia:wite({foo, 1, 3}),
\011 mesi a: read({foo, 1}) end, mmesia:transacti on(F).

18 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Building A Mnesia Database

This transaction will return the list [{f 00, 1, 3}] if the f oo table is of type set. However, list
[{foo, 1,2}, {foo, 1, 3}] will returnif thetableis of type bag. Note the use of bag and set table
types.

Mnesia tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.

{di sc_copi es, NodelLi st} ,whereNodeLi st isalist of thenodeswherethistablewill resideondisc.

Write operations to a table replica of typedi sc_copi es will write data to the disc copy as well as to the
RAM copy of thetable.

It is possible to have areplicated table of type di sc_copi es on one node, and the same table stored as a
different type on another node. The default valueis|] . Thisarrangement isdesirableif wewant thefollowing
operational characteristics are required:

» read operations must be very fast and performed in RAM
« al write operations must be written to persistent storage.

A writeoperationonadi sc_copi es tablereplicawill be performed in two steps. First the write operation
is appended to alog file, then the actual operation is performed in RAM.

{ram copi es, NodelLi st} ,whereNodelLi st isalist of the nodes wherethistableis stored in RAM.
The default value for NodeLi st is[node()] . If the default value is used to create a new table, it will be
located on the local node only.

Table replicas of type ramcopies can be dumped to disc with the function
mesi a: dunp_t abl es(TabLi st).

{di sc_only_copies, Nodeli st}.Thesetablereplicasare stored on disc only and are therefore
slower to access. However, adisc only replica consumes less memory than atable replica of the other two
storage types.

{index, AttributeNaneList},whereAttributeNaneLi st isalist of atoms specifying the
names of the attributes Mnesia shall build and maintain. An index table will exist for every element in the
list. Thefirst field of aMnesiarecord is the key and thus need no extraindex.

Thefirst field of arecord is the second element of the tuple, which is the representation of the record.

{snnp, SnnpStruct}.SnmpStruct isdescribed inthe SNMP User Guide. Basicaly, if this
attributeispresent in Ar gLi st of esi a: creat e_t abl e/ 2, thetableisimmediately accessible by
means of the Simple Network Management Protocol (SNMP).

It is easy to design applications which use SNMP to manipulate and control the system. Mnesia provides a
direct mapping between the logical tables that make up an SNMP control application and the physical data
which make up aMnesiatable. [] is default.

{local content, true} When an application needs atable whose contents should be locally unique
on eachnode, | ocal _cont ent tables may be used. The name of the table is known to all Mnesia nodes,
but its contents is unique for each node. Access to this type of table must be done locally.

{attributes, Atonlist} isalistof theattribute namesfor the records that are supposed to populate
thetable. The default valueisthelist [key, val] . Thetable must at least have one extra attribute besides
the key. When accessing single attributes in a record, it is not recommended to hard code the attribute
names as atoms. Use the construct r ecord_i nfo(fi el ds, recor d_nane) instead. The expression
record_i nfo(fields,record_nane) isprocessed by the Erlang macro pre-processor and returns a
list of the record's field names. With the record definition - r ecor d(f oo, {Xx,y, z}). the expression
record_info(fields,foo) isexpanded tothelist [x, y, z] . Accordingly, it is possible to provide
the attribute names yourself, or to usether ecor d_i nf o/ 2 notation.

It is recommended that ther ecor d_i nf o/ 2 notation be used as it is easier to maintain the program and
it will be more robust with regards to future record changes.

Ericsson AB. All Rights Reserved.: Mnesia | 19

1.4 Transactions and Other Access Contexts

e {record_nane, Atont} specifiesthecommon name of al records stored in thetable. All records, stored
inthe table, must have thisname astheir first element. Ther ecor d_namne defaults to the name of the table.
For more information see Chapter 4:Record Names Versus Table Names.

As an example, assume we have the record definition:
-record(funky, {x, y}).

The below call would create atable which is replicated on two nodes, has an additional index on they attribute, and
isof typebag.

mmesi a: creat e_t abl e(funky, [{disc_copies, [Nl, N2]}, {index,
[yl}, {type, bag}, {attributes, record_info(fields, funky)}]).

Whereas a call to the below default code values:

mesi a: create_tabl e(stuff, [])

would return a table with a RAM copy on the local node, no additional indexes and the attributes defaulted to the
list[key, val].

1.4 Transactions and Other Access Contexts

Thischapter describesthe M nesiatransaction system and the transaction propertieswhich make Mnesiaafault tolerant,
distributed database management system.

Also covered in this chapter are the locking functions, including table locks and sticky locks, as well as alternative
functions which bypass the transaction system in favor of improved speed and reduced overheads. These functions
are called "dirty operations’. We also describe the usage of nested transactions. This chapter contains the following
sections:

» transaction properties, which include atomicity, consistency, isolation, and durability

e Locking

» Dirty operations

* Record names vs table hames

* Activity concept and various access contexts

* Nested transactions

e Pattern matching

e |teration

1.4.1 Transaction Properties

Transactions are an important tool when designing fault tolerant, distributed systems. A Mnesia transaction is a
mechanism by which a series of database operations can be executed as one functional block. The functional block
whichisrun asatransactioniscalled aFunctional Object (Fun), and this code can read, write, or delete Mnesiarecords.
The Fun is evaluated as a transaction which either commits, or aborts. If a transaction succeeds in executing Fun it
will replicate the action on all nodes involved, or abort if an error occurs.

20 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

The following example shows a transaction which raises the salary of certain employee numbers.

rai se(Eno, Raise) ->

F =fun() ->
[E] = mmesi a: read(enpl oyee, Eno, wite),
Sal ary = E#enpl oyee. sal ary + Rai se,
New = E#enpl oyee{sal ary = Sal ary},
mesi a: wri t e(New)

end,
mmesi a: transacti on(F).

Thetransactionr ai se(Eno, Rai se) - > containsa Fun made up of four lines of code. This Funis called by
the statement mesi a: t r ansact i on(F) and returnsavalue.

The Mnesiatransaction system facilitates the construction of reliable, distributed systems by providing the following
important properties:

e Thetransaction handler ensures that a Fun which is placed inside a transaction does not interfere with
operations embedded in other transactions when it executes a series of operations on tables.

» Thetransaction handler ensures that either all operationsin the transaction are performed successfully on all
nodes atomically, or the transaction fails without permanent effect on any of the nodes.

» The Mnesiatransactions have four important properties, which we call Atomicity, Consistency,|solation, and
Durability, or ACID for short. These properties are described in the following sub-sections.

Atomicity

Atomicity means that database changes which are executed by a transaction take effect on all nodes involved, or on
none of the nodes. In other words, the transaction either succeeds entirely, or it fails entirely.

Atomicity is particularly important when we want to atomically write more than one record in the same transaction.
Ther ai se/ 2 function, shown as an example above, writes one record only. Thei nsert _enp/ 3 function, shown
in the program listing in Chapter 2, writes the record enpl oyee aswell as employee relations such asat _dep and
i n_proj into the database. If we run this latter code inside a transaction, then the transaction handler ensures that
the transaction either succeeds completely, or not at all.

Mnesiaisadistributed DBM S where data can be replicated on several nodes. In many such applications, it isimportant
that a series of write operations are performed atomically inside a transaction. The atomicity property ensures that a
transaction take effect on all nodes, or none at all.

Consistency

Consistency. This transaction property ensures that a transaction aways leaves the DBMS in a consistent state. For
example, Mnesia ensures that inconsistencies will not occur if Erlang, Mnesia or the computer crashes while awrite
operation isin progress.

Isolation

Isolation. Thistransaction property ensures that transactions which execute on different nodesin anetwork, and access
and manipul ate the same data records, will not interfere with each other.

The isolation property makes it possible to concurrently execute the r ai se/ 2 function. A classical problem in
concurrency control theory isthe so called "lost update problem”.

Theisolation property isextremely useful if thefollowing circumstances occurs where an employee (with an employee
number 123) and two processes, (P1 and P2), are concurrently trying to raise the salary for the employee. The initial
value of the employees salary is, for example, 5. Process P1 then starts to execute, it reads the employee record and
adds 2 to the salary. At this point in time, process P1 isfor some reason preempted and process P2 has the opportunity

Ericsson AB. All Rights Reserved.: Mnesia | 21

1.4 Transactions and Other Access Contexts

to run. P2 reads the record, adds 3 to the salary, and finally writes a new employee record with the salary set to 8.
Now, process P1 start to run again and writes its employee record with salary set to 7, thus effectively overwriting and
undoing the work performed by process P2. The update performed by P2 islost.

A transaction system makes it possible to concurrently execute two or more processes which manipulate the same
record. The programmer does not need to check that the updates are synchronous, this is overseen by the transaction
handler. All programs accessing the database through the transaction system may be written as if they had sole access
to the data.

Durability

Durability. This transaction property ensures that changes made to the DBMS by a transaction are permanent. Once
a transaction has been committed, all changes made to the database are durable - i.e. they are written safely to disc
and will not be corrupted or disappear.

Note:

The durability feature described does not entirely apply to situations where Mnesia is configured as a "pure”
primary memory database.

1.4.2 Locking

Different transaction managers employ different strategies to satisfy the isolation property. Mnesia uses the standard
technique of two-phase locking. This means that locks are set on records before they are read or written. Mnesia uses
five different kinds of locks.

» Readlocks. A read lock is set on one replica of arecord before it can be read.

» Writelocks. Whenever atransaction writes to an record, write locks are first set on all replicas of that particular
record.

* Readtablelocks. If atransaction traverses an entire table in search for arecord which satisfy some particular
property, it is most inefficient to set read locks on the records, one by one. It is also very memory consuming,
since the read locks themselves may take up considerable space if the table is very large. For this reason,
Mnesia can set aread lock on an entire table.

» Writetablelocks. If atransaction writes alarge number of recordsto onetable, it is possible to set awrite lock
on the entire table.

» Sickylocks. These are write locks that stay in place at a node after the transaction which initiated the lock has
terminated.

Mnesia employs a strategy whereby functions such as nmesi a: r ead/ 1 acquire the necessary locks dynamically
as the transactions execute. Mnesia automatically sets and releases the locks and the programmer does not have to
code these operations.

Deadlocks can occur when concurrent processes set and release locks on the same records. Mnesia employs a "wait-
die" strategy to resolve these situations. If Mnesia suspects that a deadlock can occur when atransaction triesto set a
lock, the transaction isforced to release all itslocks and sleep for awhile. The Fun in the transaction will be evaluated
one moretime.

For thisreason, itisimportant that the codeinsidethe Fungiventormesi a: t ransact i on/ 1 ispure. Somestrange
results can occur if, for example, messages are sent by the transaction Fun. The following example illustrates this
situation:

bad_rai se(Eno, Raise) ->

22 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

F = fun() ->
[E] = mmesi a: read({enpl oyee, Eno}),
Sal ary = E#enpl oyee. sal ary + Rai se,
New = E#enpl oyee{sal ary = Sal ary},
io:format("Trying to wite ... ~n", []),
mesi a: wi t e(New)

end,
mesi a: transacti on(F).

This transaction could writethetext" Trying to wite ... " athousandtimesto thetermina. Mnesia does
guarantee, however, that each and every transaction will eventually run. Asaresult, Mnesiais not only deadlock free,
but also livelock free.

The Mnesia programmer cannot prioritize one particular transaction to execute before other transactions which are
waiting to execute. As aresult, the Mnesia DBMSS transaction system is not suitable for hard real time applications.
However, Mnesia contains other features that have real time properties.

Mnesia dynamically sets and releases locks as transactions execute, therefore, it is very dangerous to execute code
with transaction side-effects. In particular, ar ecei ve statement inside a transaction can lead to a situation where
the transaction hangs and never returns, which in turn can cause locks not to release. This situation could bring the
whole system to a standstill since other transactions which execute in other processes, or on other nodes, are forced
to wait for the defective transaction.

If atransaction terminates abnormally, Mnesiawill automatically release the locks held by the transaction.

We have shown examples of anumber of functions that can be used inside atransaction. The following list showsthe
simplest Mnesia functions that work with transactions. It isimportant to realize that these functions must be embedded
in atransaction. If no enclosing transaction (or other enclosing Mnesia activity) exists, they will al fail.

e mesia:transaction(Fun) -> {aborted, Reason} |{atomic, Value}.Thisfunction
executes one transaction with the functional object Fun as the single parameter.

e mesia:read({Tab, Key}) -> transaction abort | RecordLi st. Thisfunction readsall
records with Key as key from table Tab. This function has the same semantics regardless of the location of
Tabl e. If thetableisof typebag, ther ead({ Tab, Key}) canreturn an arbitrarily long list. If the tableis
of typeset , thelist is either of lengthone, or [] .

* mesia:wead({Tab, Key}) -> transaction abort | RecordLi st. Thisfunction behaves
the same way as the previoudly listed r ead/ 1 function, except that it acquires awrite lock instead of aread
lock. If we execute a transaction which reads a record, modifies the record, and then writes the record, it
is dlightly more efficient to set the write lock immediately. In cases whereweissueammesi a: r ead/ 1,
followed by ammesi a: wri t e/ 1, thefirst read lock must be upgraded to a write lock when the write
operation is executed.

e mesia: wite(Record) -> transaction abort | ok. Thisfunctionwritesarecord intothe
database. The Recor d argument is an instance of arecord. The function returns ok, or aborts the transaction if
an error should occur.

* mesia:delete({Tab, Key}) -> transaction abort | ok.Thisfunction deletesall records
with the given key.

e mesia: del ete_obj ect(Record) -> transaction abort | ok. Thisfunction deletesrecords
with object id Recor d. Thisfunction is used when we want to delete only some records in atable of type bag.

Sticky Locks

As previously stated, the locking strategy used by Mnesiais to lock one record when we read a record, and lock all
replicas of a record when we write a record. However, there are applications which use Mnesia mainly for its fault-
tolerant qualities, and these applications may be configured with one node doing al the heavy work, and a standby
node which is ready to take over in case the main node fails. Such applications may benefit from using sticky locks
instead of the normal locking scheme.

Ericsson AB. All Rights Reserved.: Mnesia | 23

1.4 Transactions and Other Access Contexts

A sticky lock isalock which staysin place at anode after the transaction which first acquired the lock has terminated.
To illustrate this, assume that we execute the following transaction:

F =fun() ->
mesi a: write(#foo{a = kalle})
end,
mmesi a: transacti on(F).

Thef oo tableisreplicated on the two nodes N1 and N2.
Normal locking requires:

e one network rpc (2 messages) to acquire the write lock
» three network messages to execute the two-phase commit protocol.

If we use sticky locks, we must first change the code as follows:

F =fun() ->
mesi a:s_wite(#foo{a = kalle})
end,
mesi a: transacti on(F).

Thiscodeusesthes_wri t e/ 1 function instead of thewr i t e/ 1 function. Thes_wri t e/ 1 function sets a sticky
lock instead of anormal lock. If thetableisnot replicated, sticky locks have no special effect. If thetableisreplicated,
and we set a sticky lock on node N1, this lock will then stick to node N1. The next time we try to set a sticky lock
on the same record at node N1, Mnesia will see that the lock is aready set and will not do a network operation in
order to acquire the lock.

Itismuch more efficient to set alocal lock than it isto set anetworked lock, and for this reason sticky locks can benefit
application that use areplicated table and perform most of the work on only one of the nodes.

If arecordisstuck at node N1 and wetry to set asticky lock for therecord on node N2, the record must be unstuck. This
operation is expensive and will reduce performance. The unsticking is done automatically if weissues_write/ 1
requests at N2.

Table Locks

Mnesia supports read and write locks on whole tables as a complement to the normal locks on single records. As
previously stated, Mnesia sets and releases locks automatically, and the programmer does not have to code these
operations. However, transactions which read and write alarge number of recordsin a specific table will execute more
efficiently if we start the transaction by setting atable lock on thistable. Thiswill block other concurrent transactions
from the table. The following two function are used to set explicit table locks for read and write operations:

e mesia:read_| ock_tabl e(Tab) Setsareadlock onthetable Tab

 mesia:wite_| ock_tabl e(Tab) Setsawritelock onthetable Tab

Alternate syntax for acquisition of table locksis asfollows:

mesi a: | ock({tabl e, Tab}, read)
mesi a: | ock({tabl e, Tab}, wite)

24 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

The matching operations in Mnesia may either lock the entire table or just a single record (when the key is bound
in the pattern).

Global Locks

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local oneif alocal replica exists).

The function mesi a: | ock/ 2 isintended to support table locks (as mentioned previously) but also for situations
when locks need to be acquired regardless of how tables have been replicated:

mesi a: | ock({gl obal, G obal Key, Nodes}, LockKi nd)

LockKind ::=read | wite |

Thelock is acquired on the Lockltem on all Nodes in the nodes list.

1.4.3 Dirty Operations

In many applications, the overhead of processing a transaction may result in aloss of performance. Dirty operation
are short cuts which bypass much of the processing and increase the speed of the transaction.

Dirty operation are useful in many situations, for example in a datagram routing application where Mnesia stores the
routing table, and it is time consuming to start a whole transaction every time a packet is received. For this reason,
Mnesia has functions which manipulate tables without using transactions. This alternative to processing is known as
adirty operation. However, it isimportant to realize the trade-off in avoiding the overhead of transaction processing:
e Theatomicity and the isolation properties of Mnesiaare lost.

* Theisolation property is compromised, because other Erlang processes, which use transaction to manipulate the
data, do not get the benefit of isolation if we simultaneously use dirty operations to read and write records from
the sametable.

The major advantage of dirty operationsis that they execute much faster than equivalent operations that are processed
as functional objects within atransaction.

Dirty operations are written to disc if they are performed on a table of type di sc_copi es, or type
di sc_only_copi es. Mnesia aso ensures that all replicas of a table are updated if a dirty write operation is
performed on atable.

A dirty operation will ensure acertain level of consistency. For example, itisnot possible for dirty operationsto return
garbled records. Hence, each individual read or write operation is performed in an atomic manner.

All dirty functionsexecuteacall toexi t ({ abort ed, Reason}) onfailure. Even if the following functions are
executed inside a transaction no locks will be acquired. The following functions are available:

e mesia:dirty read({Tab, Key}).Thisfunction readsrecord(s) from Mnesia.

e mesia:dirty wite(Record). Thisfunctionwritestherecord Recor d

 mesia:dirty_del ete({Tab, Key}). Thisfunction deletesrecord(s) with the key Key.

« mesia:dirty_del et e_object (Record) Thisfunctionisthe dirty operation aternative to the
functiondel et e_object/ 1

« mesia:dirty_first(Tab). Thisfunction returnsthe "first" key in the table Tab.

Recordsinset or bag tablesarenot sorted. However, thereisarecord order which isnot known to the user. This
means that it is possible to traverse atable by means of this function in conjunction withthedi rty_next/ 2
function.

Ericsson AB. All Rights Reserved.: Mnesia | 25

1.4 Transactions and Other Access Contexts

If there are no records at al in the table, this function will return the atom ' $end_of tabl e' . It is not
recommended to use this atom as the key for any user records.

e mesia:dirty_next(Tab, Key).Thisfunction returnsthe "next" key in thetable Tab. Thisfunction
makes it possible to traverse a table and perform some operation on all records in the table. When the end of the
table is reached the special key ' $end_of _t abl e' isreturned. Otherwise, the function returns a key which
can be used to read the actual record.

The behavior is undefined if any process perform awrite operation on the table while we traverse the table
withthedi rty_next/ 2 function. Thisis becausewr i t e operations on a Mnesiatable may lead to internal
reorganizations of the table itself. Thisis an implementation detail, but remember the dirty functions are low
level functions.

 mesia:dirty_|ast(Tab) Thisfunction worksexactly asmmesi a: dirty _first/ 1 but
returns the last object in Erlang term order for the or der ed_set table type. For all other table types,
mesia:dirty first/landmesia:dirty | ast/1aresynonyms.

 mesia:dirty prev(Tab, Key) Thisfunctionworksexactly asmmesi a: dirty_next/ 2 but
returns the previous object in Erlang term order for the ordered_set table type. For all other table types,
mesi a: dirty_next/ 2 andmmesi a: di rty_prev/ 2 are synonyms.

e« mesia:dirty_slot(Tab, Slot)

Returns the list of records that are associated with Slot in atable. It can be used to traverse a table in a manner
similar to thedi rty_next/ 2 function. A table has a number of dots that range from zero to some unknown
upper bound. Thefunctiondi rty_sl ot/ 2 returnsthe special atom' $end_of _t abl e' whentheend of the
tableis reached.

The behavior of this function is undefined if the table is written on while being traversed.
mesi a: read_| ock_t abl e(Tab) may beused to ensurethat no transaction protected writes are performed
during the iteration.

e mesia:dirty update_counter({Tab, Key}, Val).
Counters are positive integers with avalue greater than or equal to zero. Updating a counter will add the Val and
the counter where Val isapositive or negative integer.

There exists no specia counter records in Mnesia. However, records on the form of { TabNarme, Key,
I nt eger} can be used as counters, and can be persistent.

It is not possible to have transaction protected updates of counter records.

There are two significant differences when using this function instead of reading the record, performing the
arithmetic, and writing the record:
* itismuch more efficient

* thedirty_updat e_count er/ 2 function is performed as an atomic operation although it is not
protected by atransaction. Accordingly, no table update islost if two processes simultaneously execute the
di rty_updat e_count er/ 2 function.

e« mesia:dirty_match_object (Pat) . Thisfunctionisthedirty equivalent of
mmesi a: mat ch_obj ect/ 1.
« mesia:dirty_sel ect(Tab, Pat).Thisfunctionisthedirty equivalent of mesi a: sel ect/ 2.
« mesia:dirty_index_match_object (Pat, Pos). Thisfunctionisthedirty equivalent of
mmesi a: i ndex_nmat ch_obj ect/ 2.
 mesia:dirty_index_read(Tab, SecondaryKey, Pos).Thisfunctionisthedirty equivalent of
mesi a: i ndex_read/ 3.
a

« mesia:dirty all_keys(Tab). Thisfunctionisthedirty equivalent of mesi a: al | _keys/ 1.

26 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

1.4.4 Record Names versus Table Names

In Mnesia, al records in atable must have the same name. All the records must be instances of the same record type.
The record name does however not necessarily be the same as the table name. Even though that it is the case in the
most of the examplesin this document. If atable is created without ther ecor d_nare property the code bel ow will
ensure all records in the tables have the same name as the table:

mesi a: creat e_t abl e(subscriber, [])

However, if the table is is created with an explicit record name as argument, as shown below, it is possible to store
subscriber recordsin both of the tables regardless of the table names:

TabDef = [{record_nane, subscriber}],
mesi a: creat e_t abl e(my_subscri ber, TabDef),
mesi a: creat e_t abl e(your _subscri ber, TabDef).

In order to access such tables it is not possible to use the simplified access functions as described earlier in the
document. For example, writing a subscriber record into atable requiresammesi a: wr i t e/ 3function instead of the
simplified functionsmesi a: wite/1andmesia: s _wite/ 1:

mesi a: wi te(subscriber, #subscriber{}, wite)
mmesi a: wite(ny_subscriber, #subscriber{}, sticky wite)
mesi a: wri te(your _subscri ber, #subscriber{}, wite)

Thefollowing simplified piece of codeillustrates the rel ationship between the simplified access functions used in most
examples and their more flexible counterparts:

mesia:dirty_wite(Record) ->
Tab = el enent (1, Record),
mesia:dirty_wite(Tab, Record).

mesi a:dirty_del ete({Tab, Key}) ->
mesi a: dirty_del ete(Tab, Key).

mesi a: di rty_del et e_obj ect (Record) ->
Tab = el enent (1, Record),
mesi a: di rty_del et e_obj ect (Tab, Record)

mesi a: di rty_updat e_count er ({ Tab, Key}, Incr) ->
mesi a: di rty_updat e_count er (Tab, Key, Incr).

mesi a:dirty_read({Tab, Key}) ->
Tab = el enent (1, Record),
mesi a: dirty_read(Tab, Key).
mesi a: dirty_mat ch_obj ect (Pattern) ->
Tab = el enent (1, Pattern),
mesi a: di rty_mat ch_obj ect (Tab, Pattern).

mesi a: dirty_i ndex_mat ch_obj ect (Pattern, Attr)

Ericsson AB. All Rights Reserved.: Mnesia | 27

1.4 Transactions and Other Access Contexts

Tab = el enent (1, Pattern),
mesi a: dirty_i ndex_mat ch_obj ect (Tab, Pattern, Attr).

mesi a: wite(Record) ->
Tab = el enent (1, Record),
mesi a:wite(Tab, Record, wite).

mesi a:s_wite(Record) ->
Tab = el enent (1, Record),
mesi a: wite(Tab, Record, sticky wite).

mesi a: del et e({ Tab, Key}) ->
mesi a: del ete(Tab, Key, wite).

mesi a: s_del ete({Tab, Key}) ->
mesi a: del et e(Tab, Key, sticky wite).

mesi a: del et e_obj ect (Record) ->
Tab = el enent (1, Record),
mesi a: del et e_obj ect (Tab, Record, wite).

mesi a: s_del et e_obj ect (Record) ->
Tab = el enent (1, Record),
mesi a: del et e_obj ect (Tab, Record. sticky _wite).

mesi a: read({ Tab, Key}) ->
mesi a: read(Tab, Key, read).

mesi a: w ead({ Tab, Key}) ->
mesi a: read(Tab, Key, wite).

mesi a: mat ch_obj ect (Pattern) ->
Tab = el enent (1, Pattern),
mesi a: mat ch_obj ect (Tab, Pattern, read).

mesi a: i ndex_mat ch_obj ect (Pattern, Attr) ->
Tab = el enent (1, Pattern),
mesi a: i ndex_mat ch_obj ect (Tab, Pattern, Attr, read).

1.4.5 Activity Concept and Various Access Contexts

As previously described, a functional object (Fun) performing table access operations as listed below may be passed
on as arguments to the functionmesi a: t ransaction/ 1, 2, 3:
* mnesiawrite/3 (write/1, s write/1)

* mnesiadelete/3 (delete/1, s delete/1)

* mnesiadelete object/3 (delete object/1, s delete object/1)
mnesiaread/3 (read/1, wread/1)

* mnesiamatch_object/2 (match_object/1)

* mnesiaselect/3 (select/2)

« mnesiafoldl/3 (foldl/4, foldr/3, foldr/4)

« mnesiadl_keys1l

* mnesiaindex_match_object/4 (index_match_object/2)

* mnesiaindex_read/3

 mnesialock/2 (read lock table/1, write lock table/1)

« mnesiatable info/2

28| Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

These functions will be performed in a transaction context involving mechanisms like locking, logging, replication,
checkpoints, subscriptions, commit protocols etc.However, the same function may also be evaluated in other activity
contexts.

The following activity access contexts are currently supported:

e transaction
e sync_transaction

o async_dirty
e sync dirty
e ets

By passing the same "fun" as argument to the function rmesi a: sync_transacti on(Fun [, Args]) it
will be performed in synced transaction context. Synced transactions waits until al active replicas has committed
the transaction (to disc) before returning from the mnesia:sync_transaction call. Using sync_transaction is useful for
applications that are executing on several nodes and want to be sure that the update is performed on the remote nodes
before a remote process is spawned or a message is sent to a remote process, and also when combining transaction
writeswith dirty_reads. Thisisalso useful in situations where an application performs frequent or voluminous updates
which may overload Mnesia on other nodes.

By passing the same "fun" as argument to the function mesi a: async_dirty(Fun [, Args]) itwill be
performed in dirty context. The function calls will be mapped to the corresponding dirty functions. This will still
involve logging, replication and subscriptions but there will be no locking, local transaction storage or commit
protocols involved. Checkpoint retainers will be updated but will be updated "dirty". Thus, they will be updated
asynchronoudly. The functions will wait for the operation to be performed on one node but not the others. If the table
resides locally no waiting will occur.

By passing the same "fun" as an argument to the function mesi a: sync_dirty(Fun [, Args]) itwill be
performed in ailmost the same context as rmesi a: async_di rty/ 1, 2. The difference is that the operations are
performed synchronously. The caller will wait for the updates to be performed on all active replicas. Using sync_dirty
is useful for applications that are executing on several nodes and want to be sure that the update is performed on
the remote nodes before a remote process is spawned or a message is sent to a remote process. Thisis also useful in
situations where an application performs frequent or voluminous updates which may overload Mnesia on other nodes.

Y ou can check if your code is executed within atransaction with mesi a: i s_t ransacti on/ O, itreturnst r ue
when called inside atransaction context and fal se otherwise.

Mnesia tables with storage type RAM _copies and disc_copies are implemented internaly as "ets-tables' and it is
possiblefor applicationsto access the these tables directly. Thisisonly recommended if al options have been weighed
and the possible outcomes are understood. By passing the earlier mentioned "fun” to the functionrmesi a: et s(Fun
[, Args]) itwill beperformed but in avery raw context. The operations will be performed directly on the local
ets tables assuming that the local storage type are RAM_copies and that the table is not replicated on other nodes.
Subscriptions will not be triggered nor checkpoints updated, but this operation is blindingly fast. Disc resident tables
should not be updated with the ets-function since the disc will not be updated.

The Fun may also be passed as an argument to the function mesi a: acti vi ty/ 2, 3, 4 which enables usage of
customized activity access callback modules. It can either be obtained directly by stating the module name as argument
or implicitly by usage of theaccess_nodul e configuration parameter. A customized callback module may be used
for several purposes, such as providing triggers, integrity constraints, run time statistics, or virtual tables.

The callback module does not haveto accessreal Mnesiatables, it isfreeto do whatever it likes aslong as the callback
interface is fulfilled.

In Appendix C "The Activity Access Call Back Interface" the source code for one aternate implementation is
provided (mnesia_frag.erl). The context sensitivefunctionmmesi a: t abl e_i nf o/ 2 may beused to providevirtual
information about a table. One usage of thisisto perform QLC queries within an activity context with a customized
callback module. By providing table information about table indices and other QLC requirements, Q_C may be used
as ageneric query language to access virtual tables.

Ericsson AB. All Rights Reserved.: Mnesia | 29

1.4 Transactions and Other Access Contexts

QLC queries may be performed in all these activity contexts (transaction, sync_transaction, async_dirty, sync_dirty
and ets). The ets activity will only work if the table has no indices.

Note:

The mnesia:dirty_* function always executes with async_dirty semantics regardless of which activity access
contexts are invoked. They may even invoke contexts without any enclosing activity access context.

1.4.6 Nested transactions

Transactions may be nested in an arbitrary fashion. A child transaction must run in the same process as its parent.
When a child transaction aborts, the caller of the child transaction will get the return value { abor t ed, Reason}
and any work performed by the child will be erased. If a child transaction commits, the records written by the child
will be propagated to the parent.

No locks are released when child transactions terminate. Locks created by a sequence of nested transactions are
kept until the topmost transaction terminates. Furthermore, any updates performed by a nested transaction are only
propagated in such a manner so that the parent of the nested transaction sees the updates. No final commitment will
be done until the top level transaction is terminated. So, although a nested transaction returns{ at om ¢, Val },if
the enclosing parent transaction is aborted, the entire nested operation is aborted.

The ability to have nested transaction with identical semantics as top level transaction makesit easier to write library
functions that manipulate mnesia tables.

Say for example that we have a function that adds a new subscriber to atelephony system:

add_subscri ber(S) ->
mmesi a: transaction(fun() ->
case mesia:read(..........

This function needs to be called as a transaction. Now assume that we wish to write a function that both calls the
add_subscri ber/ 1 function and is in itself protected by the context of a transaction. By simply calling the
add_subscri ber/ 1 from within another transaction, a nested transaction is created.

It is also possible to mix different activity access contexts while nesting, but the dirty ones (async_dirty,sync_dirty
and ets) will inherit the transaction semantics if they are called inside a transaction and thus it will grab locks and
use two or three phase commit.

add_subscri ber(S) ->
mmesi a: transaction(fun() ->
%%b Transacti on cont ext
mesi a: read({sonme_tab, sone_data}),
mesi a: sync_dirty(fun() ->
WhoStill in a transacti on context.
case mesia:read(..) ..end), end).
add_subscri ber2(Ss) ->
mesi a: sync_dirty(fun() ->
%o ln dirty context
mesi a: read({sonme_tab, sone_data}),
mmesi a: transaction(fun() ->
Wb ln a transacti on context.
case mesia:read(..) ..end), end).

30 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

1.4.7 Pattern Matching

Whenitisnot possibletousermesi a: r ead/ 3 Mnesiaprovidesthe programmer with several functionsfor matching
records against a pattern. The most useful functions of these are:

mesi a: sel ect (Tab, MatchSpecification, LockKind) ->
transaction abort | [ObjectlList]
mmesi a: sel ect (Tab, MatchSpecification, NObjects, Lock) ->

transaction abort | {[Qbject], Continuation} | '$end_of _table'
mesi a: sel ect (Cont) ->
transaction abort | {[Qbject], Continuation} | '$end_of _table'

mesi a: mat ch_obj ect (Tab, Pattern, LockKind) ->
transaction abort | RecordLi st

ThesefunctionsmatchesaPat t er n against al recordsintable Tab. Inamesi a: sel ect call Patt er nisapart
of Mat chSpeci fi cati on described below. It is not necessarily performed as an exhaustive search of the entire
table. By utilizing indices and bound values in the key of the pattern, the actual work done by the function may be
condensed into afew hash lookups. Using or der ed_set tables may reduce the search spaceif the keys are partialy
bound.

The pattern provided to the functions must be a valid record, and the first element of the provided tuple must be the
r ecor d_nane of thetable. The special element’ ' matches any data structure in Erlang (also known as an Erlang
term). The special elements ' $<nunber >' behaves as Erlang variables i.e. matches anything and binds the first
occurrence and matches the coming occurrences of that variable against the bound value.

Use the function mesi a: t abl e_i nfo(Tab, w | d_pattern) toobtain abasic pattern which matches all
records in atable or use the default value in record creation. Do not make the pattern hard coded since it will make
your code more vulnerable to future changes of the record definition.

W dpattern = mmesi a: tabl e_i nfo(enpl oyee, wild_pattern),
%6 O use
W dpattern

#enpl oyee{ ="' _'},

For the employee table the wild pattern will look like:

{employee, " _', ', ‘_', "_', ', _'}.

In order to constrain the match you must replace some of the' _
employees, looks like:

elements. The code for matching out al female

Pat = #enpl oyee{sex = female, _ =" _'},

F = fun() -> mmesi a: mat ch_obj ect (Pat) end,
Femal es = mmesi a: transacti on(F).

Ericsson AB. All Rights Reserved.: Mnesia | 31

1.4 Transactions and Other Access Contexts

It is also possible to use the match function if we want to check the equality of different attributes. Assume that we
want to find all employees which happens to have a employee number which is equal to their room number;

Pat = #enpl oyee{enp_no = '$1', roomno = "$1', ="' _"},
F = fun() -> mmesi a: mat ch_obj ect (Pat) end,
Qdd = mmesi a: transacti on(F).

The function mesi a: mat ch_obj ect / 3 lacks some important features that mesi a: sel ect/ 3 have. For
examplemmesi a: mat ch_obj ect / 3 can only return the matching records, and it can not express constraints other
then equality. If we want to find the names of the male employees on the second floor we could write:

Mat chHead = #enpl oyee{nanme='$1', sex=male, roomno={'$2', ' "}, _="_'},
Quard = [{'>=", "$2', 220},{'<, '$2', 230}],

Result = '$1',

mesi a: sel ect (enpl oyee, [{ Mat chHead, CGuard, [Result]}])

Select can be used to add additional constraints and create output which can not be done with
mesi a: mat ch_obj ect/ 3.

The second argument to select is a MatchSpecification. A MtchSpecification is list
of Mat chFunctions, where each Mat chFuncti on consists of a tuple containing { Mat chHead,
Mat chCondi ti on, Mat chBody}. Mat chHead is the same pattern used in nmesi a: mat ch_obj ect/ 3
described above. Mat chCondi ti on isalist of additional constraints applied to each record, and Mat chBody is
used to construct the return values.

A detailed explanation of match specifications can be found in the Erts users guide: Match specificationsin Erlang ,
and the ets/dets documentations may provide some additional information.

Thefunctionssel ect/ 4 and sel ect/ 1 are used to get alimited number of results, where the Cont i nuat i on
are used to get the next chunk of results. Mnesia uses the NObj ect s as an recommendation only, thus more or less
results then specified with NCbj ect s may be returned in the result list, even the empty list may be returned despite
there are more results to collect.

Warning:

Thereisasevere performance penalty inusingmmesi a: sel ect /[1| 2| 3| 4] after any modifying operations
are done on that table in the same transaction, i.e. avoid using rmesi a: wite/ 1 or nmesi a: del ete/ 1
beforeamesi a: sel ect inthe same transaction.

If the key attribute is bound in a pattern, the match operation is very efficient. However, if the key attribute in a pattern
isgivenas' ' ,or' $1',thewhole enpl oyee table must be searched for records that match. Hence if the table is
large, this can become a time consuming operation, but it can be remedied with indices (refer to Chapter 5: Indexing)
if mesi a: mat ch_obj ect isused.

QLC queries can aso be used to search Mnesiatables. By using rmesi a: t abl e/ [1] 2] asthe generator inside
a QLC query you let the query operate on a mnesia table. Mnesia specific optionsto rmesi a: t abl e/ 2 are {lock,
Lock}, { n_objects,Integer} and {traverse, SelMethod}. The | ock option specifies whether mnesia should acquire a
read or writelock onthetable, and n_obj ect s specifies how many results should be returned in each chunk to QL C.
Thelast optionist r aver se and it specifies which function mnesia should useto traverse thetable. Default sel ect

32| Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

isused, but by using{traverse, {select, MatchSpecification}} asanoptiontomrmesi a:tabl e/ 2
the user can specify it's own view of the table.

If no options are specified a read lock will acquired and 100 results will be returned in each chunk, and select will
be used to traverse the table, i.e.:

mesi a: t abl e(Tab) ->
mesi a: t abl e(Tab, [{n_objects, 100}, {l ock, read}, {traverse, select}]).

Thefunctionmesi a: al | _keys(Tab) returnsall keysin atable.

1.4.8 lteration

Mnesia provides a couple of functions which iterates over al the recordsin atable.

mesi a: fol dl (Fun, AccO, Tab) -> NewAcc | transaction abort
mesi a: fol dr (Fun, AccO, Tab) -> NewAcc | transaction abort
mesi a: fol dl (Fun, AccO, Tab, LockType) -> NewAcc | transaction abort
mesi a: fol dr (Fun, AccO, Tab, LockType) -> NewAcc | transaction abort

These functions iterate over the mnesia table Tab and apply the function Fun to each record. The Fun takes two
arguments, the first argument is a record from the table and the second argument is the accumulator. The Fun return
anew accumulator.

Thefirst timethe Fun isapplied AccO will be the second argument. The next time the Fun is called the return value
from the previous call, will be used as the second argument. The term the last call to the Fun returnswill be the return
valueof thef ol d[| r] function.

The difference between f ol dI and f ol dr is the order the table is accessed for or der ed_set tables, for every
other table type the functions are equivalent.

LockType specifies what type of lock that shall be acquired for the iteration, default isr ead. If records are written
or deleted during the iteration awrite lock should be acquired.

These functions might be used to find records in a table when it is impossible to write constraints for
mesi a: mat ch_obj ect / 3, or when you want to perform some action on certain records.

For example finding all the employees who has a salary below 10 could look like:

find_l ow sal aries() ->

Constraint =
fun(Enmp, Acc) when Enp#enpl oyee.salary < 10 ->
[Enp | Acc];
(_, Acc) ->
Acc
end,

Find = fun() -> mesia:foldl (Constraint, [], enployee) end,
mesi a: transacti on(Fi nd) .

Raising the salary to 10 for everyone with a salary below 10 and return the sum of all raises:

Ericsson AB. All Rights Reserved.: Mnesia | 33

1.5 Miscellaneous Mnesia Features

increase_| ow_sal aries() ->
I ncrease =
fun(Enmp, Acc) when Enp#enpl oyee.salary < 10 ->
a dS = Enp#enpl oyee. sal ary,
ok = mesi a: wite(Enp#enpl oyee{sal ary = 10}),
Acc + 10 - A dS;
(_, Acc) ->
Acc
end,
IncLow = fun() -> mesia:foldl (Increase, 0, enployee, wite) end,
mesi a: transacti on(| ncLow) .

A lot of nice things can be done with the iterator functions but some caution should be taken about performance and
memory utilization for large tables.

Call theseiteration functions on nodes that contain areplicaof the table. Each call to the function Fun accessthetable
and if the table resides on another node it will generate alot of unnecessary network traffic.

Mnesiaalso provides somefunctionsthat makeit possiblefor the user to iterate over thetable. The order of theiteration
isunspecified if the tableis not of the or der ed_set type.

mesi a:first(Tab) -> Key | transaction abort

mesi a: |l ast(Tab) -> Key | transaction abort

mesi a: next (Tab, Key) -> Key | transaction abort

mesi a: prev(Tab, Key) -> Key | transaction abort

mesi a: snnp_get _next _i ndex(Tab, | ndex) -> {ok, Nextlndex} | endCf Tabl e

The order of first/last and next/prev are only valid for or der ed_set tables, for all other tables, they are synonyms.
When the end of the table isreached the special key ' $end_of _t abl e' isreturned.

If records are written and deleted during the traversal, use mesi a: fold[1r]/4 with awite lock. Or
mesi a: wite_ | ock_tabl e/ 1 whenusing first and next.

Writing or deleting in transaction context creates a local copy of each modified record, so modifying each record in
alarge table uses a lot of memory. Mnesia will compensate for every written or deleted record during the iteration
in atransaction context, which may reduce the performance. If possible avoid writing or deleting records in the same
transaction before iterating over the table.

In dirty context, i.e. sync_di rty orasync_di rty, the modified records are not stored in alocal copy; instead,
each record is updated separately. This generates alot of network traffic if the table has a replica on another node and
has al the other drawbacks that dirty operations have. Especialy for themmesi a: fi rst/ 1 andmmesi a: next/ 2
commands, the same drawbacks as described abovefordi rty first anddi rty_next applies, i.e. nowritesto
the table should be done during iteration.

1.5 Miscellaneous Mnesia Features

The earlier chapters of this User Guide described how to get started with Mnesia, and how to build a Mnesia database.
Inthischapter, wewill describe the more advanced features available when building adistributed, fault tolerant Mnesia
database. This chapter contains the following sections:

e Indexing

» Disgtribution and Fault Tolerance

e Tablefragmentation.

e Loca content tables.

34 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

» Disc-lessnodes.

e More about schema management

» Debugging a Mnesia application

e Concurrent Processesin Mnesia

* Prototyping

e Object Based Programming with Mnesia.

1.5.1 Indexing

Data retrieval and matching can be performed very efficiently if we know the key for the record. Conversely, if the
key isnot known, al recordsin atable must be searched. The larger the table the more time consuming it will become.
To remedy this problem Mnesia's indexing capabilities are used to improve dataretrieval and matching of records.

The following two functions manipulate indexes on existing tables:

e mesia:add_tabl e_index(Tab, AttributeNane) -> {aborted, R} |{atom c, ok}
e mesia:del _table_ index(Tab, AttributeNane) -> {aborted, R} |{atom c, ok}

These functions create or delete atable index on field defined by At t ri but eNane. To illustrate this, add an index
to the table definition (enpl oyee, {enp_no, nane, salary, sex, phone, room no}, whichis
the example table from the Company database. The function which adds an index on the element sal ary can be
expressed in the following way:

* mmesi a: add_t abl e_i ndex(enpl oyee, sal ary)

Theindexing capabilities of Mnesia are utilized with the following three functions, which retrieve and match records
on the basis of index entries in the database.

e mnesi a:index_read(Tab, SecondaryKey, AttributeNane) -> transaction abort
| RecordLi st . Avoids an exhaustive search of the entire table, by looking up the Secondar yKey in the
index to find the primary keys.

* mnesia:index_match_object(Pattern, AttributeNane) -> transaction abort |
Recor dLi st Avoids an exhaustive search of the entire table, by looking up the secondary key in the index
to find the primary keys. The secondary key isfound inthe At t r i but eNanre field of the Pat t er n. The
secondary key must be bound.

e mnesia:match_object(Pattern) -> transaction abort | RecordLi st Usesindicesto
avoid exhaustive search of the entire table. Unlike the other functions above, this function may utilize any index
as long as the secondary key is bound.

These functions are further described and exemplified in Chapter 4: Pattern matching.

1.5.2 Distribution and Fault Tolerance

Mnesiais adistributed, fault tolerant DBMS. It is possible to replicate tables on different Erlang nodesin avariety of
ways. The Mnesia programmer does not have to state where the different tables reside, only the names of the different
tables are specified in the program code. Thisis known as "location transparency” and it is an important concept. In
particular:

e A program will work regardless of the location of the data. It makes no difference whether the data resides on
the local node, or on aremote node. Note: The program will run slower if the datais|ocated on a remote node.

» The database can be reconfigured, and tables can be moved between nodes. These operations do not effect the
user programs.

We have previously seen that each table has a number of system attributes, such asi ndex andt ype.

Table attributes are specified when the table is created. For example, the following function will create a new table
with two RAM replicas:

Ericsson AB. All Rights Reserved.: Mnesia | 35

1.5 Miscellaneous Mnesia Features

mesi a: creat e_t abl e(f oo,
[{ram copies, [N, N2]},
{attributes, record_info(fields, foo)}]).

Tables can a so have the following properties, where each attribute has alist of Erlang nodes asits value.

* ram copi es. Thevalue of the node list isalist of Erlang nodes, and a RAM replica of the table will reside on
each node in thelist. Thisisa RAM replica, and it is important to realize that no disc operations are performed
when a program executes write operations to these replicas. However, should permanent RAM replicas be a
requirement, then the following alternatives are available:

e« Themesi a: dunp_t abl es/ 1 function can be used to dump RAM table replicas to disc.

* Thetablereplicas can be backed up; either from RAM, or from disc if dumped there with the above
function.

« di sc_copi es. Thevaueof the attribute is alist of Erlang nodes, and areplica of the table will reside both in
RAM and on disc on each node in the list. Write operations addressed to the table will address both the RAM
and the disc copy of the table.

* disc_only_copi es. Thevalue of the attribute isalist of Erlang nodes, and a replica of the table will reside
only asadisc copy on each nodein the list. The major disadvantage of this type of table replicais the access
speed. The magjor advantage is that the table does not occupy space in memory.

It is also possible to set and change table properties on existing tables. Refer to Chapter 3: Defining the Schema for
full details.

There are basically two reasonsfor using more than onetablereplica: fault tolerance, or speed. It isworthwhileto note
that table replication provides a solution to both of these system requirements.

If we have two active table replicas, all information is still available if one of the replicas fail. This can be a very
important property in many applications. Furthermore, if atablereplicaexists at two specific nodes, applicationswhich
execute at either of these nodes can read data from the table without accessing the network. Network operations are
considerably slower and consume more resources than local operations.

It can be advantageous to create table replicas for a distributed application which reads data often, but writes data
seldom, in order to achieve fast read operations on the local node. The major disadvantage with replication is the
increased timeto write data. If atable hastwo replicas, every write operation must access both tablereplicas. Sinceone
of these write operations must be a network operation, it is considerably more expensive to perform awrite operation
to areplicated table than to a non-replicated table.

1.5.3 Table Fragmentation
The Concept

A concept of table fragmentation has been introduced in order to cope with very large tables. The idea is to split a
table into several more manageable fragments. Each fragment is implemented as a first class Mnesia table and may
be replicated, have indices etc. as any other table. But the tables may neither have | ocal _cont ent nor have the
snnp connection activated.

In order to be able to access a record in a fragmented table, Mnesia must determine to which fragment the actual
record belongs. This is done by the mesi a_f r ag module, which implements the mesi a_access callback
behaviour. Please, read the documentation about nmesi a: acti vi t y/ 4 to see how nmesi a_f r ag can be used
asammesi a_access calback module.

At eachrecord accessrmesi a_f r ag first computes ahash value from the record key. Secondly the name of thetable
fragment is determined from the hash value. And finally the actual table accessis performed by the same functions as
for non-fragmented tables. When the key is not known beforehand, all fragments are searched for matching records.

36 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

Note: In or der ed_set tables the records will be ordered per fragment, and the the order is undefined in results
returned by select and match_object.

The following piece of code illustrates how an existing Mnesia table is converted to be a fragmented table and how
more fragments are added later on.

Eshell V4.7.3.3 (abort with ~"Q
(a@anm) 1> mesi a: start().
ok
(a@an) 2> mesi a: system i nfo(runni ng_db_nodes) .
[b@am c@am a@an]
(a@an) 3> Tab = dictionary.
dictionary
(a@an) 4> mesi a: create_tabl e(Tab, [{ram copies, [a@am b@ani}]).
{at om c, ok}
(a@anm) 5> Wite = fun(Keys) -> [mesia:wite({Tab, K -K}) || K <- Keys], ok end.
#Fun<er| _eval >
(a@an) 6> mesi a: activity(sync_dirty, Wite, [lists:seq(l, 256)], mesia_frag).
ok
(a@an) 7> mesi a: change_t abl e_frag(Tab, {activate, []}).
{at om c, ok}
(a@an) 8> mmesi a: tabl e_i nfo(Tab, frag_properties).
[{base_t abl e, di cti onary},
{forei gn_key, undefi ned},
{n_doubl es, 0},
{n_fragnents, 1},
{next_n_to_split, 1},
{node_pool , [a@am b@am c@ani }]
(a@am) 9> Info = fun(lten) -> mmesia:table_info(Tab, Iten) end.
#Fun<er| _eval >
(a@an) 10> Di st = mmesi a: activity(sync_dirty, Info, [frag dist], mesia_frag).
[{c®am 0}, {a@am 1}, {b@am 1}]
(a@an) 11> mmesi a: change_t abl e_frag(Tab, {add frag, Dist}).
{at om c, ok}
(a@an) 12> Dist2 = mmesi a: activity(sync_dirty, Info, [frag dist], mesia_frag).
[{b@am 1}, {c@am 1}, {a@am 2}]
(a@an) 13> mmesi a: change_t abl e_frag(Tab, {add frag, Dist2}).
{at om c, ok}
(a@an) 14> Dist3 = mmesi a: activity(sync_dirty, Info, [frag dist], mesia_frag).
[{a®am 2}, {b@am 2}, {c@am 2}]
(a@an) 15> mmesi a: change_t abl e_frag(Tab, {add frag, Dist3}).
{at om c, ok}
(a@an) 16> Read = fun(Key) -> mmesi a:read({Tab, Key}) end.
#Fun<er| _eval >
(a@an) 17> mmesi a: activity(transacti on, Read, [12], mmesia_frag).
[{dictionary, 12,-12}]
(a@an) 18> mmesi a: activity(sync_dirty, Info, [frag_size], mmesia_frag).
[{dictionary, 64},
{dictionary_frag2, 64},
{dictionary_frag3, 64},
{dictionary_frag4, 64}]
(a@anm 19>

Fragmentation Properties

There is a table property called frag_properties and may be read with mesi a: t abl e_i nf o(Tab,
frag_properties). Thefragmentation propertiesis alist of tagged tuples with the arity 2. By default thelist is
empty, but when it isnon-empty it triggers Mnesiato regard the table as fragmented. The fragmentation properties are:

Ericsson AB. All Rights Reserved.: Mnesia | 37

1.5 Miscellaneous Mnesia Features

{n_fragnents, Int}

n_f ragment s regulates how many fragments that the table currently has. This property may explicitly be set
at table creation and later be changed with {add_frag, NodesOrDi st} ordel frag.n fragnents
defaultsto 1.

{node_pool, List}

The node pool contains a list of nodes and may explicitly be set at table creation and later be changed with
{add_node, Node} or{del node, Node}. At table creation Mnesiatries to distribute the replicas of
each fragment evenly over all the nodes in the node pool. Hopefully all nodes will end up with the same number
of replicas. node_pool defaultsto the return value from mesi a: syst em i nf o(db_nodes) .

{n_ramcopies, Int}

Regulates how many r am copi es replicas that each fragment should have. This property may explicitly be
set at table creation. The default is 0, but if n_di sc_copi es and n_di sc_only_copi es aso are 0,
n_ram copi es\O1llwill default besetto 1.

{n_disc_copies, Int}

Regulates how many di sc_copi es replicas that each fragment should have. This property may explicitly be
set at table creation. The default is 0.

{n_disc_only copies, Int}

Regulates how many di sc_onl y_copi es replicas that each fragment should have. This property may
explicitly be set at table creation. The default is 0.

{foreign_key, ForeignKey}

For ei gnKey may either betheatomundef i ned orthetuple{ For ei gnTab, Attr},whereAttr denotes
an attribute which should be interpreted as a key in another fragmented table named For ei gnTab. Mnesiawill
ensure that the number of fragments in this table and in the foreign table are always the same. When fragments
are added or deleted Mnesiawill automatically propagate the operation to all fragmented tablesthat hasaforeign
key referring to this table. Instead of using the record key to determine which fragment to access, the value of
the At t r fieldisused. Thisfeature makesit possible to automatically co-locate records in different tablesto the
same node. f or ei gn_key defaultsto undef i ned. However if the foreign key is set to something else it will
cause the default values of the other fragmentation properties to be the same values as the actual fragmentation
properties of the foreign table.

{hash_nodul e, Atont

Enables definition of an aternate hashing scheme. The module must implement the nrmesi a_frag_hash
callback behaviour (see the reference manual). This property may explicitly be set at table creation. The default
ismmesi a_frag_hash.

Older tables that was created before the concept of user defined hash modules was introduced, uses the
mesi a_frag_ol d_hash module in order to be backwards compatible. The mesi a_frag_ol d_hash
isstill using the poor deprecated er | ang: hash/ 1 function.

{hash_state, Tern}

Enables a table specific parameterization of a generic hash module. This property may explicitly be set at table
creation. The defaultisundef i ned.

Eshell V4.7.3.3 (abort with ~"Q

(a@am) 1> mmesi a: start ().

ok

(a@am) 2> PrinProps = [{n_fragnents, 7}, {node_pool, [node()]}].
[{n_fragments, 7}, {node_pool , [a@an }]

38| Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

(a@am) 3> mmesi a: creat e_t abl e(pri mdict,

[{frag_properties,

Pri mProps},

{attributes,[primkey,primval]}]).

{at om c, ok}

(a@am 4> SecProps = [{foreign_key,
[{foreign_key, {primdict,sec_val}}]
(a@am 5> mmesi a: creat e_t abl e(sec_di ct,
\ 011

(a@am 5>

{at om c, ok}

(a@am) 6> Wite = fun(Rec)
#Fun<er| _eval >

(a@am) 7> PrinKey = 11.

{primdict,

[{frag_properties,

{attributes, [sec_key,

sec_val }}].

SecProps},
sec_val]}]).

-> mesia:wite(Rec) end.

11

(a@am 8> SecKey = 42.

42

(a@am) 9> mmesi a: activity(sync_dirty, Wite,

\ 011\ 011 [{primdict, PrinKey, -11}], mesia_frag).

ok

(a@am) 10> mmesi a: activity(sync_dirty, Wite,

\ 011\ 011 [{sec_dict, SecKey, PrinKey}], mmesia_frag).

ok

(a@am) 11> mmesi a: change_t abl e_frag(pri mdict, {add_frag, [node()]}).
{at om c, ok}

(a@am) 12> SecRead = fun(PrinKey, SecKey) ->

\ 011\ 011 mesi a: read({sec_dict, PrinmKey}, SecKey, read) end.
#Fun<er| _eval >

(a@am) 13> mmesi a: acti vity(transaction, SecRead,

\ 011\ 011 [PrinKey, SecKey], mmesia_frag).

[{sec_dict, 42, 11}]

(a@anm) 14> Info = fun(Tab, Iten) -> mmesia:table_info(Tab, Item end.

#Fun<er| _eval >
(a@am 15> mmesi a: activity(sync_dirty,
\ 011\ 011 [primdict, frag_size],
[{primdict, 0},

{pri mdict_frag2, 0},

{pri mdict_frags, 0},

{pri mdict_frag4, 1},

{pri mdict_frag5, 0},

{pri mdict_frag6, 0},

{pri mdict_frag7, 0},

{primdict_frag8, 0}]

(a@am) 16> mmesi a: activity(sync_dirty, Info,
\ 011\ 011 [sec_dict, frag_size],
[{sec_dict, 0},

{sec_dict_frag2, 0},
{sec_dict_frag3, 0},
{sec_dict_frag4, 1},
{sec_dict_frag5b, 0},
{sec_dict_frag6, 0},
{sec_dict_frag7, 0},
{sec_dict_frag8, 0}]
(a@am 17>

Management of Fragmented Tables

The function mesi a: change_t abl e_f rag(Tab,

I nfo,
mesi a_frag) .

mesi a_frag).

Change) isintended to be used for reconfiguration of

fragmented tables. The Change argument should have one of the following values:

{activate, FragProps}

Activates the fragmentation properties of an existing table. Fr agPr ops should either contain { node_pool ,

Nodes} or be empty.

Ericsson AB. All Rights Reserved.: Mnesia | 39

1.5 Miscellaneous Mnesia Features

deacti vate

Deactivates the fragmentation properties of a table. The number of fragments must be 1. No other tables may
refer to thistable in its foreign key.

{add_frag, NodesOrDi st}

Adds one new fragment to afragmented table. All recordsin one of the old fragmentswill be rehashed and about
half of them will be moved to the new (last) fragment. All other fragmented tables, which refers to thistable in
their foreign key, will automatically get a new fragment, and their records will also be dynamically rehashed in
the same manner as for the main table.

The NodesOr Di st argument may either be alist of nodes or the result from rmesi a: t abl e_i nf o(Tab,
frag_dist). The NodesOr Di st argument is assumed to be a sorted list with the best nodes to host new
replicas first in the list. The new fragment will get the same number of replicas as the first fragment (see
n_ram copi es, n_di sc_copi es andn_di sc_onl y_copi es). The NodesO Di st list must at least
contain one element for each replica that needs to be allocated.

del _frag

Deletes one fragment from a fragmented table. All recordsin the last fragment will be moved to one of the other
fragments. All other fragmented tables which refersto thistablein their foreign key, will automatically lose their
last fragment and their records will also be dynamically rehashed in the same manner as for the main table.

{add_node, Node}

Adds a new node to the node_pool. The new node pool will affect the list returned from
mesi a: tabl e_i nfo(Tab, frag _dist).

{del _node, Node}
Deletes a new node from the node_pool . The new node pool will affect the list returned from
mesi a: tabl e_i nfo(Tab, frag_dist).

Extensions of Existing Functions

The function mesi a: creat e_t abl e/ 2 is used to create a brand new fragmented table, by setting the table
property f rag_pr operti es to some proper values.

The function mesi a: del et e_t abl e/ 1 is used to delete a fragmented table including all its fragments. There
must however not exist any other fragmented tables which refers to thistable in their foreign key.

Thefunctionmmesi a: t abl e_i nf o/ 2 now understandsthef rag_pr operti es item.

If the function mesi a: t abl e_i nf o/ 2 is invoked in the activity context of the rmesi a_f rag module,
information of several new items may be obtained:

base_tabl e
the name of the fragmented table
n_fragnments
the actual number of fragments
node_pool
the pool of nodes
n_ram copi es
n_di sc_copi es
n_di sc_onl y_copi es
the number of replicas with storage type ram copi es, di sc_copies and di sc_only_copies
respectively. The actual values are dynamically derived from the first fragment. The first fragment

40 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

serves as a pro-type and when the actual values needs to be computed (e.g. when adding new
fragments) they are simply determined by counting the number of each replicas for each storage
type. This means, when the functions mesi a: add_t abl e_copy/ 3, mesi a: del _tabl e_copy/ 2
andmesi a: change_t abl e_copy_t ype/ 2 are applied on the first fragment, it will affect the settings on
n_ram copi es,n_di sc_copi es,andn_di sc_only_copi es.

forei gn_key
the foreign key.
foreigners
all other tablesthat refersto thistable in their foreign key.
frag_nanes
the names of all fragments.
frag dist

a sorted list of { Node, Count} tupleswhich is sorted in increasing Count order. The Count is the total
number of replicas that this fragmented table hosts on each Node. The list always contains at least all nodes
in the node_pool . The nodes which not belongs to the node_pool will be put last in the list even if their
Count islower.

frag_size
alist of { Name, Si ze} tupleswhere Nane isafragment Nanme and Si ze ishow many recordsit contains.
frag_nenory

alist of { Nane, Menory} tuples where Nare is a fragment Nanme and Menor y is how much memory it
occupies.

si ze

total size of al fragments
nenory

the total memory of all fragments

Load Balancing

There are severa agorithmsfor distributing recordsin afragmented table evenly over apool of nodes. No oneis best,
it simply depends of the application needs. Here follows some examples of situations which may need some attention:

per manent change of nodes when anew permanent db_node isintroduced or dropped, it may be time to
change the pool of nodes and re-distribute the replicas evenly over the new pool of nodes. It may aso be time to add
or delete afragment before the replicas are re-distributed.

si ze/ menory threshol d when the total size or total memory of a fragmented table (or a single fragment)
exceeds some application specific threshold, it may be timeto dynamically add anew fragment in order obtain abetter
distribution of records.

t enpor ary node down when anode temporarily goes down it may be time to compensate some fragments with
new replicasin order to keep the desired level of redundancy. When the node comes up again it may be time to remove
the superfluous replica.

over | oad t hr eshol d when theload on some node is exceeds some application specific threshold, it may betime
to either add or move some fragment replicas to nodes with lesser load. Extra care should be taken if the table has a
foreign key relation to some other table. In order to avoid severe performance penalties, the same re-distribution must
be performed for al of the related tables.

Ericsson AB. All Rights Reserved.: Mnesia | 41

1.5 Miscellaneous Mnesia Features

Use mmesi a: change _table frag/2 to add new fragments and apply the usua schema
manipulation functions (such as mesi a: add_t abl e_copy/ 3, mmesi a: del _tabl e _copy/2 and
mmesi a: change_t abl e_copy_t ype/ 2) on each fragment to perform the actua re-distribution.

1.5.4 Local Content Tables

Replicated tables have the same content on all nodeswherethey are replicated. However, it is sometimes advantageous
to have tables but different content on different nodes.

If we specify theattribute { | ocal _cont ent, true} whenwe createthetable, the table will reside on the nodes
wherewe specify that thetable shall exist, but the write operationson thetablewill only be performed onthelocal copy.

Furthermore, when the table is initialized at start-up, the table will only be initialized locally, and the table content
will not be copied from another node.

1.5.5 Disc-less Nodes

It is possible to run Mnesia on nodes that do not have a disc. It is of course not possible to have replicas of neither
di sc_copi es,nordi sc_onl y_copi es onsuch nodes. This especially troublesome for the schena table since
Mnesia need the schemain order to initialize itself.

The schema table may, as other tables, reside on one or more nodes. The storage type of the schematable may either
bedi sc_copi es orram copi es (notdi sc_onl y_copi es). At start-up Mnesia uses its schemato determine
with which nodes it should try to establish contact. If any of the other nodes are already started, the starting node
merges its table definitions with the table definitions brought from the other nodes. This also applies to the definition
of the schematable itself. The application parameter ext r a_db_nodes contains alist of nodes which Mnesia also
should establish contact with besides the ones found in the schema. The default value isthe empty list[] .

Hence, when a disc-less hode needs to find the schema definitions from a remote node on the network, we
need to supply this information through the application parameter - mesi a extra_db_nodes Nodeli st.
Without this configuration parameter set, Mnesia will start as a single node system. It is also possible to use
mesi a: change_confi g/ 2 toassign avaueto 'extra_db_nodes and force a connection after mnesia have been
started, i.e. mnesia:change_config(extra_db_nodes, NodeL ist).

The application parameter schema._|ocation controls where Mnesiawill search for its schema. The parameter may be
one of the following atoms:
di sc
Mandatory disc. The schema is assumed to be located on the Mnesia directory. And if the schema cannot be
found, Mnesiarefuses to start.
ram

Mandatory ram. The schemaresidesin ram only. At start-up atiny new schemais generated. This default schema
containsjust the definition of the schematable and only resides on thelocal hode. Since no other nodes are found
inthe default schema, the configuration parameter ext r a_db_nodes must beused in order to et the node share
its table definitions with other nodes. (Theext ra_db_nodes parameter may also be used on disc-full nodes.)

opt _di sc

Optional disc. The schema may reside on either disc or ram. If the schema is found on disc, Mnesia starts as a
disc-full node (the storage type of the schematable isdisc_copies). If no schemaisfound on disc, Mnesia starts
as a disc-less node (the storage type of the schema table is ram_copies). The default value for the application
parameter isopt _di sc.

Whentheschema_| ocat i onissettoopt_discthefunctionmesi a: change_t abl e_copy_t ype/ 3 may be
used to change the storage type of the schema. Thisisillustrated below:

42 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

1> mesia:start().

ok

2> mesi a: change_t abl e_copy_t ype(schenma, node(), disc_copies).
{atom c, ok}

Assuming that the call to rmesi a: st ar t did not find any schemato read on the disc, then Mnesia has started as a
disc-less node, and then changed it to a node that utilizes the disc to locally store the schema.

1.5.6 More Schema Management

It is possible to add and remove nodes from a Mnesia system. This can be done by adding a copy of the schema to
those nodes.

Thefunctionsmmesi a: add_t abl e_copy/ 3andmesi a: del _t abl e_copy/ 2 may beusedto add and delete
replicas of the schematable. Adding a node to the list of nodes where the schemais replicated will affect two things.
First it allows other tables to be replicated to this node. Secondly it will cause Mnesiato try to contact the node at
start-up of disc-full nodes.

Thefunctioncall mesi a: del _tabl e _copy(schenma, nynode@ost) deletesthenode'mynode@host' from
the Mnesia system. The call failsif mnesiais running on 'mynode@host’. The other mnesia nodes will never try to
connect to that node again. Note, if there is a disc resident schema on the node 'mynode@host’, the entire mnesia
directory should be deleted. This can be donewith mesi a: del et e_schenm/ 1. If mnesiais started again on the
the node 'mynode@host' and the directory has not been cleared, mnesia's behaviour is undefined.

If the storage type of the schema is ram_copies, i.e, we have disc-less node, Mnesia will not use the disc on that
particular node. The disc usage is enabled by changing the storage type of the table schena to disc_copies.

New schemas are created explicitly with rmesi a: cr eat e_schena/ 1 or implicitly by starting Mnesia without a
disc resident schema. Whenever a table (including the schematable) is created it is assigned its own unigque cookie.
The schematableis not created with mesi a: cr eat e_t abl e/ 2 asnormal tables.

At start-up Mnesia connects different nodes to each other, then they exchange table definitions with each other and
the table definitions are merged. During the merge procedure Mnesia performs a sanity test to ensure that the table
definitions are compatible with each other. If atable exists on several nodes the cookie must be the same, otherwise
Mnesiawill shutdown one of the nodes. This unfortunate situation will occur if atable has been created on two nodes
independently of each other while they were disconnected. To solve the problem, one of the tables must be deleted (as
the cookies differ we regard it to be two different tables even if they happen to have the same name).

Merging different versions of the schematable, does not always require the cookies to be the same. If the storage type
of the schematableisdisc_copies, the cookie isimmutable, and al other db_nodes must have the same cookie. When
the schemalis stored as type ram_copies, its cookie can be replaced with a cookie from another node (ram_copies or
disc_copies). The cookie replacement (during merge of the schema table definition) is performed each time a RAM
node connects to another node.

mesi a: system_i nfo(schenma_| ocati on) and mmesi a: system.i nfo(extra_db_nodes) may
be used to determine the actual vaues of schema location and extra db _nodes respectively.
mesi a: system_i nfo(use_di r) may be used to determine whether Mnesia is actualy using the Mnesia
directory. use_di r may be determined even before Mnesiais started. The function mesi a: i nf o/ 0 may now be
used to printout some system information even before Mnesia is started. When Mnesia is started the function prints
out more information.

Transactions which update the definition of atable, requiresthat Mnesiais started on all nodes where the storage type
of the schemaisdisc_copies. All replicas of the table on these nodes must also be loaded. There are afew exceptions
to these availability rules. Tables may be created and new replicas may be added without starting all of the disc-full
nodes. New replicas may be added before all other replicas of the table have been loaded, it will suffice when one
other replicais active.

Ericsson AB. All Rights Reserved.: Mnesia | 43

1.5 Miscellaneous Mnesia Features

1.5.7 Mnesia Event Handling
System events and table events are the two categories of events that Mnesiawill generate in various situations.
It ispossible for user process to subscribe on the events generated by Mnesia. We have the following two functions:
mmesi a: subscri be(Event - Cat egory)
Ensures that a copy of all events of type Event - Cat egor y are sent to the calling process.

mmesi a: unsubscri be(Event - Cat egory)
Removes the subscription on events of type Event - Cat egory

Event - Cat egory may either be the atom syst em or one of the tuples {tabl e, Tab, sinple},
{table, Tab, detailed}. The old event-category {t abl e, Tab} is the same event-category as
{tabl e, Tab, sinple}. The subscribe functions activate a subscription of events. The events are delivered
as messages to the process evaluating the nmesi a: subscri be/ 1 function. The syntax of system events is
{mesi a_system event, Event} and{mmesi a_t abl e_event, Event} fortableevents. What system
events and table events means is described below.

All system events are subscribed by Mnesiasgen_event handler. The default gen_event handlerismrmesi a_event .
But it may be changed by using the application parameter event _nodul e. The value of this parameter must
be the name of a module implementing a complete handler as specified by the gen_event module in STDLIB.
mesi a: system_ i nf o(subscri bers) andmesi a: t abl e_i nf o(Tab, subscri bers) may beused
to determine which processes are subscribed to various events.

System Events
The system events are detailed below:
{mmesi a_up, Node}

Mnesia has been started on anode. Node is the name of the node. By default this event isignored.
{mesi a_down, Node}

Mnesia has been stopped on a node. Node is the name of the node. By default this event isignored.
{mesi a_checkpoi nt _activat ed, Checkpoint}

a checkpoint with the name Checkpoi nt has been activated and that the current node is involved in the
checkpoint. Checkpoints may be activated explicitly withrmesi a: act i vat e_checkpoi nt/ 1 orimplicitly
at backup, adding table replicas, internal transfer of data between nodes etc. By default this event isignored.

{mesi a_checkpoi nt _deacti vat ed, Checkpoi nt}

A checkpoint with the name Checkpoi nt has been deactivated and that the current node was involved in the
checkpoint. Checkpoints may explicitly be deactivated with mesi a: deact i vat e/ 1 or implicitly when the
last replica of atable (involved in the checkpoint) becomes unavailable, e.g. at node down. By default this event
isignored.

{mmesi a_overl oad, Detail s}
Mnesiaon the current node is overloaded and the subscriber should take action.

A typical overload situation occurs when the applications are performing more updates on disc resident tables
than Mnesiais able to handle. Ignoring this kind of overload may lead into a situation where the disc space is
exhausted (regardless of the size of the tables stored on disc).

Each update is appended to the transaction log and occasionally(depending of how it is configured) dumped to
the tables files. The table file storage is more compact than the transaction log storage, especialy if the same
record is updated over and over again. If the thresholds for dumping the transaction log have been reached before
the previous dump was finished an overload event is triggered.

44 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

Another typical overload situation is when the transaction manager cannot commit transactions at the same pace
as the applications are performing updates of disc resident tables. When this happens the message queue of the
transaction manager will continue to grow until the memory is exhausted or the load decreases.

The same problem may occur for dirty updates. The overload is detected locally on the current node, but its cause
may be on another node. Application processes may cause heavy loads if any table are residing on other nodes
(replicated or not). By default this event is reported to the error_logger.

{i nconsi st ent _dat abase, Context, Node}

Mnesia regards the database as potential inconsistent and gives its applications a chance to
recover from the inconsistency, eg. by instaling a consistent backup as falback and then
restart the system or pick a Mast er Node from mmesi a: system i nfo(db_nodes)) and invoke
mesi a: set _mast er _node([Mast er Node]) . By default an error is reported to the error logger.

{mesia_fatal, Format, Args, BinaryCore}

Mnesia has encountered afatal error and will (in a short period of time) be terminated. The reason for the fatal
error isexplained in Format and Argswhich may begivenasinputtoi o: f or nat / 2 or senttotheerror_logger.
By default it will be sent totheerror_logger. Bi nar yCor e isabinary containing asummary of Mnesiasinterna
state at the time the when the fatal error was encountered. By default the binary is written to a unique file name
on current directory. On RAM nodes the core isignored.

{mesi a_info, Format, Args}

Mnesia has detected something that may be of interest when debugging the system. Thisisexplained in For mat
and Ar gs which may appear asinput to i o: f or mat / 2 or sent to the error_logger. By default this event is
printed withi o: f or mat / 2.

{mesi a_error, Format, Args}

Mnesia has encountered an error. The reason for the error isexplained i For mat and Ar gs which may be given
asinputtoi o: f or mat / 2 or sent to the error_logger. By default this event is reported to the error_logger.

{mmesi a_user, Event}

An application hasinvoked thefunction mesi a: report _event (Event) . Event may beany Erlang data
structure. When tracing a system of Mnesia applications it is useful to be able to interleave Mnesia's own events
with application related events that give information about the application context. Whenever the application
starts with anew and demanding Mnesia activity or enters a new and interesting phase in its execution it may be
agood ideato usemmesi a: report _event/ 1.

Table Events

Another category of events are table events, which are events related to table updates. There are two types of table
events simple and detailed.

The simple table events are tuples looking like this. { Oper, Record, Activityld}.Where Qper isthe
operation performed. Recor d is the record involved in the operation and Acti vi tyl d is the identity of the
transaction performing the operation. Note that the name of therecord isthetable nameeven whenther ecor d_nane
has another setting. The various table related events that may occur are:

{write, NewRecord, Activityld}
anew record has been written. NewRecord contains the new value of the record.
{del ete_object, A dRecord, Activityld}

arecord has possibly been deleted withrmesi a: del et e_obj ect/ 1. d dRecor d containsthe value of the
old record as stated as argument by the application. Note that, other records with the same key may be remaining
inthetableif itisabag.

Ericsson AB. All Rights Reserved.: Mnesia | 45

1.5 Miscellaneous Mnesia Features

{del ete, {Tab, Key}, Activityld}
one or more records possibly has been deleted. All records with the key Key in the table Tab have been deleted.

The detailed table events are tuples looking like this: { Oper, Tabl e, Data, [Od dRecs], Activityld}.
Where Qper isthe operation performed. Tabl e isthe tableinvolved in the operation, Dat a isthe record/oid written/
deleted. A dRecs isthe contentsbefore the operation. and Act i vi t yl d istheidentity of the transaction performing
the operation. The various table related events that may occur are:

{write, Table, NewRecord, [d dRecords], Activityld}

anew record has been written. NewRecord contains the new value of the record and OldRecords contains the
records before the operation is performed. Note that the new content is dependent on the type of the table.

{del ete, Table, Wat, [d dRecords], Activityld}

records has possibly been deleted What is either { Table, Key} or arecord { RecordName, Key, ...} that was
deleted. Note that the new content is dependent on the type of the table.

1.5.8 Debugging Mnesia Applications

Debugging a Mnesia application can be difficult due to a number of reasons, primarily related to difficulties in
understanding how thetransaction and tableload mechanismswork. An other source of confusion may bethe semantics
of nested transactions.

We may set the debug level of Mnesia by calling:
* mesi a: set _debug_| evel (Level)
Where the parameter Level is.
none

no trace outputs at all. Thisisthe default.
ver bose

activates tracing of important debug events. These debug events will generate { mesi a_i nf o, For mat,
Ar gs} system events. Processes may subscribe to these events with rmesi a: subscri be/ 1. Theeventsare
aways sent to Mnesid's event handler.

debug

activates all events at the verbose level plus traces of al debug events. These debug events will generate
{mesia_info, Format, Args} system events. Processes may subscribe to these events with
mesi a: subscri be/ 1. The events are dways sent to Mnesias event handler. On this debug level Mnesids
event handler starts subscribing updates in the schematable.

trace

activates all events at the debug level. On this debug level Mnesia's event handler starts subscribing updates on
al Mnesiatables. Thislevel isonly intended for debugging small toy systems, since many large events may be
generated.

fal se

isan diasfor none.
true

isan alias for debug.

The debug level of Mnesiaitself, isalso an application parameter, thereby making it possible to start an Erlang system
in order to turn on Mnesiadebug in the initia start-up phase by using the following code;

46 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

% erl -mesia debug verbose

1.5.9 Concurrent Processes in Mnesia

Programming concurrent Erlang systemsis the subject of a separate book. However, it isworthwhile to draw attention
to the following features, which permit concurrent processesto exist in a Mnesia system.

A group of functions or processes can be called within atransaction. A transaction may include statements that read,
write or delete data from the DBMS. A large number of such transactions can run concurrently, and the programmer
does not have to explicitly synchronize the processes which manipulate the data. All programs accessing the database
through the transaction system may be written as if they had sole access to the data. Thisis avery desirable property
since all synchronization is taken care of by the transaction handler. If a program reads or writes data, the system
ensures that no other program tries to manipulate the same data at the same time.

It is possible to move tables, delete tables or reconfigure the layout of atable in various ways. An important aspect
of the actual implementation of these functionsisthat it is possible for user programsto continue to use atable while
it is being reconfigured. For example, it is possible to simultaneously move a table and perform write operations to
the table . This is important for many applications that require continuously available services. Refer to Chapter 4:
Transactions and other access contexts for more information.

1.5.10 Prototyping

If and when we decide that we would like to start and manipulate Mnesia, it is often easier to write the definitions
and data into an ordinary text file. Initially, no tables and no data exist, or which tables are required. At the initial
stages of prototyping it is prudent write al datainto onefile, processthat file and have the datain the file inserted into
the database. It is possible to initialize Mnesia with data read from a text file. We have the following two functions
to work with text files.

« mesia:load_textfile(Filenane) Whichloadsaseriesof local table definitions and datafound in the
fileinto Mnesia. This function also starts Mnesia and possibly creates a new schema. The function only operates
on the local node.

e mesia:dunp_to_textfile(Filenane) Dumpsall local tablesof amnesiasystem into atext filewhich
can then be edited (by means of a normal text editor) and then later reloaded.

These functions are of course much slower than the ordinary store and load functions of Mnesia. However, this is
mainly intended for minor experiments and initia prototyping. The major advantages of these functions is that they
are very easy to use.

The format of the text fileis:

{tables, [{Typenane, [Options]},

{Typenane2 3}
{Typenane, Attributel, Atrribute2}.
{Typenane, Attributel, Atrribute2}.

Options is a list of {Key, Value} tuples conforming to the options we could give to
mesi a: create_tabl e/ 2.

For example, if we want to start playing with a small database for healthy foods, we enter then following data into
thefile FRUI TS.

Ericsson AB. All Rights Reserved.: Mnesia | 47

1.5 Miscellaneous Mnesia Features

{tabl es,
[{fruit, [{attributes, [name, color, taste]}]},
{vegetable, [{attributes, [nanme, color, taste, price]}]}]}.

{fruit, orange, orange, sweet}.

{fruit, apple, green, sweet}.

{vegetabl e, carrot, orange, carrotish, 2.55}.
{veget abl e, potato, yellow, none, O0.45}.

The following session with the Erlang shell then shows how to load the fruits database.

% erl
Erl ang (BEAM enul ator version 4.9

Eshell V4.9 (abort with ~"QG

1> mesi a: |l oad_textfile("FRU TS").
New table fruit

New t abl e veget abl e

{at om c, ok}

2> mesi a:info().

---> Processes hol ding | ocks <---
---> Processes waiting for |ocks <---
---> Pending (renpote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---
---> Active tables <---

veget abl e : wWith 2 records occupi ng 299 words of nem
fruit : wWith 2 records occuping 291 words of nem
schema : wWith 3 records occupi ng 401 words of nem
===> Systeminfo in version "1.1", debug |evel = none <===

opt _disc. Directory "/var/tnp/ Mesia.nonode@ohost" is used.
use fallback at restart = fal se

runni ng db nodes = [nonode@ohost]

st opped db nodes [1

renot e [1

ram copi es [fruit, vegetabl e]

di sc_copi es [schema]

di sc_onl y_copi es [1

[{nonode@ohost, di sc_copi es}] = [schenm]

[{nonode@ohost, ram copi es}] = [fruit, vegetabl €]

3 transactions conmtted, O aborted, O restarted, 2 |ogged to disc
0 held locks, 0 in queue; O local transactions, O renote

0 transactions waits for other nodes: []

ok

3>

Where we can see that the DBMS was initiated from aregular text file.

1.5.11 Object Based Programming with Mnesia

The Company database introduced in Chapter 2 has three tables which store records (employee, dept, project), and
three tables which store relationships (manager, at_dep, in_proj). Thisis a normalized data model, which has some
advantages over anon-normalized data model.

Itis more efficient to do a generalized search in anormalized database. Some operations are also easier to perform on
anormalized data model. For example, we can easily remove one project, as the following exampleillustrates:

48 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

remove_pr oj (Proj Nane) ->

F =fun() ->

Ip =qglc:e(qglc:g([X || X <- mesia:table(in_proj),
X#i n_proj . proj _name == Proj Nane]

).
mesi a: del et e({proj ect, ProjNane}),
del _i n_projs(Ilp)

end,
mesi a: transacti on(F).

del _in_projs([Ip|Tail]) ->
mesi a: del et e_obj ect (I p),
del _in_projs(Tail);

del _in_projs([]) ->
done.

In reality, data models are seldom fully normalized. A redlistic alternative to a normalized database model would be a
datamodel whichisnot eveninfirst normal form. Mnesiaisvery suitable for applications such astelecommunications,
becauseit is easy to organize datain avery flexible manner. A Mnesia database is always organized as a set of tables.
Each table isfilled with rows/objects/records. What sets Mnesia apart isthat individual fieldsin arecord can contain
any type of compound data structures. An individual field in a record can contain lists, tuples, functions, and even
record code.

Many telecommunications applications have unigque requirements on lookup times for certain types of records. If
our Company database had been a part of a telecommunications system, then it could be that the lookup time of an
employee together with alist of the projects the employee is working on, should be minimized. If this was the case,
we might choose adrastically different data model which has no direct relationships. We would only have the records
themselves, and different records could contain either direct references to other records, or they could contain other
records which are not part of the Mnesia schema.

We could create the following record definitions:

-record(enpl oyee, {enp_no,
nane,
sal ary,
sex,
phone,
room no,
dept ,
proj ects,
manager}).

-record(dept, {id,
nane}) .
-record(project, {name,

nunber ,
| ocation}).

An record which describes an employee might ook like this:

Me = #enpl oyee{enp_no= 104732,
nanme = kl acke,
salary = 7,

Ericsson AB. All Rights Reserved.: Mnesia | 49

1.6 Mnesia System Information

sex = mal e,

phone = 99586,

roomno = {221, 015},

dept = 'B/SFR ,

projects = [erlang, mesia, otp],
manager = 114872},

Thismodel only has three different tables, and the employee records contain references to other records. We have the
following references in the record.

e ' B/ SFR referstoadept record.
« J[erlang, nmesia, otp].Thisisalistof threedirect referencesto three different pr oj ect s records.
e 114872. Thisrefersto another employee record.

We could also use the Mnesiarecord identifiers ({ Tab, Key}) asreferences. Inthiscase, thedept attribute would
be settothevalue{ dept, ' B/ SFR } instead of ' B/ SFR' .

With this data model, some operations execute considerably faster than they do with the normalized data model in
our Company database. On the other hand, some other operations become much more complicated. In particular, it
becomesmoredifficult to ensurethat records do not contain dangling pointersto other non-existent, or deleted, records.

Thefollowing code exemplifies a search with anon-normalized datamodel. To find all employees at department Dep
with asalary higher than Sal ar y, use the following code:

get _enps(Sal ary, Dep) ->
Q= glciq(
[E||] E <- mmesi a:tabl e(enpl oyee),
E#enpl oyee. sal ary > Sal ary,
E#enpl oyee. dept == Dep]
),
F =fun() -> qglc:e(Q end,
transaction(F).

This codeis not only easier to write and to understand, but it also executes much faster.

It is easy to show examples of code which executes faster if we use a non-normalized data model, instead of
a normalized model. The main reason for this is that fewer tables are required. For this reason, we can more
easily combine data from different tables in join operations. In the above example, the get _enps/ 2 function was
transformed from ajoin operation into asimple query which consists of aselection and aprojection on onesingletable.

1.6 Mnesia System Information

1.6.1 Database Configuration Data

The following two functions can be used to retrieve system information. They are described in detail in the reference
manual.

e mnesia:table_info(Tab, Key) ->Info | exit({aborted, Reason}).Returnsinformation
about one table. Such as the current size of the table, on which nodes it resides etc.

e mesia:systeminfo(Key) -> Info | exit({aborted, Reason}).Returnsinformation
about the Mnesia system. For example, transaction statistics, db_nodes, configuration parameters etc.

50 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Mnesia System Information

1.6.2 Core Dumps

If Mnesia malfunctions, system information is dumped to a file named Mhesi aCor e. Node. When. The type of
system information contained in this file can also be generated with the function mesi a_| i b: cor edunp() .If a
Mnesia system behaves strangely, it is recommended that a Mnesia core dump file be included in the bug report.

1.6.3 Dumping Tables

Tables of type ram copi es are by definition stored in memory only. It is possible, however, to
dump these tables to disc, either at regular intervals, or before the system is shutdown. The function
mesi a: dunp_t abl es(TabLi st) dumpsall replicas of a set of RAM tablesto disc. The tables can be accessed
while being dumped to disc. To dump the tables to disc all replicas must have the storage typer am _copi es.

Thetable content is placed in a.DCD file on the disc. When the Mnesia system is started, the RAM table will initially
be loaded with data from its .DCD file.

1.6.4 Checkpoints

A checkpoint is a transaction consistent state that spans over one or more tables. When a checkpoint is activated, the
system will remember the current content of the set of tables. The checkpoint retains a transaction consistent state of
the tables, allowing the tablesto be read and updated while the checkpoint is active. A checkpoint istypically used to
back up tables to external media, but they are also used internally in Mnesia for other purposes. Each checkpoint is
independent and a table may be involved in severa checkpoints simultaneously.

Eachtableretainsitsold contentsin acheckpoint retainer and for performance critical applications, it may beimportant
to realize the processing overhead associated with checkpoints. In aworst case scenario, the checkpoint retainer will
consume even more memory than the table itself. Each update will also be dlightly slower on those nodes where
checkpoint retainers are attached to the tables.

For each tableit ispossible to chooseif there should be one checkpoint retainer attached to al replicas of thetable, or if
itisenough to have only one checkpoint retainer attached to asingle replica. With asingle checkpoint retainer per table,
the checkpoint will consumeless memory, but it will be vulnerabl e to node crashes. With several redundant checkpoint
retainers the checkpoint will survive aslong asthereis at least one active checkpoint retainer attached to each table.

Checkpoints may be explicitly deactivated with the function rmesi a: deacti vat e_checkpoi nt (Nane) ,
where Nane is the name of an active checkpoint. This function returns ok if successful, or { error, Reason} in
the case of an error. All tables in a checkpoint must be attached to at least one checkpoint retainer. The checkpoint
is automatically de-activated by Mnesia, when any table lacks a checkpoint retainer. This may happen when a node
goes down or when areplicais deleted. Use the mi n and nax arguments described below, to control the degree of
checkpoint retainer redundancy.

Checkpoints are activated with the function mesi a: act i vat e_checkpoi nt (Ar gs), where Ar gs isalist of
the following tuples:

« {nane, Nane} . Nane specifies atemporary name of the checkpoint. The name may be re-used when the
checkpoint has been de-activated. If no name is specified, aname is generated automatically.

« {nmax, MaxTabs}. MaxTabs isalist of tables which will beincluded in the checkpoint. The defaultis[] (an
empty list). For these tables, the redundancy will be maximized. The old contents of the table will be retained in
the checkpoint retainer when the main table is updated by the applications. The checkpoint becomes more fault
tolerant if the tables have several replicas. When new replicas are added by means of the schema manipulation
functionmmesi a: add_t abl e_copy/ 3, it will also attach alocal checkpoint retainer.

« {mn, M nTabs}.M nTabs isalist of tablesthat should be included in the checkpoint. The defaultis[] .
For these tables, the redundancy will be minimized, and there will be a single checkpoint retainer per table,
preferably at the local node.

Ericsson AB. All Rights Reserved.: Mnesia | 51

1.6 Mnesia System Information

« {allow renote, Bool }.fal se meansthat all checkpoint retainers must be local. If atable does not reside
locally, the checkpoint cannot be activated. t r ue allows checkpoint retainersto be allocated on any node. The
defaultsist r ue.

e {ramoverrides_dunp, Bool }. Thisargument only appliesto tables of typer am _copi es. Bool
specifiesif the table state in RAM should override the table state on disc. t r ue means that the latest committed
recordsin RAM areincluded in the checkpoint retainer. These are the records that the application accesses.

f al se meansthat the records on the disc .DAT file areincluded in the checkpoint retainer. These are the
records that will be loaded on start-up. Default isf al se.

Themmesi a: acti vat e_checkpoi nt (Args) returnsone of the following values:

e {ok, Name, Nodes}
« {error, Reason}.

Nane isthe name of the checkpoint, and Nodes are the nodes where the checkpoint is known.
A list of active checkpoints can be obtained with the following functions:

e mesi a: system i nf o(checkpoi nt s). Thisfunction returns all active checkpoints on the current node.
e mesia:tabl e_info(Tab, checkpoi nts) . Thisfunction returns active checkpoints on a specific table.

1.6.5 Files

This section describes the internal files which are created and maintained by the Mnesia system, in particular, the
workings of the Mnesialog is described.

Start-Up Files
In Chapter 3 we detailed the following pre-requisites for starting Mnesia (refer Chapter 3: Sarting Mnesia:

Wemust start an Erlang session and specify a Mnesia directory for our database.
« Wemust initiate a database schema, using the function nmesi a: cr eat e_schena/ 1.

The following example shows how these tasks are performed:

%erl -snane klacke -mesia dir '"/Idisc/scratch/kl acke"'

Erl ang (BEAM enul ator version 4.9

Eshell V4.9 (abort with ~"QG

(kl acke@i n) 1> mesi a: creat e_schema([node()]) .
ok

(kl acke@i n) 2>

Nz

Suspended

We can inspect the Mnesia directory to see what files have been created. Enter the following command:

% Ils -1 /ldisc/scratch/klacke
STW-TFWAT-- 1 kl acke staff 247 Aug 12 15: 06 FALLBACK. BUP

Theresponse showsthat thefile FALLBACK.BUP hasbeen created. Thisiscalled abackupfile, andit containsan
initial schema. If we had specified more than one nodeinthermesi a: cr eat e_schena/ 1 function, identical
backup files would have been created on all nodes.

e Continue by starting Mnesia:

52 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Mnesia System Information

(kl acke@i n) 3>mesi a: start().
ok

We can now see the following listing in the Mnesia directory:

STW-TWAT-- 1 kl acke staff 86 May 26 19: 03 LATEST. LOG
STW-TWAT-- 1 kl acke staff 34507 May 26 19: 03 schema. DAT

The schema in the backup file FALLBACK.BUP has been used to generate the file schenma. DAT. Since we
have no other disc resident tables than the schema, no other data files were created. The file FALLBACK.BUP
was removed after the successful "restoration”. We also see a number of files that are for internal use by Mnesia.

« Enter the following command to create a table:

(kl acke@i n) 4> mesi a: creat e_t abl e(f oo, [{di sc_copi es, [node()]}]).
{at om c, ok}

We can now see the following listing in the Mnesia directory:

%I1s -1 /1disc/scratch/kl acke

-rwrwr-- 1 klacke staff 86 May 26 19: 07 LATEST. LOG
-rwrwr-- 1 klacke staff 94 May 26 19: 07 foo. DCD
-rwrwr-- 1 klacke staff 6679 May 26 19: 07 schema. DAT

Where afilef 0o. DCD has been created. Thisfile will eventually store all datathat iswritten into thef oo table.

The Log File

When starting Mnesia, a.LOG file called LATEST. LOGwas created and placed in the database directory. This file
isused by Mnesiato log disc based transactions. Thisincludes all transactions that write at least one record in atable
whichisof storagetypedi sc_copi es,ordi sc_onl y_copi es. Itasoincludesall operationswhich manipulate
the schemaitself, such as creating new tables. Theformat of thelog can vary with different implementations of Mnesia.
The Mnesialog is currently implemented with the standard library module di sc_| og.

Thelog filewill grow continuously and must be dumped at regular intervals. "Dumping thelog file" meansthat Mnesia
will perform all the operations listed in the log and place the records in the corresponding .DAT, .DCD and .DCL
datafiles. For example, if the operation "writerecord { f oo, 4, elvis, 6}"islistedinthelog, Mnesiainserts
the operation into the file f co. DCL, later when Mnesia thinks the .DCL has become to large the data is moved to
the .DCD file. The dumping operation can be time consuming if the log is very large. However, it is important to
realize that the Mnesia system continues to operate during log dumps.

By default Mnesia either dumps the log whenever 100 records have been written in the log or when 3 minutes
have passed. This is controlled by the two application parameters - mesi a dunp_l og_wite_threshold
WiteQOperationsand-mesia dunp_log tinme_threshold MI1i Secs.

Before the log is dumped, the file LATEST. LOGis renamed to PREVI OUS. LOG, and a new LATEST. LOGfileis
created. Once the log has been successfully dumped, the file PREVI QUS. LOGis deleted.

Thelog isaso dumped at start-up and whenever a schema operation is performed.

Ericsson AB. All Rights Reserved.: Mnesia | 53

1.6 Mnesia System Information

The Data Files

The directory listing also contains one .DAT file. This contain the schemaitself, contained in the schera. DAT file.
The DAT files are indexed files, and it is efficient to insert and search for records in these files with a specific key.
The .DAT files are used for the schema and for di sc_onl y_copi es tables. The Mnesia data files are currently
implemented with the standard library module det s, and all operations which can be performed on det s files can
also be performed on the Mnesiadatafiles. For example, det s containsafunctiondet s: t r aver se/ 2 which can
be used to view the contents of aMnesia DAT file. However, this can only be done when Mnesiais not running. So,
to view aour schemafile, we can:

{ok, N} = dets:open_file(schema, [{file, "./schema.DAT"}, {repair,false},
{keypos, 2}]),

F =fun(X) ->io:format("~p~n", [X]), continue end,

dets:traverse(N, F),

dets: cl ose(N).

Note:
Refer to the Reference Manual, st d_I i b for information about det s.

Warning:

The DAT files must always be opened with the{r epai r, fal se} option. This ensures that these files are
not automatically repaired. Without this option, the database may become inconsistent, because Mnesia may
believe that the fileswere properly closed. Refer to the reference manual for information about the configuration
parameter aut o_r epai r.

Warning:

It is recommended that Data files are not tampered with while Mnesia is running. While not prohibited, the
behavior of Mnesiais unpredictable.

Thedi sc_copi es tables are stored on disk with .DCL and .DCD files, which are standard disk_log files.

1.6.6 Loading of Tables at Start-up

At start-up Mnesia loads tables in order to make them accessible for its applications. Sometimes Mnesia decides to
load all tables that reside locally, and sometimes the tables may not be accessible until Mnesia brings a copy of the
table from another node.

To understand the behavior of Mnesiaat start-up it is essential to understand how Mnesia reacts when it loses contact
with Mnesiaon another node. At this stage, M nesia cannot distingui sh between acommunication failureand a"normal”
node down.

When this happens, Mnesia will assume that the other node is no longer running. Wheress, in redlity, the
communication between the nodes has merely failed.

To overcome this situation, simply try to restart the ongoing transactions that are accessing tables on the failing node,
and writeamesi a_down entry to alog file.

54 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Mnesia System Information

At start-up, it must be noted that all tablesresiding on nodeswithoutammesi a_down entry, may havefresher replicas.
Their replicas may have been updated after the termination of Mnesiaon the current node. In order to catch up with the
latest updates, transfer a copy of the table from one of these other "fresh”" nodes. If you are unlucky, other nodes may
be down and you must wait for the table to be loaded on one of these nodes before receiving a fresh copy of the table.

Before an application makes its first access to atable, mesi a: wait _for _tabl es(TabLi st, Ti neout)
ought to be executed to ensure that the table is accessible from the local node. If the function times out the application
may chooseto forceaload of thelocal replicawithmesi a: f or ce_| oad_t abl e(Tab) and deliberately lose all
updates that may have been performed on the other nodes while thelocal node was down. If Mnesiaalready hasloaded
the table on another node or intends to do so, we will copy the table from that node in order to avoid unnecessary
inconsistency.

Warning:

Keep in mind that it is only one table that is loaded by mesi a: f orce_| oad_t abl e(Tab) and since
committed transactions may have caused updates in several tables, the tables may now become inconsistent due
to the forced load.

The adlowed AccessMbde of a table may be defined to either be read_only or read_write. And it may
be toggled with the function nmesi a: change_t abl e_access_node(Tab, AccessMde) in runtime.
read_onl y tablesand| ocal _cont ent tableswill always be loaded locally, since there are no need for copying
the table from other nodes. Other tables will primary be loaded remotely from active replicas on other nodes if the
table already has been loaded there, or if the running Mnesia already has decided to load the table there.

At start up, Mnesia will assume that its local replicais the most recent version and load the table from disc if either
situation is detected:

« mesi a_down isreturned from al other nodes that holds a disc resident replica of the table; or,
« ifallreplicasarer am copi es

Thisis normally a wise decision, but it may turn out to be disastrous if the nodes have been disconnected due to a
communication failure, since Mnesia's normal table load mechanism does not cope with communication failures.

When Mnesia is loading many tables the default load order. However, it is possible to affect
the load order by explicitly changing the | oad_order property for the tables, with the function
mesi a: change_tabl e | oad_order (Tab, LoadOrder).TheLoadOr der isby default O for al tables,
but it can be set to any integer. The table with the highest | oad_or der will be loaded first. Changing load order is
especialy useful for applications that need to ensure early availability of fundamental tables. Large peripheral tables
should have alow load order value, perhaps set below 0.

1.6.7 Recovery from Communication Failure

There are several occasions when Mnesia may detect that the network has been partitioned due to a communication
failure.

One is when Mnesia aready is up and running and the Erlang nodes gain contact again. Then Mnesia will try
to contact Mnesia on the other node to see if it aso thinks that the network has been partitioned for a while. If
Mnesia on both nodes has logged nmesi a_down entries from each other, Mnesia generates a system event, called
{inconsi stent _dat abase, running_partitioned_network, Node} whichissenttoMnesiasevent
handler and other possible subscribers. The default event handler reports an error to the error logger.

Another occasion when Mnesia may detect that the network has been partitioned due to a communication failure, is
at start-up. If Mnesia detects that both the local node and another node received rmesi a_down from each other it

Ericsson AB. All Rights Reserved.: Mnesia | 55

1.6 Mnesia System Information

generatesa{ i nconsi st ent _dat abase, starting partitioned _network, Node} systemeventand
acts as described above.

If the application detects that there has been a communi cation failure which may have caused an inconsistent database,
it may use the function mesi a: set _nmast er _nodes(Tab, Nodes) to pinpoint from which nodes each table
may be loaded.

At start-up Mnesia's normal table load algorithm will be bypassed and the table will be loaded from one of the master
nodes defined for the table, regardless of potential mesi a_down entriesin the log. The Nodes may only contain
nodes wherethetable hasareplicaand if it is empty, the master node recovery mechanism for the particular table will
be reset and the normal load mechanism will be used when next restarting.

The function resi a: set _mast er _nodes(Nodes) sets master nodes for all tables. For each table it will
determine its replica nodes and invoke resi a: set _nmast er _nodes(Tab, TabNodes) with those replica
nodes that are included in the Nodes list (i.e. TabNodes is the intersection of Nodes and the replica nodes of the
table). If the intersection is empty the master node recovery mechanism for the particular table will be reset and the
normal load mechanism will be used at next restart.

The functions mmesi a: system i nfo(mast er _node_t abl es) and mesi a:tabl e_i nfo(Tab,
mast er _nodes) may be used to obtain information about the potential master nodes.

Thefunction mesi a: f or ce_I| oad_t abl e(Tab) may be used to force load the table regardless of which table
load mechanism is activated.

1.6.8 Recovery of Transactions

A Mnesia table may reside on one or more nodes. When atable is updated, Mnesia will ensure that the updates will
be replicated to al nodes where the table resides. If areplica happens to be inaccessible for some reason (e.g. due to
atemporary node down), Mnesiawill then perform the replication later.

On the node where the application is started, there will be a transaction coordinator process. If the transaction is
distributed, there will also be a transaction participant process on all the other nodes where commit work needs to
be performed.

Internally Mnesia uses several commit protocols. The selected protocol depends on which table that has been updated
in the transaction. If all the involved tables are symmetrically replicated, (i.e. they al have the same r am nodes,
di sc_nodes and di sc_onl y_nodes currently accessible from the coordinator node), a lightweight transaction
commit protocol is used.

The number of messages that the transaction coordinator and its participants needs to exchange is few, since Mnesia's
table load mechanism takes care of the transaction recovery if the commit protocol getsinterrupted. Since al involved
tables are replicated symmetrically the transaction will automatically be recovered by loading the involved tablesfrom
the same node at start-up of afailing node. We do not really careif the transaction was aborted or committed aslong as
we can ensure the ACID properties. The lightweight commit protocol is non-blocking, i.e. the surviving participants
and their coordinator will finish the transaction, regardless of some node crashesin the middle of the commit protocol
or not.

If a node goes down in the middle of a dirty operation the table load mechanism will ensure that the update will
be performed on all replicas or none. Both asynchronous dirty updates and synchronous dirty updates use the same
recovery principle as lightweight transactions.

If atransaction involves updates of asymmetrically replicated tables or updates of the schema table, a heavyweight
commit protocol will be used. The heavyweight commit protocol is able to finish the transaction regardliess of how
the tables are replicated. The typical usage of a heavyweight transaction is when we want to move areplicafrom one
node to another. Then we must ensure that the replica either is entirely moved or left as it was. We must never end
up in a situation with replicas on both nodes or no node at all. Even if a node crashes in the middle of the commit
protocol, the transaction must be guaranteed to be atomic. The heavyweight commit protocol involves more messages

56 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Mnesia System Information

between the transaction coordinator and its participants than alightweight protocol and it will perform recovery work
at start-up in order to finish the abort or commit work.

The heavyweight commit protocol is aso non-blocking, which allows the surviving participants and their coordinator
to finish the transaction regardless (even if a node crashes in the middle of the commit protocol). When a node fails
at start-up, Mnesiawill determine the outcome of the transaction and recover it. Lightweight protocols, heavyweight
protocolsand dirty updates, are dependent on other nodesto be up and runningin order to make the correct heavyweight
transaction recovery decision.

If Mnesia has not started on some of the nodes that are involved in the transaction AND neither the local node or any
of the aready running nodes know the outcome of the transaction, Mnesia will by default wait for one. In the worst
case scenario al other involved nodes must start before Mnesia can make the correct decision about the transaction
and finish its start-up.

This means that Mnesia (on one node)may hang if a double fault occurs, i.e. when two nodes crash simultaneously
and one attempts to start when the other refuses to start e.g. due to a hardware error.

It is possible to specify the maximum time that Mnesia will wait for other nodes to respond with a transaction
recovery decision. The configuration parameter max_wai t _f or _deci si on defaultsto infinity (which may cause
the indefinite hanging as mentioned above) but if it is set to a definite time period (eg.three minutes), Mnesiawill then
enforce atransaction recovery decision if needed, in order to allow Mnesia to continue with its start-up procedure.

The downside of an enforced transaction recovery decision, is that the decision may be incorrect, due to insufficient
information regarding the other nodes recovery decisions. This may result in an inconsistent database where Mnesia
has committed the transaction on some nodes but aborted it on others.

In fortunate cases the inconsistency will only appear in tables belonging to a specific application, but if a schema
transaction has been inconsistently recovered due to the enforced transaction recovery decision, the effects of the
inconsistency can be fatal. However, if the higher priority is availability rather than consistency, then it may be worth
therisk.

If Mnesia encounters a inconsistent transaction decision a { i nconsi st ent _dat abase, bad_deci si on,
Node} system event will be generated in order to givethe application achancetoinstall afallback or other appropriate
measures to resolve the inconsistency. The default behavior of the Mnesiaevent handler isthe same asif the database
became inconsistent as aresult of partitioned network (see above).

1.6.9 Backup, Fallback, and Disaster Recovery

The following functions are used to backup data, to install a backup as fallback, and for disaster recovery.

 mesi a: backup_checkpoi nt (Nane, Opaque, [Md]) . Thisfunction performsabackup of the
tables included in the checkpoint.

 mesi a: backup(Opaque, [Mod]) . Thisfunction activates a new checkpoint which coversall Mnesia
tables and performs a backup. It is performed with maximum degree of redundancy (also refer to the function
mnesia: activate_checkpoint(Args), { max, MaxTabs} and {nmin, M nTabs}).

e mnesi a:traverse_backup(Source, [SourceMd,] Tar get, [Tar get Mod,] Fun, Ac) . This
function can be used to read an existing backup, create a new backup from an existing one, or to copy a backup
from one type mediato another.

e mesia:uninstall _fall back() . Thisfunction removes previoudy installed fallback files.
e mesi a: restore(Qpaque, Args). Thisfunction restoresaset of tables from a previous backup.

« mesia:install _fallback(Opaque, [Mod]). Thisfunction can be configured to restart the Mnesia
and reload data tables, and possibly schema tables, from an existing backup. This function istypically used for
disaster recovery purposes, when data or schema tables are corrupted.

These functions are explained in the following sub-sections. Also refer to the the section Checkpoints in this chapter,
which describes the two functions used to activate and de-activate checkpoints.

Ericsson AB. All Rights Reserved.: Mnesia | 57

1.6 Mnesia System Information

Backup
Backup operation are performed with the following functions:

« mnesi a: backup_checkpoi nt (Nanme, Opaque, [Mod])

« mesi a: backup(Opaque, [Mod])

e mesia:traverse_backup(Source, [SourceMd,], Target, [Target Modd,] Fun, Acc).

By default, the actual access to the backup mediais performed viathe mesi a_backup module for both read and
write. Currently mesi a_backup isimplemented with the standard library moduledi sc_1| og, but itispossibleto
write your own module with the same interface as rmesi a_backup and configure Mnesia so the aternate module
performsthe actual accesses to the backup media. This meansthat the user may put the backup on medias that Mnesia

does not know about, possibly on hosts where Erlang is not running. Use the configuration parameter - rmesi a
backup_nodul e <nodul e> for this purpose.

The source for a backup is an activated checkpoint. The backup function most commonly used
is mesi a: backup_checkpoi nt (Narne, Opaque, [Mod]). This function returns either ok, or
{error, Reason}. It hasthe following arguments:

* Nane isthe name of an activated checkpoint. Refer to the section Checkpoints in this chapter, the function
mesi a: acti vat e_checkpoi nt (ArgLi st) for details on how to include table names in checkpoints.

e Opaque. Mnesiadoes not interpret this argument, but it is forwarded to the backup module. The Mnesia
default backup module, mesi a_backup interprets this argument asalocal file name.

e Mbd. The name of an alternate backup module.
The function nmesi a: backup(Opaque[, Mod]) activates a new checkpoint which covers all Mnesia tables

with maximum degree of redundancy and performs a backup. Maximum redundancy meansthat each table replicahas
acheckpoint retainer. Tableswiththel ocal _cont ent s property are backed up as they look on the current node.

Itispossibleto iterate over abackup, either for the purpose of transforming it into anew backup, or just reading it. The
functionmmesi a: traver se_backup(Source, [SourceMod,] Target, [TargeMdd,] Fun, Acc)
which normally returns{ ok, Last Acc}, isused for both of these purposes.

Before the traversal starts, the source backup mediais opened with Sour ceMbd: open_r ead(Sour ce) , and the

target backup mediais opened with Tar get Mod: open_wri t e(Tar get) . Thearguments are:

* Sour ceMd and Tar get Mod are module names.

e Source and Tar get are opague data used exclusively by the modules Sour ceMbd and Tar get Mod for the
purpose of initializing the backup medias.

e Acc isaninitia accumulator value.

e Fun(Backupltenms, Acc) isappliedto each item inthe backup. The Fun must return atuple
{Val GoodBackupltens, NewAcc},whereVal i dBackuplt ens isalist of valid backup items, and
NewAc ¢ isanew accumulator value. The Val i dBackupl t ens are written to the target backup with the
function Tar get Mod: wri te/ 2.

* Last Acc isthelast accumulator value. |.e. the last NewAc ¢ value that was returned by Fun.

It is also possible to perform a read-only traversal of the source backup without updating a target backup. If
Tar get Mod==r ead_onl y, then no target backup is accessed at all.

By setting Sour ceMod and Tar get Mod to different modulesit is possibleto copy abackup from one kind of backup
media to another.

Valid Backupl t ens are the following tuples:

« {schemm, Tab} specifiesatableto be deleted.

e {schemm, Tab, Createlist} specifiesatableto becreated. Secemrmesi a_create_t abl e/ 2 for
more information about Cr eat eLi st .

58 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Mnesia System Information

« {Tab, Key} specifiesthefull identity of arecord to be deleted.

 {Record} specifiesarecord to beinserted. It can be atuple with Tab asfirst field. Note that the record name
is set to the table name regardless of what r ecor d_nane is set to.

The backup dataiis divided into two sections. The first section contains information related to the schema. All schema
related items are tuples where the first field equal s the atom schema. The second section is the record section. It is not
possible to mix schema records with other records and all schema records must be located first in the backup.

The schemaitself is a table and will possibly be included in the backup. All nodes where the schema table resides
areregarded asadb_node.

Thefollowing exampleillustrateshow mesi a: t r aver se_backup can be used to rename adb_node in a backup
file:

change_node_nane(Md, From To, Source, Target) ->
Switch =
fun(Node) when Node == From -> To;
(Node) when Node == To -> throw({error, already_exists});
(Node) -> Node
end,
Convert =
fun({schema, db_nodes, Nodes}, Acc) ->
{[{schema, db_nodes, |ists:nmap(Switch, Nodes)}], Acc};
({schema, version, Version}, Acc) ->
{[{schemn, version, Version}], Acc};
({schema, cookie, Cookie}, Acc) ->
{[{schemn, cookie, Cookie}], Acc};
({schema, Tab, Createlist}, Acc) ->
Keys = [ram copi es, disc_copies, disc_only_copies],
ptSwitch =
fun({Key, Val}) ->
case |ists: menber (Key, Keys) of
true -> {Key, lists:nmap(Switch, Val)};
fal se-> {Key, Val}
end
end,
{[{schema, Tab, lists:map(OptSwi tch, CreatelList)}], Acc};
(& her, Acc) ->
{[Oher], Acc}
end,
mesi a: traver se_backup(Source, Md, Target, Md, Convert, sw tched).

vi em Sour ce, Md) ->
View = fun(ltem Acc) ->
io:format ("~p.~n",[lten]),
{[ltem, Acc + 1}
end,
mesi a: traver se_backup(Source, Md, dunmmy, read_only, View, 0).

Restore
Tables can be restored on-line from a backup without restarting Mnesia. A restore is performed with the function
mesi a: rest or e(Opaque, Ar gs) , where Ar gs can contain the following tuples:

e {nodul e, Mod} . The backup module Mbd is used to access the backup media. If omitted, the default backup
module will be used.

« {skip_tables, TableList} WhereTabl eLi st isalist of tables which should not be read from the
backup.

Ericsson AB. All Rights Reserved.: Mnesia | 59

1.6 Mnesia System Information

e {clear_tables, TableList} WhereTabl eLi st isalist of tableswhich should be cleared, before
the records from the backup are inserted, i.e. al records in the tables are deleted before the tables are restored.
Schema information about the tables is not cleared or read from backup.

e {keep_tables, TableList} WhereTabl eLi st isalist of tables which should be not be cleared,
before the records from the backup are inserted, i.e. the records in the backup will be added to the records in the
table. Schema information about the tablesis not cleared or read from backup.

e {recreate_tables, TablelList} WhereTabl eLi st isalist of tableswhich should be re-created,
before the records from the backup are inserted. The tables are first deleted and then created with the schema
information from the backup. All the nodes in the backup needs to be up and running.

e {default_op, Operation} WhereQOper ati on isone of thefollowing operationsski p_t abl es,
cl ear _tabl es,keep_t abl es orrecreat e_t abl es. The default operation specifies which operation
should be used on tables from the backup which are not specified in any of the lists above. If omitted, the
operation cl ear _t abl es will be used.

The argument Qpaque is forwarded to the backup module. It returns{ at omi ¢, TabLi st} if successful, or the
tuple { abort ed, Reason} inthe case of an error. TabLi st isalist of the restored tables. Tables which are
restored are write locked for the duration of the restore operation. However, regardless of any lock conflict caused by
this, applications can continue to do their work during the restore operation.

The restoration is performed as a single transaction. If the database is very large, it may not be possible to restore it
online. In such a case the old database must be restored by installing afallback, and then restart.

Fallbacks

Thefunctionmesi a: i nstal | _fal | back(Opaque, [Mdbd]) isusedtoinstall abackup asfallback. It usesthe
backup module Mod, or the default backup module, to access the backup media. Thisfunction returns ok if successful,
or{error, Reason} inthecaseof anerror.

Installing afallback isadistributed operation that is only performed on all db_nodes. Thefallback isused to restore
the database the next time the system is started. If a Mnesia node with a fallback installed detects that Mnesia on
another node has died for some reason, it will unconditionally terminate itself.

A falback istypicaly used when a system upgrade is performed. A system typically involves the installation of new
software versions, and Mnesia tables are often transformed into new layouts. If the system crashes during an upgrade,
itishighly probable re-installation of the old applicationswill be required and restoration of the databaseto its previous
state. This can be done if abackup is performed and installed as a fallback before the system upgrade begins.

If the system upgradefails, Mnesiamust berestarted onall db_nodes inorder to restore the old database. Thefallback
will be automatically de-installed after a successful start-up. The function mesi a: uni nstal | _fal | back()
may also be used to de-install the fallback after a successful system upgrade. Again, thisis adistributed operation that
iseither performed on all db_nodes, or none. Both the installation and de-installation of fallbacks require Erlang to
be up and running on all db_nodes, but it does not matter if Mnesiaisrunning or not.

Disaster Recovery

The system may become inconsistent as a result of a power failure. The UNIX f sck feature can possibly repair the
file system, but there is no guarantee that the file contents will be consistent.

If Mnesia detects that a file has not been properly closed, possibly as a result of a power failure, it will attempt to
repair the bad filein a similar manner. Data may be lost, but Mnesia can be restarted even if the data is inconsistent.
The configuration parameter - mesi a aut o_repair <bool > can be used to control the behavior of Mnesia
at start-up. If <bool > hasthevaluet r ue, Mnesiawill attempt to repair the file; if <bool > hasthe valuef al se,
Mnesiawill not restart if it detects a suspect file. This configuration parameter affects the repair behavior of log files,
DAT files, and the default backup media.

The configuration parameter - mesi a dunp_| og_updat e_i n_pl ace <bool > controls the safety level of
thermesi a: dunp_Il og() function. By default, Mnesiawill dump the transaction log directly into the DAT files.

60 | Ericsson AB. All Rights Reserved.: Mnesia

1.7 Combining Mnesia with SNMP

If apower failure happens during the dump, this may cause the randomly accessed DAT filesto become corrupt. If the
parameterissettof al se, Mnesiawill copy the DAT filesand target the dump to the new temporary files. If thedump
is successful, the temporary files will be renamed to their normal DAT suffixes. The possibility for unrecoverable
inconsistencies in the data files will be much smaller with this strategy. On the other hand, the actual dumping of the
transaction log will be considerably slower. The system designer must decide whether speed or safety is the higher
priority.

Replicas of type di sc_onl y_copi es will only be affected by this parameter during the initial dump of the log
file at start-up. When designing applications which have very high requirements, it may be appropriate not to use
di sc_only_copi es tablesat all. Thereason for thisis the random access nature of hormal operating system files.
If anode goes down for reason for areason such as a power failure, these files may be corrupted because they are not
properly closed. The DAT filesfor di sc_onl y_copi es are updated on a per transaction basis.

If adisaster occurs and the M nesia database has been corrupted, it can be reconstructed from a backup. This should be
regarded as alast resort, since the backup contains old data. The datais hopefully consistent, but data will definitely
be lost when an old backup is used to restore the database.

1.7 Combining Mnesia with SNMP
1.7.1 Combining Mnesia and SNMP

Many telecommunications applications must be controlled and reconfigured remotely. It is sometimes an advantage

to perform this remote control with an open protocol such as the Simple Network Management Protocol (SNMP). The

alternativesto this would be:

* Not being able to control the application remotely at all.

e Using aproprietary control protocol.

» Using abridge which maps control messages in a proprietary protocol to a standardized management protocol
and vice versa.

All of these approaches have different advantages and disadvantages. Mnesia applications can easily be opened to the
SNMP protocol. It is possible to establish a direct one-to-one mapping between Mnesiatables and SNMP tables. This
means that a Mnesia table can be configured to be both a Mnesia table and an SNMP table. A number of functions to
control this behavior are described in the Mnesia reference manual.

1.8 Appendix A: Mnesia Error Messages

Whenever an operation returns an error in Mnesia, a description of the error is available. For example, the functions
mesi a: transacti on(Fun), or nmesi a: create_table(N,L) may return the tuple {abort ed,
Reason}, where Reason is a term describing the error. The following function is used to retrieve more detailed
information about the error:

e mesia:error_description(Error)

1.8.1 Errors in Mnesia
Thefollowingisalist of valid errorsin Mnesia.

e badar g. Bad or invalid argument, possibly bad type.

e no_transacti on. Operation not allowed outside transactions.

e conbi ne_error. Table optionswereillegally combined.

e bad_i ndex. Index already exists, or was out of bounds.

 al ready_exi st s. Schemaoption to be activated is already on.

e index_exi sts.Some operations cannot be performed on tables with an index.

Ericsson AB. All Rights Reserved.: Mnesia | 61

1.9 Appendix B: The Backup Call Back Interface

e no_exi sts.; Tried to perform operation on non-existing (non-alive) item.

e systemlinit.;A systemlimit was exhausted.

 mesi a_down. A transaction involves records on a remote node which became unavailable before the
transaction was completed. Record(s) are no longer available elsewhere in the network.

e not_a_db_node. A node was mentioned which does not exist in the schema.
* bad_t ype.; Bad type specified in argument.

e« node_not _runni ng. Nodeis not running.

e truncated_binary_fil e. Truncated binary infile.

e acti ve. Some delete operations require that all active records are removed.

* illegal . Operation not supported on this record.

The following example illustrates a function which returns an error, and the method to retrieve more detailed error
information.

The function nmesi a: creat e_t abl e(bar, [{attributes, 3.14}]) will return the tuple
{abort ed, Reason}, where Reason isthetuple{ bad_t ype, bar, 3. 14000} .

Thefunctionmmesi a: error _descri pti on(Reason),returnstheterm{" Bad t ype on sone provi ded
argunent s", bar, 3. 14000} whichisan error description suitable for display.

1.9 Appendix B: The Backup Call Back Interface

1.9.1 mnesia_backup callback behavior

%% Thi s nodul e contai ns one inplenmentati on of callback functions

%6 used by Mesia at backup and restore. The user may however

Wowite an own nodul e the same interface as mesi a_backup and

%% configure Miesia so the alternate nodul e perforns the actual

%6 accesses to the backup nedia. This nmeans that the user may put

%hb t he backup on nedi as that Miesia does not know about, possibly

%% on hosts where Erlang is not running.

9%

%% The QpaqueData argunent is never interpreted by other parts of

%6 Mhesia. It is the property of this nodule. Alternate inplenentations
%b of this nodul e may have different interpretati ons of OpaqueData.

%% The OpaqueData argunent given to open_wite/1l and open_read/ 1

%o are forwarded directly fromthe user.

9%

%6 All functions nmust return {ok, NewOpaqueData} or {error, Reason}.

9o

%% The NewOpaqueData argunents returned by backup call back functions will
%6 be given as i nput when the next backup cal |l back function is invoked.
%ol f any return val ue does not match {ok, _} the backup will be aborted.
9o

%% The NewOpaqueData argunents returned by restore call back functions wll
%6 be given as input when the next restore call back function is invoked
%o lf any return val ue does not match {ok, _} the restore will be aborted.

- modul e(mesi a_backup) .

62 | Ericsson AB. All Rights Reserved.: Mnesia

1.9 Appendix B: The Backup Call Back Interface

-include_li b("kernel/include/file.hrl").

-export ([
%6 Wite access
open_witel/1,
witel2,
commit_wite/l,
abort _witel/1,

%% Read access
open_read/ 1,

read/ 1,

close_read/ 1

1.

ile, file_desc}).

%% Opens backup nedia for wite
9%
%% Ret urns {ok, OpaqueData} or {error, Reason}
open_wite(OpaquebData) ->
Fil e = OpaqueDat a,
Tnp = lists:concat([File,". BUPTMP"]),
file:delete(Tnp),
file:delete(File),
case di sk_| og: open([{name, nake_ref()},
{file, Tnp},
{repair, false},
{linkto, self()}]) of
{ok, Fd} ->
{ok, #backup{tnp_file = Tnp, file = File, file_desc = Fd}};
{error, Reason} ->
{error, Reason}
end.

%6 Wites Backupltens to the backup nedi a
9%
%6 Ret urns {ok, OpaqueData} or {error, Reason}
write(OpaquebData, Backupltens) ->
B = OpaqueDat a,
case disk_|l og: | og_terns(B#backup.fil e_desc, Backupltens) of
ok ->
{ok, B};
{error, Reason} ->
abort_wite(B),
{error, Reason}
end.

%% Cl oses the backup nedia after a successful backup
9%
%6 Returns {ok, ReturnValueToUser} or {error, Reason}
conm t_write(OpaquebData) ->

B = OpaqueDat a,

case di sk_| og: sync(B#backup. fil e_desc) of

ok ->
case di sk_| og: cl ose(B#backup. fil e_desc) of
ok ->
case fil e:renane(B#backup.tnp_file, B#backup.file) of
ok ->

{ ok, B#backup.file};
{error, Reason} ->

{error, Reason}

end;

Ericsson AB. All Rights Reserved.: Mnesia | 63

1.9 Appendix B: The Backup Call Back Interface

{error, Reason} ->
{error, Reason}
end;
{error, Reason} ->
{error, Reason}
end.

%% Cl oses the backup nedia after an interrupted backup
9%
%6 Returns {ok, ReturnValueToUser} or {error, Reason}
abort_write(BackupRef) ->
Res = di sk_| og: cl ose(BackupRef #backup. fil e_desc),
file:del et e(BackupRef #backup.tnp_file),
case Res of
ok ->
{ ok, BackupRef #backup.file};
{error, Reason} ->
{error, Reason}

-record(restore, {file, file_desc, cont}).

%% Opens backup nedia for read
9%
%6 Returns {ok, OpaqueData} or {error, Reason}
open_r ead(OpaqueData) ->
Fil e = OpaqueDat a,
case file:read_file_info(File) of
{error, Reason} ->
{error, Reason};
_Filelnfo -> %W file exists
case disk_|l og:open([{file, File},
{name, nmake_ref()},
{repair, false},
{node, read_only},
{linkto, self()}]) of

{ok, Fd} ->
{ok, #restore{file = File, file_desc = Fd, cont = start}};
{repaired, Fd, _, {badbytes, 0}} ->

{ok, #restore{file = File, file_desc = Fd, cont = start}};
{repaired, Fd, _, _} ->
{ok, #restore{file = File, file_desc = Fd, cont = start}};
{error, Reason} ->
{error, Reason}
end
end.

%% Reads Backupltens from the backup medi a
9%
%6 Ret urns {ok, OpaqueData, Backupltenms} or {error, Reason}
9%
%6 Backupltenms == [] is interpreted as eof
read(OpaquebDat a) ->
R = OpaquebDat a,
Fd = R#restore.file_desc,
case di sk_| og: chunk(Fd, R#restore.cont) of
{error, Reason} ->
{error, {"Possibly truncated", Reason}};
eof ->
{ok, R [I};
{Cont, []} ->
read(R#restore{cont = Cont});

64 | Ericsson AB. All Rights Reserved.: Mnesia

1.10 Appendix C: The Activity Access Call Back Interface

{Cont, Backupltens, _BadBytes} ->
{ok, R#restore{cont = Cont}, Backupltens};
{Cont, Backupltens} ->
{ok, R#restore{cont = Cont}, Backupltens}
end.

%% Cl oses the backup nedia after restore
9%
%6 Returns {ok, ReturnValueToUser} or {error, Reason}
cl ose_read(OpaqueData) ->
R = OpaqueDat a,
case disk_|l og:close(R#restore.fil e_desc) of
ok -> {ok, R#restore.file};
{error, Reason} -> {error, Reason}
end.

1.10 Appendix C: The Activity Access Call Back Interface

1.10.1 mnesia_access callback behavior

- modul e(mesi a_frag).

%% Cal | back functions when accessed within an activity
-export ([

| ock/ 4,

wite/5, delete/5, delete_object/5,

read/ 5, match_object/5, all_keys/4,

sel ect/5, sel ect/ 6, sel ect _cont/ 3,

i ndex_mat ch_obj ect/ 6, index_read/6,

foldl /6, foldr/6, table_info/4,

first/3, next/4, prev/4, |ast/3,

clear_tablel4

1.

%% Cal | back functions which provides transparent
%6 access of fragnmented tables fromany activity
%6 access cont ext.

lock(Activityld, Opaque, {table , Tab}, LockKind) ->
case frag_nanes(Tab) of

[Tab] ->
mesi a: | ock(Activityld, Opaque, {table, Tab}, LockKind);
Frags ->
DeepNs = [mesi a:l ock(Activityld, Opaque, {table, F}, LockKind) ||
F <- Frags],
mesi a_lib:uniq(lists: append(DeepNs))
end;

l ock(Activityld, Opaque, Lockltem LockKind) ->
mesi a: | ock(Activityld, Opaque, Lockltem LockKind).

wite(Activityld, Opaque, Tab, Rec, LockKind) ->

Ericsson AB. All Rights Reserved

.. Mnesia | 65

1.10 Appendix C: The Activity Access Call Back Interface

Frag = record_to_frag_nanme(Tab, Rec),
mesi a:wite(Activityld, Opaque, Frag, Rec, LockKind).

del ete(Activityld, Opaque, Tab, Key, LockKind) ->
Frag = key_to_frag_nane(Tab, Key),
mesi a: del ete(Activityld, Opaque, Frag, Key, LockKind).

del ete_obj ect (Activityld, Opaque, Tab, Rec, LockKind) ->
Frag = record_to_frag_nanme(Tab, Rec),
mesi a: del et e_obj ect (Activityld, Opaque, Frag, Rec, LockKind).

read(Activityld, Opaque, Tab, Key, LockKind) ->
Frag = key_to_frag_nane(Tab, Key),
mesi a: read(Activityld, Opaque, Frag, Key, LockKind).

mat ch_obj ect (Activityld, Opaque, Tab, HeadPat, LockKind) ->
Mat chSpec = [{HeadPat, [], ['$_']1}1,
sel ect (Activityld, Opaque, Tab, MatchSpec, LockKind).

sel ect (Activityld, Opaque, Tab, MatchSpec, LockKind) ->
do_sel ect (Activityld, Opaque, Tab, MtchSpec, LockKind).

sel ect (Activityld, Opaque, Tab, MatchSpec, Limt, LockKind) ->
init_select(Activityld, Opaque, Tab, MitchSpec, Limt, LockKind).

al | _keys(Activityld, Opaque, Tab, LockKind) ->
Match = [mesi a: al | _keys(Activityld, Opaque, Frag, LockKi nd)
|| Frag <- frag_nanes(Tab)],
i sts: append(Mat ch) .

clear_table(Activityld, Opaque, Tab, Obj) ->
[mesi a: cl ear _tabl e(Activityld, Opaque, Frag, oj) || Frag <- frag_nanmes(Tab)],
ok.

i ndex_mat ch_obj ect (Activityld, Opaque, Tab, Pat, Attr, LockKind) ->
Mat ch =
[mesi a: i ndex_mat ch_obj ect (Activityld, Opaque, Frag, Pat, Attr, LockKind)
|| Frag <- frag_nanes(Tab)],
i sts: append(Mat ch) .

index_read(Activityld, Opaque, Tab, Key, Attr, LockKind) ->
Mat ch =
[mesi a: i ndex_read(Activityld, Opaque, Frag, Key, Attr, LockKind)
|| Frag <- frag_nanes(Tab)],
i sts: append(Mat ch) .

foldl (Activityld, Opaque, Fun, Acc, Tab, LockKind) ->
Fun2 = fun(Frag, A ->
mesi a: fol dl (Activityld, Opaque, Fun, A, Frag, LockKind)
end,
lists:foldl (Fun2, Acc, frag_nanes(Tab)).

foldr(Activityld, Opaque, Fun, Acc, Tab, LockKind) ->
Fun2 = fun(Frag, A ->
mesi a: fol dr (Activityld, Opaque, Fun, A, Frag, LockKind)
end,
lists:foldr(Fun2, Acc, frag_nanes(Tab)).

table_info(Activityld, Opaque, {Tab, Key}, ltem) ->
Frag = key_to_frag_nane(Tab, Key),
tabl e_i nfo2(Activityld, Opaque, Tab, Frag, lten);
table_info(Activityld, Opaque, Tab, Item) ->
tabl e_info2(Activityld, Opaque, Tab, Tab, ltenj.

66 | Ericsson AB. All Rights Reserved.: Mnesia

1.10 Appendix C: The Activity Access Call Back Interface

table_i nfo2(Activityld, Opaque, Tab, Frag, ltem) ->
case |tem of
size ->
SumFun = fun({_, Size}, Acc) -> Acc + Size end,
lists:foldl (SunmFun, 0, frag_size(Activityld, Opaque, Tab));
nenory ->
SumFun = fun({_, Size}, Acc) -> Acc + Size end,
lists:foldl (SunfFun, 0, frag_menory(Activityld, Opaque, Tab));
base table ->
| ookup_prop(Tab, base_table);
node_pool ->
| ookup_pr op(Tab, node_pool);
n_fragnments ->
FH = | ookup_frag_hash(Tab),
FH#f rag_state. n_fragnents;
forei gn_key ->
FH = | ookup_frag_hash(Tab),
FH#f rag_state. f orei gn_key;
foreigners ->
| ookup_f or ei gner s(Tab) ;
n_ram copi es ->
| engt h(val ({Tab, ram copies}));
n_di sc_copi es ->
| engt h(val ({Tab, disc_copies}));
n_di sc_only_copies ->
| engt h(val ({Tab, disc_only_copies}));

frag_nanes ->
frag_nanes(Tab);
frag_dist ->
frag_di st (Tab);
frag_size ->
frag_size(Activityld, Opaque, Tab);
frag_menory ->
frag_menory(Activityld, Opaque, Tab);
->
mesi a: tabl e_i nfo(Activityld, Opaque, Frag, Item
end.

first(Activityld, Opaque, Tab) ->
case ?catch_val ({Tab, frag_hash}) of
{"EXT, _} ->
mesi a: first(Activityld, Opaque, Tab);
FH - >
Fi rst Frag = Tab,
case mesia:first(Activityld, Opaque, FirstFrag) of
"$end_of table' ->
search_first(Activityld, Opaque, Tab, 1, FH);
Next ->
Next
end
end.

search_first(Activityld, Opaque, Tab, N, FH) when N =< FH#frag_state.n_fragnents ->
NextN = N + 1,
Next Frag = n_to_frag_nanme(Tab, NextN),
case mesia:first(Activityld, Opaque, NextFrag) of
"$end_of table' ->
search_first(Activityld, Opaque, Tab, NextN, FH);
Next ->
Next
end;
search_first(_Activityld, _Opaque, _Tab, _N, _FH) ->
" $end_of table'.

Ericsson AB. All Rights Reserved.: Mnesia | 67

1.10 Appendix C: The Activity Access Call Back Interface

last (Activityld, Opaque, Tab) ->
case ?catch_val ({Tab, frag_hash}) of
{"EXT, _} ->
mesi a: | ast (Activityld, Opaque, Tab);
FH ->
Last N = FH#frag_state.n_fragnents,
search_| ast (Activityld, Opaque, Tab, LastN, FH)
end.

search_| ast (Activityld, Opaque, Tab, N, FH when N >= 1 ->
Frag = n_to_frag_nane(Tab, N),
case mesi a: |l ast (Activityld, Opaque, Frag) of
"$end_of table' ->
PrevN = N - 1,
search_| ast (Activityld, Opaque, Tab, PrevN, FH);
Prev ->
Prev
end;
search_| ast (_Activityld, _Opaque, _Tab, _N, _FH ->
" $end_of _table'.

prev(Activityld, Opaque, Tab, Key) ->
case ?catch_val ({Tab, frag_hash}) of
{"EXT, _} ->
mesi a: prev(Activityld, Opaque, Tab, Key);
FH ->
N = key_to_n(FH, Key),
Frag = n_to_frag_nane(Tab, N),
case mesi a: prev(Activityld, Opaque, Frag, Key) of
"$end_of table' ->
search_prev(Activityld, Opaque, Tab, N);
Prev ->
Prev
end
end.

search_prev(Activityld, Opaque, Tab, N) when N> 1 ->
PrevN = N - 1,
PrevFrag = n_to_frag_nanme(Tab, PrevN),
case mesi a: | ast (Activityld, Opaque, PrevFrag) of
"$end_of table' ->
search_prev(Activityld, Opaque, Tab, PrevN);
Prev ->
Prev
end;
search_prev(_Activityld, _Opaque, _Tab, _N) ->
" $end_of _table'.

next (Activityld, Opaque, Tab, Key) ->
case ?catch_val ({Tab, frag_hash}) of
{"EXT, _} ->
mesi a: next (Activityld, Opaque, Tab, Key);
FH ->
N = key_to_n(FH, Key),
Frag = n_to_frag_nane(Tab, N),
case mesi a: next (Activityld, Opaque, Frag, Key) of
"$end_of table' ->
search_next (Activityld, Opaque, Tab, N, FH);
Prev ->
Prev
end
end.

search_next (Activityld, Opaque, Tab, N, FH) when N < FH#frag_state.n_fragnents ->

68 | Ericsson AB. All Rights Reserved.: Mnesia

1.11 Appendix D: The Fragmented Table Hashing Call Back Interface

NextN = N + 1,
Next Frag = n_to_frag_nanme(Tab, NextN),
case mesia:first(Activityld, Opaque, NextFrag) of
"$end_of table' ->
search_next (Activityld, Opaque, Tab, NextN, FH);
Next ->
Next
end;
search_next (_Activityld, _Opaque, _Tab, _N, _FH ->
" $end_of _table'.

1.11 Appendix D: The Fragmented Table Hashing Call Back Interface

1.11.1 mnesia_frag_hash callback behavior

- modul e(mesi a_frag_hash) .

%% Fragment ed Tabl e Hashi ng cal | back functions
-export ([

init_statel/2,

add_frag/ 1,

del _frag/ 1,

key_to_frag_nunber/ 2,

mat ch_spec_to_frag_nunbers/ 2

1.

-record(hash_st at e,
{n_fragnents,
next_n_to_split,
n_doubl es,
function}).

init_state(_Tab, State) when State == undefined ->

#hash_state{n_fragnments =1,
next_n_to_split = 1,
n_doubl es =0,
function = phash2}.

convert_ol d_state({hash_state, N, P, L}) ->

#hash_state{n_fragnments =N,
next_n_to_split = P,
n_doubl es =L,
function = phash}

add_frag(#hash_state{next_n_to_split = SplitN, n_doubles =L, n_fragnents = N} = State) ->
P=SplitN+ 1,
NewN = N + 1,
State2 = case power2(L) + 1 of
P2 when P2 == P ->
St at e#thash_state{n_fragnents

&
s

Ericsson AB. All Rights Reserved.: Mnesia | 69

1.11 Appendix D: The Fragmented Table Hashing Call Back Interface

n_doubl es =L + 1,
next_n_to_split = 1};
->
St at e#hash_state{n_fragnents = New,
next_n_to_split = P}
end,

{State2, [SplitN], [New\ };
add_frag(d dState) ->

State = convert_old_state(d dState),

add_frag(State).

del _frag(#hash_state{next_n_to_split = SplitN, n_doubles =L, n_fragnents = N} = State)

P=SplitN- 1,
if
P<1->
L2 = L - 1,
MergeN = power2(L2),

State2 = State#hash_state{n_fragnents =N- 1,
next _n_to_split = MergeN,
n_doubl es = L2},
{State2, [N, [MergeN };
true ->
MergeN = P,
State2 = State#hash_state{n_fragnments =N- 1,

next_n_to_split = MergeN},
{State2, [N, [MergeN}
end;
del _frag(d dState) ->
State = convert_old_state(d dState),
del _frag(State).

key_to_frag_nunber (#hash_state{function = phash, next_n_to_split = SplitN, n_doubles

P = SplitN,
A = erl ang: phash(Key, power2(L)),
if
A<P->
erl ang: phash(Key, power2(L + 1));
true ->
A
end;
key_to_frag_nunber (#hash_state{functi on = phash2, next_n_to_split = SplitN, n_doubles
P = SplitN,
A = erl ang: phash2(Key, power2(L)) + 1,
if
A<P->
erl ang: phash2(Key, power2(L + 1)) + 1;
true ->
A
end;

key_to_frag_nunber(d dState, Key) ->
State = convert_old_state(d dState),
key_to_frag_nunber(State, Key).

mat ch_spec_t o_frag_nunber s(#hash_state{n_fragments = N} = State, MatchSpec) ->
case Mat chSpec of
[{HeadPat, _, _}] when is_tupl e(HeadPat), tuple_size(HeadPat) > 2 ->
KeyPat = el enent (2, HeadPat),
case has_var (KeyPat) of
fal se ->

70 | Ericsson AB. All Rights Reserved.: Mnesia

->

L},

L},

Key)

Key)

->

->

1.11 Appendix D: The Fragmented Table Hashing Call Back Interface

[key_to_frag_nunber(State, KeyPat)];
true ->
lists:seq(1l, N)
end;
->
lists:seq(1l, N)
end;
mat ch_spec_to_frag_nunbers(d dState, MatchSpec) ->
State = convert_ol d_state(d dState),
mat ch_spec_to_frag_nunbers(State, MatchSpec).

power 2(Y) ->
1 bsl Y. %trunc(math: powm(2, Y)).

Ericsson AB. All Rights Reserved.: Mnesia | 71

1.11 Appendix D: The Fragmented Table Hashing Call Back Interface

2 Reference Manual

Mnesia isadistributed DataBase Management System (DBMS), appropriate for telecommuni cations applications and
other Erlang applications which require continuous operation and exhibit soft real-time properties.

72 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

mnesia

Erlang module

Mhesi a is adistributed DataBase Management System (DBMS), appropriate for telecommunications applications
and other Erlang applications which require continuous operation and exhibit soft real-time properties.

Listed below are some of the most important and attractive capabilities, Mnesia provides:

A relational/object hybrid data model which is suitable for telecommunications applications.

A specifically designed DBMS query language, QL C (as an add-on library).

Persistence. Tables may be coherently kept on disc aswell asin main memory.

Replication. Tables may be replicated at several nodes.

Atomic transactions. A series of table manipulation operations can be grouped into a single atomic transaction.
L ocation transparency. Programs can be written without knowledge of the actual location of data.

Extremely fast real time data searches.

Schema manipulation routines. It is possible to reconfigure the DBMS at runtime without stopping the system.

ThisReference Manual describesthe Mnesia API. Thisincludesfunctions used to define and manipulate Mnesiatabl es.

All functions documented in these pages can be used in any combination with queries using the list comprehension
notation. The query notation is described in the QL C's man page.

Datain Mnesiais organized as a set of tables. Each table has a name which must be an atom. Each table is made up
of Erlang records. The user isresponsible for the record definitions. Each table also has a set of properties. Below are
some of the properties that are associated with each table:

t ype. Each table can either have 'set', 'ordered set' or 'bag' semantics. Note: currently ‘ordered set' is not
supported for 'disc_only_copies. If atableisof type'set' it meansthat each key leadsto either one or zero records.
If anew item isinserted with the same key as an existing record, the old record is overwritten. On the other hand,
if atableisof type'bag’, each key can map to severa records. However, all recordsin type bag tables are unique,
only the keys may be duplicated.

recor d_narme. All records stored in a table must have the same name. Y ou may say that the records must be
instances of the same record type.

ram copi es A table can bereplicated on anumber of Erlang nodes. Ther am _copi es property specifiesalist
of Erlang nodes where RAM copies are kept. These copies can be dumped to disc at regular intervals. However,
updates to these copies are not written to disc on a transaction basis.

di sc_copi es Thedi sc_copi es property specifiesalist of Erlang nodes where the tableiskept in RAM as
well ason disc. All updates of the table are performed on the actual table and are also logged to disc. If atableis
of typedi sc_copi es at acertain node, it means that the entire table is resident in RAM memory aswell ason
disc. Each transaction performed on the table is appended to a LOG file as well as written into the RAM table.
di sc_only_copi es Some, or al, table replicas can be kept on disc only. These replicas are considerably
slower than the RAM based replicas.

i ndex Thisisalist of attribute names, or integers, which specify the tuple positions on which Mnesia shall build
and maintain an extraindex table.

| ocal _cont ent When an application requires tableswhose contentsislocal to each node, | ocal _cont ent
tables may be used. The name of the table is known to all Mnesia nodes, but its contents is unique on each node.
This means that access to such atable must be donelocally. Set thel ocal _cont ent fieldtot r ue if youwant
to enablethel ocal _cont ent behavior. The default isf al se.

snnp Each (set based) Mnesiatable can be automatically turned into an SNM P ordered tableaswell. Thisproperty
specifies the types of the SNMP keys.

Ericsson AB. All Rights Reserved.: Mnesia | 73

mnesia

e attri butes. Thenames of the attributes for the records that are inserted in the table.
Seemmesi a: cr eat e_t abl e/ 2 about the complete set of table properties and their details.
This document uses atable of personsto illustrate various examples. The following record definition is assumed:

-record(person, {nane,
age = 0,
address = unknown,
salary = 0,
children = []}),

Thefirst attribute of the record is the primary key, or key for short.

The function descriptions are sorted in aphabetic order. Hint: start to read about rmesi a: creat e_t abl e/ 2,
mesi a: | ock/ 2 andmesi a: acti vi t y/ 4 before you continue on and learn about the rest.

Writing or deleting in transaction context creates a local copy of each modified record during
the transaction. During iteration, i.e. mesia:fold[lr]/4 mesia:next/2 mesia:prev/2
mesi a: snnp_get _next _i ndex/ 2, mnesia will compensate for every written or deleted record, which may
reduce the performance. If possible avoid writing or deleting records in the same transaction before iterating over
the table.

Exports

abort (Reason) -> transaction abort

Makes the transaction silently return thetuple { abor t ed, Reason} . The abortion of a Mnesia transaction means
that an exception will be thrown to an enclosing cat ch. Thus, the expression cat ch nmesi a: abort (x) does
not abort the transaction.

activate checkpoint (Args) -> {ok, Nane, Nodes} | {error, Reason}

A checkpoint is a consistent view of the system. A checkpoint can be activated on a set of tables. This checkpoint can
then be traversed and will present a view of the system as it existed at the time when the checkpoint was activated,
even if the tables are being or have been manipulated.

Ar gs isalist of the following tuples:

« {nane, Nane} . Nane of checkpoint. Each checkpoint must have anamewhichisuniqueto the associated nodes.
The name can be reused only once the checkpoint has been deactivated. By default, a name which is probably
unigue is generated.

« {max, MaxTabs} MaxTabs isalist of tables that should be included in the checkpoint. The default is[]. For
these tables, the redundancy will be maximized and checkpoint information will be retained together with all
replicas. The checkpoint becomes more fault tolerant if the tables have several replicas. When a new replicais
added by means of the schema manipulation function mesi a: add_t abl e_copy/ 3, aretainer will also be
attached automatically.

e {mn, MnTabs}.M nTabs isalist of tables that should be included in the checkpoint. The default is[]. For
these tables, the redundancy will be minimized and the checkpoint information will only be retained with one
replica, preferably on the local node.

« {allow renote, Bool }.fal se meansthat all retainers must be local. The checkpoint cannot be activated
if atable does not reside locally. t r ue alows retainers to be allocated on any node. Default issettot r ue.

e {ramoverrides_dunp, Bool} Onlyapplicableforr am copi es.Bool alowsyouto chooseto backup
the table state asit isin RAM, or asitison disc. t r ue means that the latest committed records in RAM should

74 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

be included in the checkpoint. These are the records that the application accesses. f al se means that the records
dumped to DAT files should be included in the checkpoint. These are the records that will be loaded at startup.
Defaultisf al se.

Returns { ok, Nane, Nodes} or {error, Reason}. Nane is the (possibly generated) name of the checkpoint.
Nodes are the nodes that are involved in the checkpoint. Only nodes that keep a checkpoint retainer know about the
checkpoint.

activity(AccessContext, Fun [, Args]) -> ResultOf Fun | exit(Reason)

Invokes mesi a: activity(AccessContext, Fun, Args, AccessMd) where AccessMd isthe
default access callback module obtained by rmesi a: syst em i nf o(access_nodul e) . Ar gs defaults to the
empty list[] .

activity(AccessContext, Fun, Args, AccessMd) -> ResultOFun | exit(Reason)
This function executes the functional object Fun with the arguments Ar gs.

The code which executesinside the activity can consist of aseries of table manipulation functions, which is performed
inaAccessCont ext . Currently, the following access contexts are supported:

transacti on
Short for {transaction, infinity}
{transaction, Retries}

Invokesmesi a: transacti on(Fun, Args, Retri es). Notethat theresult from the Fun isreturned
if the transaction was successful (atomic), otherwise the function exits with an abort reason.

sync_transaction
Short for { sync_t ransaction, infinity}
{sync_transaction, Retries}

Invokes mesi a: sync_transacti on(Fun, Args, Retries). Note that the result from the Fun is
returned if the transaction was successful (atomic), otherwise the function exits with an abort reason.

async_dirty

Invokesmmesi a: async_di rty(Fun, Args).
sync_dirty

Invokesmmesi a: sync_di rty(Fun, Args).
ets

Invokesmesi a: et s(Fun, Args).

This function (mmesi a: activity/4) differs in an important aspect from the nmmesi a: transacti on,
mesi a: sync_transacti on, mmesi a:async_dirty, mesia:sync_dirty and mmesia:ets
functions. The AccessMod argument is the name of a callback module which implements the mesi a_access
behavior.

Mnesiawill forward calls to the following functions:
 mnesialock/2 (read_lock _table/1, write lock table/1)

e mnesiawrite/3 (write/l, s write/1)

* mnesiadelete/3 (delete/1, s delete/1)

 mnesiadelete object/3 (delete object/1, s delete object/1)
 mnesiaread/3 (read/1, wread/1)

Ericsson AB. All Rights Reserved.: Mnesia | 75

mnesia

e mnesiamatch_object/3 (match_object/1)

* mnesiaal_keys1l

o mnesiafirst/1

* mnesialast/1

* mnesiaprev/2

* mnesianext/2

* mnesiaindex_match_object/4 (index_match_object/2)
* mnesiaindex_read/3

« mnesiatable info/2

to the corresponding:

e AccessMod:lock(Activityld, Opague, Lockltem, LockKind)

* AccessMod:write(Activityld, Opaque, Tab, Rec, LockKind)

» AccessMod:delete(Activityld, Opague, Tab, Key, LockKind)

* AccessMod:delete_object(Activityld, Opagque, Tab, RecX S, LockKind)

* AccessMod:read(Activityld, Opaque, Tab, Key, LockKind)

e AccessMod:match_object(Activityld, Opague, Tab, Pattern, LockKind)

* AccessMod:all_keys(Activityld, Opague, Tab, LockKind)

e AccessMoad:first(Activityld, Opaque, Tab)

» AccessMod:last(Activityld, Opague, Tab)

» AccessMod:prev(Activityld, Opaque, Tab, Key)

e AccessMod:next(Activityld, Opaque, Tab, Key)

» AccessMod:index_match_object(Activityld, Opague, Tab, Pattern, Attr, LockKind)

e AccessMod:index_read(Activityld, Opaque, Tab, SecondaryKey, Attr, LockKind)

» AccessMod:table info(Activityld, Opaque, Tab, Infoltem)

whereAct i vi t yl d isarecord which representstheidentity of the enclosing Mnesiaactivity. Thefirst field (obtained
withel ement (1, Acti vityld) containsan atom which may be interpreted as the type of the activity: * et s’ ,

"async_dirty',"sync_dirty' or'tid .'tid meansthattheactivity isatransaction. The structure of the
rest of the identity record isinternal to Mnesia.

Opaque is an opaque data structure which isinternal to Mnesia.

add_t abl e_copy(Tab, Node, Type) -> {aborted, R} | {atom c, ok}

This function makes another copy of a table at the node Node. The Type argument must be either of the atoms
ram copi es, di sc_copi es, or di sc_onl y_copi es. For example, the following call ensures that a disc
replica of the per son table also exists at node Node.

mesi a: add_t abl e_copy(person, Node, disc_copies)

This function can also be used to add areplica of the table named schensa.

add_t abl e_i ndex(Tab, AttrNanme) -> {aborted, R} | {atomic, ok}

Table indices can and should be used whenever the user wants to frequently use some other field than the key field to
look up records. If this other field has an index associated with it, these lookups can occur in constant time and space.

76 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

For example, if our application wishes to use the age field of personsto efficiently find all person with a specific age,
it might be agood idea to have an index on the age field. This can be accomplished with the following call:

mesi a: add_t abl e_i ndex(person, age)

Indices do not come free, they occupy space which is proportional to the size of the table. They also cause insertions
into the table to execute slightly slower.

al | _keys(Tab) -> KeyList | transaction abort

Thisfunction returnsalist of al keysin the table named Tab. The semantics of this function is context sensitive. See
mmesi a: acti vi ty/ 4 for moreinformation. In transaction context it acquires aread lock on the entire table.

async_dirty(Fun, [, Args]) -> ResultO Fun | exit(Reason)

Call the Fun in a context which is not protected by atransaction. The Mnesiafunction calls performed in the Fun are
mapped to the corresponding dirty functions. This still involves logging, replication and subscriptions, but thereis no
locking, local transaction storage, or commit protocolsinvolved. Checkpoint retainers and indices are updated, but they
will be updated dirty. As for norma mnesia:dirty * operations, the operations are performed semi-asynchronously.
Seemmesi a: acti vi t y/ 4 and the Mnesia User's Guide for more details.

It is possible to manipulate the Mnesia tables without using transactions. This has some serious disadvantages, but is
considerably faster since the transaction manager isnot involved and no locks are set. A dirty operation does, however,
guarantee a certain level of consistency and it is not possible for the dirty operations to return garbled records. All
dirty operations provide location transparency to the programmer and a program does not have to be aware of the
whereabouts of a certain table in order to function.

Note: It is more than 10 times more efficient to read records dirty than within a transaction.

Depending on the application, it may be agood ideato usethe dirty functionsfor certain operations. Almost all Mnesia
functions which can be called within transactions have a dirty equivalent which is much more efficient. However, it
must be noted that it is possible for the database to be left in an inconsistent state if dirty operations are used to update
it. Dirty operations should only be used for performance reasons when it is absol utely necessary.

Note: Calling (nesting) a rmesi a: [a] sync_dirty inside a transaction context will inherit the transaction
semantics.

backup(Opaque [, BackupMbd]) -> ok | {error, Reason}

Activates a new checkpoint covering all Mnesia tables, including the schema, with maximum degree of redundancy
and performs a backup using backup_checkpoi nt/ 2/ 3. The default value of the backup callback module
BackupMod isobtained by mesi a: syst em i nf o(backup_nodul e) .

backup_checkpoi nt (Nane, Opaque [, BackuphMd]) -> ok | {error, Reason}

The tables are backed up to external media using the backup module BackupMbd. Tables with the local contents
property is being backed up as they exist on the current node. BackupMbd is the default backup callback module
obtained by mesi a: syst em i nf o(backup_nodul e) . Seethe User's Guide about the exact callback interface
(themmesi a_backup behavi or).

change_config(Config, Value) -> {error, Reason} | {ok, ReturnVal ue}
The Conf i g should be an atom of the following configuration parameters:

Ericsson AB. All Rights Reserved.: Mnesia | 77

mnesia

extra_db_nodes

Val ue isalist of nodes which Mnesia should try to connect to. The Ret ur nVal ue will be those nodes in
Val ue that Mnesia are connected to.

Note: Thisfunction shall only be used to connect to newly started ram nodes (N.D.R.S.N.) with an empty schema.
If for example it is used after the network have been partitioned it may lead to inconsistent tables.

Note: Mnesiamay be connected to other nodes than those returned in Ret ur nVal ue.

dc_dunp_linmt

Val ue isanumber. See description in Conf i gurati on Par anet er s below. The Ret ur nVal ue isthe
new value. Note this configuration parameter is not persistent, it will be lost when mnesia stopped.

change_t abl e_access_node(Tab, AccessMbde) -> {aborted, R} | {atom c, ok}

The AcccessMode is by default the atom r ead_wri t e but it may also be set to the atom r ead_onl y. If the
AccessMbde issettor ead_onl y, it meansthat it is not possible to perform updates to the table. At startup Mnesia
awaysloadsr ead_onl y tableslocally regardliess of when and if Mnesia was terminated on other nodes.

change _tabl e copy_type(Tab, Node, To) -> {aborted, R} | {atomic, ok}
For example:

mmesi a: change_t abl e_copy_t ype(person, node(), disc_copies)

Transforms our per son table from a RAM table into a disc based table at Node.

This function can also be used to change the storage type of the table named schema. The schema table can only
have r am copi es or di sc_copi es asthe storage type. If the storage type of the schemaisr am copi es, no
other table can be disc resident on that node.

change_t abl e_| oad_order (Tab, LoadOrder) -> {aborted, R} | {atom c, ok}

TheLoadOr der priority isby default O (zero) but may be set to any integer. Thetableswith the highest LoadOr der
priority will be loaded first at startup.

clear _table(Tab) -> {aborted, R} | {atomi c, ok}
Deletes dl entriesin thetable Tab.

create_schema(Di scNodes) -> ok | {error, Reason}

Creates a new database on disc. Various files are created in the local Mnesia directory of each node. Note that the
directory must be unique for each node. Two nodes may never share the same directory. If possible, use alocal disc
devicein order to improve performance.

mesi a: creat e_schema/ 1 failsif any of the Erlang nodes given as Di scNodes are not dive, if Mnesiais
running on anyone of the nodes, or if anyone of the nodes already has aschema. Usemmesi a: del et e_schemra/ 1
to get rid of old faulty schemas.

Note: Only nodeswith disc should beincludedinDi sc Nodes. Disc-lessnodes, that isnodeswhereall tablesincluding
the schema only residesin RAM, may not be included.

78 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

create_tabl e(Name, TabDef) -> {atomic, ok} | {aborted, Reason}

This function creates a Mnesia table called Name according to the argument TabDef . This list must be a list of
{1tem Val ue} tuples, wherethe following values are allowed:

{access_node, Aton}. The access mode is by default the atom r ead_wri t e but it may also be set to
the atomread_onl y. If the AccessMode isset tor ead_onl vy, it means that it is not possible to perform
updates to the table.

At startup Mnesiaalways loadsr ead_onl y tableslocally regardless of when and if Mnesiawas terminated on
other nodes. This argument returns the access mode of the table. The access mode may either be read_only or
read write.

{attributes, AtonList} alist of the attribute names for the records that are supposed to populate the
table. The default valueis[key, val]. Thetable must have at least one extra attribute in addition to the key.

When accessing single attributesin arecord, it is not necessary, or even recommended, to hard code any attribute
names as atoms. Use the construct r ecord_i nfo(fi el ds, RecordNane) instead. It can be used for
records of type Recor dNamne

{di sc_copi es, Nodelist},whereNodel i st isalist of the nodes where this table is supposed to have
disc copies. If atablereplicaisof typedi sc_copi es, al write operations on this particular replica of the table
are written to disc as well as to the RAM copy of the table.

It is possible to have areplicated table of type di sc_copi es on one node, and another type on another node.
The default valueis| |

{di sc_only_copies, Nodelist},whereNodeli st isalist of the nodeswherethistableis supposed to
havedi sc_onl y_copi es. A disc only tablereplicais kept on disc only and unlike the other replicatypes, the
contents of thereplicawill not residein RAM. These replicas are considerably slower than replicasheld in RAM.

{index, Intlist},wherelntlist isalistof attribute names (atoms) or record fields for which Mnesia
shall build and maintain an extra index table. The gl ¢ query compiler may or may not utilize any additional
indices while processing queries on atable.

{l oad_order, Integer}.Theload order priority isby default O (zero) but may be set to any integer. The
tables with the highest load order priority will be loaded first at startup.

{ram copi es, Nodelist}, where Nodel i st isalist of the nodes where this table is supposed to have
RAM copies. A table replica of typer am _copi es is obviously not written to disc on a per transaction basis.
It ispossible to dump r am _copi es replicas to disc with the function mesi a: dunp_t abl es(Tabs) . The
default value for this attributeis[node()] .

{record_nane, Nane},where Name must be an atom. All records, stored in the table, must have this name
asthefirst element. It defaults to the same name as the name of the table.

{snnp, SnnpStruct}.Seemmesia: snnp_open_t abl e/ 2 for adescription of SnnpSt r uct . If this
attribute is present in the Ar gLi st to mesi a: creat e_t abl e/ 2, the table is immediately accessible by
means of the Simple Network Management Protocol (SNMP). This means that applications which use SNMP to
manipulate and control the system can be designed easily, since Mnesia provides a direct mapping between the
logical tables that make up an SNMP control application and the physical data which makes up a Mnesiatable.
{type, Type},where Type must be either of the atomsset , or der ed_set or bag. The default valueis
set.Inaset all records have unique keys and in abag several records may have the same key, but the record
content isunique. If anon-unique record is stored the old, conflicting record(s) will ssmply be overwritten. Note:
currently 'ordered_set' is not supported for 'disc_only_copies.

{local _content, Bool},whereBool mustbeeithertrue orfal se. Thedefault valueisf al se.\011

For example, the following call creates the per son table previously defined and replicatesit on 2 nodes:

mmesi a: cr eat e_t abl e(per son,

[{ram copies, [NL, N2]},

Ericsson AB. All Rights Reserved.: Mnesia | 79

mnesia

{attributes, record_info(fields,person)}]).

If it was required that Mnesia build and maintain an extra index table on the addr ess attribute of all the per son
records that are inserted in the table, the following code would be issued:

mesi a: cr eat e_t abl e(per son,
[{ram copies, [N, N2]},
{index, [address]},
{attributes, record_info(fields,person)}]).

The specification of i ndex and attri but es may be hard coded as {i ndex, [2]} and{attributes,
[name, age, address, salary, children]} respectively.

mmesi a: cr eat e_t abl e/ 2 writes records into the schemnma table. This function, as well as all other schema
manipulation functions, are implemented with the normal transaction management system. This guarantees that
schema updates are performed on all nodesin an atomic manner.

deacti vate_checkpoi nt (Name) -> ok | {error, Reason}

The checkpoint is automatically deactivated when some of the tables involved have no retainer attached to them. This
may happen when nodes go down or when areplicais deleted. Checkpointswill aso be deactivated with thisfunction.
Nane isthe name of an active checkpoint.

del _tabl e_copy(Tab, Node) -> {aborted, R} | {atonic, ok}

Deletesthe replicaof table Tab at node Node. When the last replicais deleted with this function, the table disappears
entirely.

Thisfunction may also be used to delete areplica of the table named schenma. Then the mnesianode will be removed.
Note: Mnesia must be stopped on the node first.

del _tabl e_index(Tab, AttrNanme) -> {aborted, R} | {atomic, ok}
This function deletes the index on attribute with name At t r Nanme in atable.

del ete({Tab, Key}) -> transaction abort | ok
Invokesmmesi a: del et e(Tab, Key, wite)

del et e(Tab, Key, LockKind) -> transaction abort | ok
Deletes all recordsin table Tab with the key Key .

The semantics of thisfunction is context sensitive. Seemnmesi a: act i vi t y/ 4 for more information. In transaction
context it acquires alock of type LockKi nd in the record. Currently the lock typeswrite andsti cky _wite
are supported.

del et e_obj ect (Record) -> transaction abort | ok
Invokesmmesi a: del et e_obj ect (Tab, Record, wite) whereTabisel ement (1, Record).

80 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

del et e_obj ect (Tab, Record, LockKind) -> transaction abort | ok

If atableis of type bag, we may sometimes want to delete only some of the records with a certain key. This can be
donewith thedel et e_obj ect / 3 function. A complete record must be supplied to this function.

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquires a lock of type LockKi nd on the record. Currently the lock typeswrit e andsti cky wite
are supported.

del et e_schema(Di scNodes) -> ok | {error, Reason}

Deletes a database created with nmesi a: cr eat e_schena/ 1. mesi a: del et e_schena/ 1 failsif any of the
Erlang nodes given as Di scNodes isnot alive, or if Mnesiais running on any of the nodes.

After the database has been deleted, it may till be possible to start Mnesia as a disc-less node. This depends on how
the configuration parameter schena_| ocat i on isset.

Warning:

This function must be used with extreme caution since it makes existing persistent data obsolete. Think twice
before using it.

del ete_tabl e(Tab) -> {aborted, Reason} | {atom c, ok}
Permanently deletes all replicas of table Tab.

dirty all_keys(Tab) -> KeyList | exit({aborted, Reason}).
Thisisthedirty equivalent of thermesi a: al | _keys/ 1 function.

dirty_del ete({Tab, Key}) -> ok | exit({aborted, Reason})
Invokesmrmesi a: dirty_del et e(Tab, Key).

dirty delete(Tab, Key) -> ok | exit({aborted, Reason})
Thisisthe dirty equivalent of the mesi a: del et e/ 3 function.

dirty del ete_object(Record)
Invokesmmesi a: dirty_del et e_obj ect (Tab, Record) whereTabisel ement (1, Record).

dirty _del ete_object(Tab, Record)
Thisisthe dirty equivalent of the rmesi a: del et e_obj ect / 3 function.

dirty first(Tab) -> Key | exit({aborted, Reason})

Records in set or bag tables are not ordered. However, there is an ordering of the records which is not known
to the user. Accordingly, it is possible to traverse a table by means of this function in conjunction with the
mesi a: di rty_next/ 2 function.

If there are no records at al in the table, this function returns the atom ' $end_of _t abl e' . For thisreason, it is
highly undesirable, but not disallowed, to use this atom as the key for any user records.

Ericsson AB. All Rights Reserved.: Mnesia | 81

mnesia

dirty_index_match_object (Pattern, Pos)

Invokes mesi a: dirty_i ndex_nmat ch_obj ect (Tab, Pattern, Pos) where Tab isel enent (1,
Pattern).

dirty index_natch_object(Tab, Pattern, Pos)
Thisisthe dirty equivalent of thermesi a: i ndex_mat ch_obj ect / 4 function.

dirty_index_read(Tab, SecondaryKey, Pos)
Thisisthe dirty equivaent of the mesi a: i ndex_r ead/ 3 function.

dirty last(Tab) -> Key | exit({aborted, Reason})

This function works exactly mesi a: dirty_first/ 1 but returns the last object in Erlang term order for the
order ed_set tabletype. For all other tabletypes, mesi a: dirty first/landmesia:dirty last/1
are synonyms.

dirty match_object(Pattern) -> RecordList | exit({aborted, Reason}).
Invokesmmesi a: dirty_nat ch_obj ect (Tab, Pattern) whereTabisel ement (1, Pattern).

dirty_match_object(Tab, Pattern) -> RecordList | exit({aborted, Reason}).
Thisisthe dirty equivalent of the rmesi a: mat ch_obj ect / 3 function.

dirty_next(Tab, Key) -> Key | exit({aborted, Reason})

This function makes it possible to traverse a table and perform operations on all records in the table. When the end
of the table isreached, the special key ' $end_of _t abl e' isreturned. Otherwise, the function returns akey which
can be used to read the actual record.The behavior is undefined if another Erlang process performs write operations
on the table whileit is being traversed with the rmesi a: di rty_next/ 2 function.

dirty prev(Tab, Key) -> Key | exit({aborted, Reason})

This function works exactly mesi a: di rty_next/ 2 but returns the previous object in Erlang term order for the
ordered_set table type. For al other table types, mesi a: dirty _next/2 and mesi a: dirty_prev/ 2 are
synonyms.\011

dirty_read({Tab, Key}) -> ValuelList | exit({aborted, Reason}
Invokesmmesi a: dirty_read(Tab, Key).

dirty read(Tab, Key) -> ValuelList | exit({aborted, Reason}
Thisisthe dirty equivalent of the rmesi a: r ead/ 3 function.

dirty sel ect(Tab, MatchSpec) -> ValuelList | exit({aborted, Reason}
Thisisthe dirty equivalent of thermesi a: sel ect / 2 function.

dirty_slot(Tab, Slot) -> RecordList | exit({aborted, Reason})

Thisfunction can beusedtotraverseatableinamanner similar tothemmesi a: di rty_next / 2 function. A tablehas
anumber of slotswhich range from 0 (zero) to some unknown upper bound. Thefunctionmrmesi a: dirty_sl ot/ 2

82 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

returns the special atom ' $end_of _t abl e' when the end of the table is reached. The behavior of this function is
undefined if awrite operation is performed on the table while it is being traversed.

dirty_update_counter({Tab, Key}, Incr) -> Newal | exit({aborted, Reason})
Invokesmmesi a: di rty_updat e_count er (Tab, Key, Incr).

dirty update_counter(Tab, Key, Incr) -> Newal | exit({aborted, Reason})

There are no specia counter records in Mnesia. However, records of the form { Tab, Key, |nteger} canbe
used as (possibly disc resident) counters, when Tab is a set . This function updates a counter with a positive or
negative number. However, counters can never become less than zero. There are two significant differences between
this function and the action of first reading the record, performing the arithmetics, and then writing the record:

¢ Itismuch more efficient

e mesia:dirty_update_counter/ 3 isperformed asan atomic operation despite the fact that it is not
protected by atransaction.

If two processes perform nmesi a: di rty_updat e_count er/ 3 simultaneously, both updates will take effect
without the risk of loosing one of the updates. The new value NewVal of the counter is returned.

If Key don't exits, a new record is created with thevalue | ncr if itislarger than O, otherwiseit is set to O.

dirty wite(Record) -> ok | exit({aborted, Reason})
Invokesmmesi a: dirty _write(Tab, Record) whereTabisel enent (1, Record).

dirty wite(Tab, Record) -> ok | exit({aborted, Reason})
Thisisthe dirty equivalent of mesi a: wri t e/ 3.

dunmp_l og() -> dunped

Performs a user initiated dump of the local log file. Thisis usually not necessary since Mnesia, by default, manages
this automatically.

dunp_t abl es(TabList) -> {atom c, ok} | {aborted, Reason}

Thisfunctiondumpsaset of r am copi es tablesto disc. The next timethe system is started, thesetablesareinitiated
with the data found in the files that are the result of this dump. None of the tables may have disc resident replicas.

dunmp_to textfil e(Fil enane)

Dumps all local tables of a mnesia system into atext file which can then be edited (by means of anormal text editor)
and then later bereloaded withmrmesi a: | oad_t ext fi | e/ 1. Only usethisfunction for educational purposes. Use
other functions to deal with real backups.

error_description(Error) -> String

All Mnesia transactions, including all the schema update functions, either return thevalue{ at oni ¢, Val } or the
tuple{aborted, Reason}.TheReason canbeeither of thefollowing atoms. Theerr or _descri ption/1
function returns a descriptive string which describes the error.

e nested_transacti on. Nested transactions are not allowed in this context.

e badar g. Bad or invalid argument, possibly bad type.

e no_transacti on. Operation not allowed outside transactions.

Ericsson AB. All Rights Reserved.: Mnesia | 83

mnesia

e conbi ne_error. Tableoptionswereillegally combined.

e bad_i ndex. Index already exists or was out of bounds.

 al ready_exi sts. Schemaoption isalready set.

e index_exi sts.Some operations cannot be performed on tabs with index.
* no_exi sts. Tried to perform operation on non-existing, or not alive, item.
e systeml|init.Somesystem limit was exhausted.

« mesia_down. A transaction involving records at some remote node which died while transaction was
executing. Record(s) are no longer available elsewhere in the network.

« not_a_db_node. A node which does not exist in the schema was mentioned.
e bad_t ype. Bad type on some arguments.

e node_not _runni ng. Node not running.

e truncated_binary_file.Truncated binary infile.

e acti ve. Some delete operations require that all active records are removed.

e illegal . Operation not supported on record.

TheError may be Reason, {error, Reason},or{aborted, Reason}.TheReason may beanatom or
atuplewith Reason asan atom in thefirst field.

ets(Fun, [, Args]) -> ResultOFun | exit(Reason)

Call the Fun in araw context which is not protected by a transaction. The Mnesia function call is performed in the
Fun are performed directly on the local et s tables on the assumption that the local storage typeisr am copi es
and the tables are not replicated to other nodes. Subscriptions are not triggered and checkpoints are not updated, but
it is extremely fast. This function can aso be applied to di sc_copi es tablesif all operations are read only. See
mesi a: acti vi ty/ 4 and the Mnesia User's Guide for more details.

Note: Calling (nesting) anmesi a: et s inside atransaction context will inherit the transaction semantics.

first(Tab) -> Key | transaction abort

Recordsinset or bag tablesare not ordered. However, thereis an ordering of the records which is not known to the
user. Accordingly, itispossibleto traverse atable by meansof thisfunction in conjunctionwiththemrmesi a: next/ 2
function.

If there are no records at all in the table, this function returns the atom ' $end_of _t abl e' . For thisreason, it is
highly undesirable, but not disallowed, to use this atom as the key for any user records.

fol dl (Function, Acc, Table) -> NewAcc | transaction abort

Iterates over thetable Tabl e and calls Functi on(Record, NewAcc) for each Recor d inthetable. Theterm
returned from Funct i on will be used as the second argument in the next call to the Funct i on.

f ol dl returnsthe sameterm asthelast call to Funct i on returned.

fol dr (Function, Acc, Table) -> NewAcc | transaction abort

This function works exactly as f ol dl / 3 but iterates the table in the opposite order for the or der ed_set table
type. For al other table types, f ol dr/ 3 andf ol dl / 3 are synonyms.

84 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

force_load_table(Tab) -> yes | ErrorDescription

The Mnesia algorithm for table load might lead to a situation where a table cannot be loaded. This situation occurs
when a node is started and Mnesia concludes, or suspects, that another copy of the table was active after this local
copy became inactive due to a system crash.

If this situation is not acceptable, this function can be used to override the strategy of the Mnesiatable load algorithm.
This could lead to a situation where some transaction effects are lost with ainconsistent database as result, but for
some applications high availability is more important than consistent data.

i ndex_mat ch_obj ect (Pattern, Pos) -> transaction abort | ObjList

Invokes mesi a: i ndex_nmat ch_obj ect (Tab, Pattern, Pos, read) where Tab isel enent (1,
Pattern).

i ndex_mat ch_obj ect (Tab, Pattern, Pos, LockKind) -> transaction abort |
Qbj Li st
In amanner similar to the mesi a: i ndex_r ead/ 3 function, we can also utilize any index information when we

try to match records. This function takes a pattern which obeys the same rules asthe mesi a: mat ch_obj ect/ 3
function with the exception that this function requires the following conditions:

e Thetable Tab must have an index on position Pos.

e Theelement in position Pos in Pat t er n must be bound. Pos may either be an integer (#record.Field), or an
attribute name.

The two index search functions described here are automatically invoked when searching tables with gl ¢ list
comprehensions and also when using the low level mesi a: [di rty_] mat ch_obj ect functions.

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquires alock of type LockKi nd on the entire table or on a single record. Currently, the lock type r ead
is supported.

i ndex_read(Tab, SecondaryKey, Pos) -> transaction abort | RecordLi st

Assume there is an index on position Pos for a certain record type. This function can be used to read the records
without knowing the actual key for the record. For example, with an index in position 1 of the per son table, the call
mesi a: i ndex_r ead(person, 36, #person. age) returnsalist of all persons with age equal to 36. Pos
may also be an attribute name (atom), but if the notation mesi a: i ndex_r ead(person, 36, age) isused,
the field position will be searched for in runtime, for each call.

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquires aread lock on the entire table.

info() -> ok

Prints someinformation about the system on the tty. Thisfunction may be used even if Mnesiais not started. However,
more information will be displayed if Mnesiaiis started.

install _fallback(Opaque) -> ok | {error, Reason}
Invokesmmesi a: i nstal | _fal | back(Opaque, Args) whereArgsis[{scope, global}].

install _fallback(Opaque), BackupMdd) -> ok | {error, Reason}

Invokesmrmesi a: i nstal | _fal | back(Opaque, Args) whereArgsis[{scope, gl obal}, {nodul e,
BackupMod}] .

Ericsson AB. All Rights Reserved.: Mnesia | 85

mnesia

install _fallback(Opaque, Args) -> ok | {error, Reason}

Thisfunction isused to install a backup as fallback. The fallback will be used to restore the database at the next start-
up. Instalation of fallbacks requires Erlang to be up and running on all the involved nodes, but it does not matter
if Mnesiais running or not. The installation of the fallback will fail if the local node is not one of the disc resident
nodes in the backup.

Ar gs isalist of the following tuples:

« {nodul e, BackuphMd}. All accesses of the backup media is performed via a callback module named
BackupMod. The Opaque argument is forwarded to the callback module which may interpret it asit wish. The
default callback moduleis called mesi a_backup and it interprets the Qpaque argument asalocal filename.
The default for this module is also configurable viathe - mesi a nmesi a_backup configuration parameter.

e {scope, Scope} TheScope of afalback may either be gl obal for the entire database or | ocal for one
node. By default, the installation of afallback is aglobal operation which either is performed all nodes with disc
resident schema or none. Which nodes that are disc resident or not, is determined from the schema info in the
backup.

If the Scope of the operationis| ocal thefallback will only be installed on the local node.

« {mesia_dir, AlternateD r} Thisargument isonly valid if the scope of the installation is | ocal .
Normally theinstallation of afallback istargeted towards the Mnesiadirectory as configured with the - mesi a
di r configuration parameter. But by explicitly supplyingan Al t er nat eDi r thefallback will beinstalled there
regardless of the Mnesia directory configuration parameter setting. After installation of afallback on an alternate
Mnesia directory that directory isfully prepared for usage as an active Mnesia directory.

Thisis a somewhat dangerous feature which must be used with care. By unintentional mixing of directories you
may easily end up with ainconsistent database, if the same backup isinstalled on more than one directory.

is_transaction() -> bool ean
When this function is executed inside a transaction context it returnst r ue, otherwisef al se.

| ast (Tab) -> Key | transaction abort

This function works exactly mmesi a: first/1 but returns the last object in Erlang term order for the
order ed_set tabletype. For al other table types, mesi a: first/ 1 andmesi a: | ast/ 1 are synonyms.

| oad_textfil e(Fil enane)

Loads a series of definitions and datafound in thetext file (generated withrmesi a: dunp_to_textfil e/ 1)into
Mnesia. Thisfunction also starts Mnesiaand possibly creates anew schema. This function isintended for educational
purposes only and using other functions to deal with real backups, is recommended.

| ock(Lockltem LockKind) -> Nodes | ok | transaction abort

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local node if alocal replica exists). Most of the context sensitive access functions acquire
an implicit lock if they are invoked in a transaction context. The granularity of alock may either be a single record
or an entire table.

The normal usage is to call the function without checking the return value since it exits if it fails and the transaction
is restarted by the transaction manager. It returns all the locked nodes if a write lock is acquired, and ok if it was
aread lock.

Thisfunctionmmesi a: | ock/ 2 isintended to support explicit locking on tables but also intended for situationswhen
locks need to be acquired regardless of how tables are replicated. Currently, two LockKi nd's are supported:

86 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

wite

Write locks are exclusive, which means that if one transaction manages to acquire a write lock on an item, no
other transaction may acquire any kind of lock on the sameitem.

read

Read locks may be shared, which means that if one transaction manages to acquire aread lock on an item, other
transactions may also acquire a read lock on the same item. However, if someone has a read lock no one can
acquire awrite lock at the same item. If some one has a write lock no one can acquire a read lock nor a write
lock at the same item.

Conflicting lock requests are automatically queued if there is no risk of a deadlock. Otherwise the transaction must
be aborted and executed again. Mnesia does this automatically as long as the upper limit of maximumretri es is
not reached. See mesi a: t r ansact i on/ 3 for the details.

For the sake of completeness sticky write lockswill aso be described here even if asticky write lock is not supported
by this particular function:

sticky write

Sticky write locks are a mechanism which can be used to optimize write lock acquisition. If your application uses
replicated tables mainly for fault tolerance (as opposed to read access optimization purpose), sticky locks may
be the best option available.

When a sticky write lock is acquired, all nodeswill be informed which node is locked. Subsequently, sticky lock
requests from the same node will be performed asalocal operation without any communication with other nodes.
The sticky lock lingers on the node even after the transaction has ended. See the Mnesia User's Guide for more
information.

Currently, two kinds of Lock| t enis are supported by this function:
{tabl e, Tab}

Thisacquires alock of type LockKi nd on the entire table Tab.
{gl obal, d obal Key, Nodes}

This acquires alock of type LockKi nd on the global resource A obal Key. Thelock is acquired on all active
nodesin the Nodes list.

L ocks are released when the outermost transaction ends.

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquires locks otherwise it just ignores the request.

mat ch_obj ect (Pattern) ->transaction abort | RecLi st

Invokesmmesi a: mat ch_obj ect (Tab, Pattern, read) whereTabisel ement(1, Pattern).

mat ch_obj ect (Tab, Pattern, LockKind) ->transaction abort | RecLi st

Thisfunction takes a pattern with 'don't care' variablesdenoted asa' ' parameter. Thisfunction returnsalist of records
which matched the pattern. Since the second element of arecord in atable is considered to be the key for the record,
the performance of this function depends on whether this key is bound or not.

For example, the call mesi a: mat ch_obj ect (person, {person, ' ', 36, ' ', ' '}, read)
returns alist of all person records with an age field of thirty-six (36).

The function mesi a: mat ch_obj ect/ 3 automatically uses indices if these exist. However, no heuristics are
performed in order to select the best index.

Ericsson AB. All Rights Reserved.: Mnesia | 87

mnesia

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquires a lock of type LockKi nd on the entire table or a single record. Currently, the lock type r ead
is supported.

nove_t abl e _copy(Tab, From To) -> {aborted, Reason} | {atom c, ok}
Moves the copy of table Tab from node Fr omto node To.

The storage type is preserved. For example, a RAM table moved from one node remains a RAM on the new node. It
isstill possible for other transactions to read and write in the table while it is being moved.

Thisfunction cannot beused on| ocal _cont ent tables.

next (Tab, Key) -> Key | transaction abort

This function makes it possible to traverse a table and perform operations on all records in the table. When the end
of thetable isreached, the special key ' $end_of _t abl e' isreturned. Otherwise, the function returns akey which
can be used to read the actual record.

prev(Tab, Key) -> Key | transaction abort

Thisfunction worksexactly mesi a: next / 2 but returnsthe previousobject in Erlang term order for the ordered_set
table type. For all other table types, nnesi a: next / 2 and rmesi a: pr ev/ 2 are synonyms.\011

read({Tab, Key}) -> transaction abort | RecordLi st
Invokesmmesi a: read(Tab, Key, read).

read(Tab, Key) -> transaction abort | RecordLi st
Invokesmmesi a: read(Tab, Key, read).

read(Tab, Key, LockKind) -> transaction abort | RecordLi st

This function reads all records from table Tab with key Key. This function has the same semantics regardless of the
location of Tab. If the table is of type bag, the mesi a: r ead(Tab, Key) can return an arbitrarily long list. If
thetableisof typeset , thelistiseither of length 1, 0r [] .

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquires a lock of type LockKi nd. Currently, the lock typesread, wite andsticky_wite ae
supported.

If the user wants to update the record it ismore efficient tousewr i t e/ st i cky_wri t e asthe LockKind.

read_| ock_tabl e(Tab) -> ok | transaction abort
Invokesmmesi a: | ock({tabl e, Tab}, read).

report_event (Event) -> ok

When tracing asystem of Mnesiaapplicationsit isuseful to be ableto interleave Mnesia's own events with application
related events that give information about the application context.

Whenever the application begins a new and demanding Mnesia task, or if it is entering a new interesting phase in its
execution, it may be agood ideato use nmesi a: report _event/ 1. The Event may be any term and generates
a{mmesi a_user, Event} eventfor any processes that subscribe to Mnesia system events.

88 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

rest ore(Qpaque, Args) -> {atom c, RestoredTabs} |{aborted, Reason}

With this function, tables may be restored online from a backup without restarting Mnesia. Qpaque is forwarded to
the backup module. Ar gs isalist of the following tuples:

 {nodul e, BackupMod} Thebackup module BackupMd will be used to access the backup media. If omitted,
the default backup module will be used.
e {skip_tables, TabLi st} WhereTabLi st isalist of tableswhich should not be read from the backup.

e {clear_tables, TabList} WhereTablLi st isalist of tableswhich should be cleared, before the
records from the backup are inserted, ie. all records in the tables are deleted before the tables are restored.
Schemainformation about the tablesis not cleared or read from backup.

« {keep_tables, TabLi st} WhereTabLi st isalist of tableswhich should be not be cleared, before
the records from the backup are inserted, i.e. the records in the backup will be added to the records in the table.
Schema information about the tables is not cleared or read from backup.

e {recreate_tables, TabList} WhereTabLi st isalist of tableswhich should be re-created,
before the records from the backup are inserted. The tables are first deleted and then created with the schema
information from the backup. All the nodes in the backup needs to be up and running.

« {default_op, Operation} WhereOper ati on isoneof thefollowing operationsski p_t abl es,
cl ear _tabl es,keep_tabl es orrecreat e_tabl es. The default operation specifies which operation
should be used on tables from the backup which are not specified in any of the lists above. If omitted, the
operation cl ear _t abl es will be used.

The affected tables are write locked during the restoration, but regardless of the lock conflicts caused by this, the
applications can continue to do their work while the restoration is being performed. The restoration is performed as
one single transaction.

If the database is huge, it may not be possible to restore it online. In such cases, the old database must be restored
by installing a fallback and then restart.

s_del ete({Tab, Key}) -> ok | transaction abort
Invokesmmesi a: del et e(Tab, Key, sticky write)

s_del ete_obj ect (Record) -> ok | transaction abort

Invokes mesi a: del et e_obj ect (Tab, Record, sticky wite) where Tab is el ement (1,
Record).

s wite(Record) -> ok | transaction abort

Invokesmmesi a: writ e(Tab, Record, sticky wite) whereTabisel ement(1, Record).

schema() -> ok
Prints information about all table definitions on the tty.

schema(Tab) -> ok
Prints information about one table definition on the tty.

sel ect (Tab, MatchSpec [, Lock]) -> transaction abort | [Object]

Matches the objects in the table Tab using a match_spec as described in the ERTS Users Guide. Optionally a lock
read or wr i t e can be given asthe third argument, default isr ead. The return value depends on the Mat chSpec.

Ericsson AB. All Rights Reserved.: Mnesia | 89

mnesia

Note: for best performance sel ect should be used before any modifying operations are done on that table in the
same transaction, i.e. don'tusewr i t e or del et e beforeasel ect .

Inits simplest forms the match_spec's look like this:

* MatchSpec = [MatchFunction]

e MatchFunction = { MatchHead, [Guard], [Result]}

e MatchHead = tuple() | record()

e Guard = {"Guardtest name", ...}

* Result ="Term construct”

Seethe ERTS Users Guide and et s documentation for a complete description of the select.

For example to find the names of all male persons with an age over 30 in table Tab do:

\011 MatchHead = #person{nane='$1', sex=nale, age='$2', = '},
\011 Quard = {'>', '$2', 30},

\011 Result = '$1',

\011 mesi a: sel ect(Tab, [{MatchHead, [CGuard], [Result]}]),

sel ect (Tab, MatchSpec, NObjects, Lock) -> transaction abort | {[Object], Cont}
| '$end_of _table'

Matches the objects in the table Tab using a match_spec as described in ERTS users guide, and returns a chunk of
terms and a continuation, the wanted number of returned terms is specified by the NObj ect s argument. The lock
argument can ber ead or wri t e. The continuation should be used as argument to mesi a: sel ect/ 1, if more
or al answers are needed.

Note: for best performancesel ect should be used before any modifying operations are done on that table in the same
transaction, i.e. don't use mesi a: wri t e or nmesi a: del et e before amesi a: sel ect . For efficiency the
NCbj ect s isarecommendation only and the result may contain anything from an empty list to all available results.

sel ect(Cont) -> transaction abort | {[Object],Cont} | '$end_of table'
Selects more objects with the match specification initiated by mesi a: sel ect/ 4.

Note: Any modifying operations, i.e. mesi a:wite or mesi a: del et e, that are done between the
mesi a: sel ect/ 4 and mesi a: sel ect/ 1 callswill not be visible in the result.

set _debug_I evel (Level) -> A dLevel
Changesthe internal debug level of Mnesia. See the chapter about configuration parameters for details.

set _nast er _nodes(Mast er Nodes) -> ok | {error, Reason}

For each table Mnesa will determine its replica nodes (TabNodes) and invoke
mesi a: set _nmast er _nodes(Tab, TabMast er Nodes) where TabMast er Nodes is the intersection of
Mast er Nodes and TabNodes. Seemmesi a: set _nmast er _nodes/ 2 about the semantics.

set _naster_nodes(Tab, MsterNodes) -> ok | {error, Reason}

If the application detects that there has been a communication failure (in a potentialy partitioned network)
which may have caused an inconsistent database, it may use the function mesi a: set _nast er _nodes(Tab,
Mast er Nodes) to define from which nodes each table will be loaded. At startup Mnesia's normal table load

90 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

algorithm will be bypassed and the table will be loaded from one of the master nodes defined for the table, regardiess
of when and if Mnesia was terminated on other nodes. The Mast er Nodes may only contain nodes where the table
hasareplicaand if the Mast er Nodes listisempty, the master node recovery mechanism for the particular table will
be reset and the normal load mechanism will be used at next restart.

The master node setting is always local and it may be changed regardless of whether Mnesiais started or not.

The database may also become inconsistent if themax_wai t _f or _deci si on configuration parameter is used or
if mesi a: force_| oad_t abl e/ 1 isused.

snnp_cl ose_tabl e(Tab) -> {aborted, R} | {atom c, ok}
Removes the possibility for SNM P to manipulate the table.

snnp_get _mesi a_key(Tab, Rowl ndex) -> {ok, Key} | undefined
Types.
Tab ::=atom()
Rowlndex ::=[integer ()]
Key ::= key() | {key(), key(), ...}
key() ::= integer () | string() | [integer ()]
Transforms an SNMP index to the corresponding Mnesiakey. If the SNMP table has multiple keys, the key isatuple
of the key columns.

snnp_get _next _i ndex(Tab, Row ndex) -> {ok, Nextlndex} | endO Table
Types:

Tab ::=atom()

Rowlndex ::=[integer ()]

NextIndex ::=[integer ()]

The Row ndex may specify anon-existing row. Specifically, it might be the empty list. Returnsthe index of the next
lexicographical row. If Row ndex isthe empty list, this function will return the index of the first row in the table.

snnp_get _row(Tab, Row ndex) -> {ok, Row} | undefi ned
Types:
Tab ::=atom()
Rowlndex ::=[integer ()]
Row ::=record(Tab)
Makes it possible to read a row by its SNMP index. This index is specified as an SNMP OBJECT IDENTIFIER, a
list of integers.

snnp_open_t abl e(Tab, SnmpStruct) -> {aborted, R} | {atomic, ok}
Types:

Tab ::=atom()

SnmpStruct ::= [{key, type()}]

type() ::=type_spec() | {type_spec(), type_spec(), ...}

type_spec() ::=fix_string | string | integer

Ericsson AB. All Rights Reserved.: Mnesia | 91

mnesia

It is possible to establish a direct one to one mapping between Mnesia tables and SNMP tables. Many
telecommunication applications are controlled and monitored by the SNMP protocol. This connection between Mnesia
and SNMP makes it simple and convenient to achieve this.

The SnnpSt ruct argument is alist of SNMP information. Currently, the only information needed is information
about the key types in the table. It is not possible to handle multiple keys in Mnesia, but many SNMP tables have
multiple keys. Therefore, the following convention is used: if a table has multiple keys, these must always be stored
as atuple of the keys. Information about the key types is specified as atuple of atoms describing the types. The only
significant typeisfi x_st ri ng. This means that a string has fixed size. For example:

mesi a: snnp_open_t abl e(person, [{key, string}])

causes the per son table to be ordered as an SNMP table.

Consider the following schemafor atable of company employees. Each employeeisidentified by department number
and name. The other table column stores the telephone number:

mmesi a: creat e_t abl e(enpl oyee,

[{snnp, [{key, {integer, string}}]},
{attributes, record_info(fields, enployees)}]),

The corresponding SNMP table would have three columns; depar t ment , nane andt el no.

It is possible to have table columns that are not visible through the SNMP protocol. These columns must be the last
columns of the table. In the previous example, the SNMP table could have columns depar t nent and nane only.
The application could then use thet el no column internally, but it would not be visible to the SNMP managers.

In atable monitored by SNMP, all elements must be integers, strings, or lists of integers.
When atable is SNMP ordered, modifications are more expensive than usual, O(logN). And more memory is used.
Note: Only the lexicographical SNMP ordering is implemented in Mnesia, not the actual SNM P monitoring.

start() -> ok | {error, Reason}

The start-up procedure for aset of Mnesianodesisafairly complicated operation. A Mnesiasystem consists of a set of
nodes, with Mnesiastarted locally on all participating nodes. Normally, each node has adirectory where all the Mnesia
files are written. This directory will be referred to as the Mnesia directory. Mnesia may also be started on disc-less
nodes. Seemmesi a: cr eat e_schenma/ 1 and the MnesiaUser's Guide for moreinformation about disc-less nodes.

The set of nodeswhich makesup aMnesiasystemiskept inaschemaandit ispossibleto add and remove Mhesianodes
fromthe schema. Theinitial schemaisnormally created ondisc withthefunctionmmesi a: cr eat e_schena/ 1.0n
disc-less nodes, atiny default schemais generated each time Mnesiais started. During the start-up procedure, Mnesia
will exchange schema information between the nodes in order to verify that the table definitions are compatible.

Each schema has a unique cookie which may be regarded as a unique schema identifier. The cookie must be the same
on all nodes where Mnesiais supposed to run. See the Mnesia User's Guide for more information about these details.

The schema file, as well as al other files which Mnesia needs, are kept in the Mnesia directory. The command line
option- mesi a dir Dir can be used to specify the location of this directory to the Mnesia system. If no such
command line option is found, the name of the directory defaultsto Mhesi a. Node.

application:start(mesi a) may aso beused.

92 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

stop() -> stopped
Stops Mnesialocally on the current node.
appl i cation: st op(mmesi a) may also be used.

subscri be(Event Cat egory)

Ensures that a copy of all events of type Event Cat egory are sent to the caller. The event types available are
described in the Mnesia User's Guide.

sync_dirty(Fun, [, Args]) -> ResultOfFun | exit(Reason)

Call the Fun in a context which is not protected by a transaction. The Mnesia function calls performed in
the Fun are mapped to the corresponding dirty functions. It is performed in almost the same context as
mesi a: async_di rty/ 1, 2. Thedifferenceisthat the operations are performed synchronously. The caller waits
for the updates to be performed on al active replicas before the Fun returns. See mesi a: acti vi t y/ 4 and the
Mnesia User's Guide for more details.

sync_transaction(Fun, [[, Args], Retries]) -> {aborted, Reason} | {atomc,
Resul t O Fun}

This function waits until data have been committed and logged to disk (if disk is used) on every involved node before
it returns, otherwise it behavesasmesi a: t ransaction/[1, 2, 3] .

This functionality can be used to avoid that one process may overload a database on another node.

system.info(lnfoKey) -> Info | exit({aborted, Reason})

Returns information about the Mnesia system, such as transaction statistics, db_nodes, and configuration parameters.
Valid keys are:

o all.Thisargument returns alist of all local system information. Each elementisa{ | nf oKey, | nfoVal}
tuples.Note: New | nf oKey's may be added and old undocumented | nf oKey's may be removed without notice.

e access_nodul e. Thisargument returns the name of the module which is configured to be the activity access
callback module.

e auto_repair. Thisargument returnst r ue or f al se to indicate if Mnesiais configured to invoke the auto
repair facility on corrupted disc files.

e backup_nodul e. Thisargument returns the name of the module which is configured to be the backup callback
module.

* checkpoi nt s. Thisargument returns alist of the names of the checkpoints currently active on this node.
e event _nodul e. Thisargument returns the name of the module which is the event handler callback module.

e« db_nodes. This argument returns the nodes which make up the persistent database. Disc less nodes
will only be included in the list of nodes if they explicitly has been added to the schema, eg. with
mesi a: add_t abl e_copy/ 3. The function can be invoked even if Mnesiais not yet running.

e debug. Thisargument returns the current debug level of Mnesia.

e directory. This argument returns the name of the Mnesia directory. It can be invoked even if Mnesia is not
yet running.

e dunp_l og_I| oad_r egul at i on. This argument returns a boolean which tells whether Mnesiais configured
to load regulate the dumper process or not. This feature is temporary and will disappear in future releases.

e dunp_log tine_threshol d. This argument returns the time threshold for transaction log dumps in
milliseconds.

Ericsson AB. All Rights Reserved.: Mnesia | 93

mnesia

e dunp_l og_update_i n_pl ace. Thisargument returns a boolean which tells whether Mnesiais configured
to perform the updates in the dets files directly or if the updates should be performed in a copy of the detsfiles.

e dunmp_log wite_threshol d. Thisargument returns the write threshold for transaction log dumps as the
number of writes to the transaction log.

« extra_db_nodes. Thisargument returnsalist of extradb_nodes to be contacted at start-up.
« fallback_acti vat ed. Thisargument returnstrue if afallback is activated, otherwise false.
* hel d_I ocks. Thisargument returns alist of all locks held by the local Mnesialock manager.

e is_runni ng. Thisargument returnsyes or no toindicateif Mnesiaisrunning. It may alsoreturnst art i ng
or st oppi ng. Can beinvoked even if Mnesiais not yet running.

* | ocal _tabl es. Thisargument returnsalist of all tableswhich are configured to reside locally.

| ock_queue. This argument returns alist of al transactions that are queued for execution by the local lock
manager.

* | og_ver si on. Thisargument returns the version number of the Mnesia transaction log format.
 master_node_t abl es. Thisargument returns alist of al tableswith at least one master node.

e protocol _version. Thisargument returns the version number of the Mnesia inter-process communication
protocol.

e runni ng_db_nodes. Thisargument returns alist of hodes where Mnesia currently is running. This function
can be invoked even if Mnesia is not yet running, but it will then have dightly different semantics. If Mnesia
is down on the local node, the function will return those other db_nodes and ext ra_db_nodes that for
the moment are up and running. If Mnesia is started, the function will return those nodes that Mnesia on the
local node is fully connected to. Only those nodes that Mnesia has exchanged schema information with are
included as r unni ng_db_nodes. After the merge of schemas, the local Mnesia system is fully operable
and applications may perform access of remote replicas. Before the schema merge Mnesia will only operate
locally. Sometimes there may be more nodesincluded inther unni ng_db_nodes listthanal db_nodes and
extra_db_nodes together.

« schena_| ocati on. Thisargument returnstheinitial schema location.

e subscri bers. Thisargument returns alist of local processes currently subscribing to system events.

e tabl es. Thisargument returns alist of all locally known tables.

 transactions. Thisargument returnsalist of al currently active local transactions.

* transaction_fail ures.Thisargument returnsanumber which indicateshow many transactionshavefailed
since Mnesiawas started.

e transaction_conmits. This argument returns a number which indicates how many transactions have
terminated successfully since Mnesiawas started.

 transaction_restarts. Thisargument returnsanumber which indicates how many transactions have been
restarted since Mnesia was started.

e transaction_|l og wites.Thisargument returnsanumber which indicates the number of write operation
that have been performed to the transaction log since start-up.

e use_di r. Thisargument returns a boolean which indicates whether the Mnesia directory is used or not. Can be
invoked even if Mnesiais not yet running.

e versi on. Thisargument returns the current version number of Mnesia.

table(Tab [,[Option]]) -> QueryHandl e

Returns a QL C (Query List Comprehension) query handle, see glc(3). The module gl ¢ implements a query language,
it can use mnesia tables as sources of data. Calling mesi a: t abl e/ 1, 2 isthe means to make the rmesi a table
Tab usableto QLC.

94 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

The list of Options may contain mnesia options or QL C options, the following options are recognized by Mnesia:
{traverse, Sel ect Method}, {l ock, Lock},{n_objects, Nunber}, any other optionisforwarded to
QLC. Thel ock option may ber ead or wri t e, default isr ead. The option n_obj ect s specifies (roughly) the
number of objects returned from mnesiato QL C. Queriesto remote tables may need alarger chunksto reduce network
overhead, default 100 objects at atime are returned. The option t r aver se determines the method to traverse the
whole table (if needed), the default method issel ect :

« select. The table is traversed by calling mmesi a: sel ect/4 and mesi a: sel ect/ 1. The match
specification (the second argument of sel ect/ 3) is assembled by QLC: simple filters are trandated into
equivalent match specifications while more complicated filters have to be applied to all objects returned by
sel ect / 3 given amatch specification that matches all objects.

e {select, WMtchSpec}. As for sel ect the table is traversed by calling mesi a: sel ect/ 3 and
mesi a: sel ect/ 1. Thedifferenceisthat the match specificationisexplicitly given. Thisishow to state match
specifications that cannot easily be expressed within the syntax provided by QLC.

tabl e_info(Tab, InfoKey) -> Info | exit({aborted, Reason})

Thet abl e_i nf o/ 2 function takes two arguments. The first is the name of a Mnesia table, the second is one of
the following keys:

e al | .Thisargumentreturnsalist of all local tableinformation. Eachelementisa{ | nf oKey, 1t enVal } tuples.
Note: New | nf ol t ems may be added and old undocumented | nf ol t ems may be removed without notice.

e access_node. Thisargument returns the access mode of the table. The access mode may either be read only
or read write.

e arity. Thisargument returnsthe arity of recordsin the table as specified in the schema.
e attri butes. Thisargument returns the table attribute names which are specified in the schema.

e checkpoi nt s. This argument returns the names of the currently active checkpoints which involves this table
on this node.

* cooki e. Thisargument returns a table cookie which is a unique system generated identifier for the table. The
cookieisused internally to ensurethat two different table definitions using the same table name cannot accidental ly
be intermixed. The cookie is generated when the table isinitially created.

e di sc_copi es. Thisargument returns the nodeswhereadisc_copy of the table resides according to the schema.

e disc_only_copies .Thisargument returnsthe nodeswhereadisc_only copy of the table resides according
to the schema.

* i ndex. Thisargument returnsthelist of index position integers for the table.

e | oad_node. Thisargument returnsthe name of the node that M nesialoaded the table from. The structure of the
returned value is unspecified but may be useful for debugging purposes.

* | oad_order. Thisargument returnsthe load order priority of thetable. It is an integer and defaultsto O (zero).

e | oad_r eason. Thisargument returns the reason of why Mnesia decided to load the table. The structure of the
returned value is unspecified but may be useful for debugging purposes.

« local _content. Thisargument returnst r ue or f al se to indicate whether the table is configured to have
locally unique content on each node.

 mast er _nodes. Thisargument returns the master nodes of atable.

e menory. Thisargument returns the number of words allocated to the table on this node.

e ram _copi es. Thisargument returns the nodes where aram_copy of the table resides according to the schema.
e record_nane. Thisargument returns the record name, common for all recordsin the table

e si ze. Thisargument returns the number of records inserted in the table.

e snnp. Thisargument returns the SNMP struct. [] meaning that the table currently has no SNMP properties.

Ericsson AB. All Rights Reserved.: Mnesia | 95

mnesia

e storage_type.This argument returns the local storage type of the table. It can be di sc_copi es,
ram copi es, di sc_only_copi es, or the atom unknown. unknown isreturned for all tables which only
reside remotely.

e subscri bers. Thisargument returns alist of local processes currently subscribing to local table events which
involve this table on this node.

» type. Thisargument returns the table type, which iseither bag, set or or der ed_set ..

e user_properties. Thisargument returns the user associated table properties of the table. It isalist of the
stored property records.

* versi on. This argument returns the current version of the table definition. The table version is incremented
when the table definition is changed. The table definition may be incremented directly when the table definition
has been changed in a schema transaction, or when a committed table definition is merged with table definitions
from other nodes during start-up.

e where_t o_read.Thisargument returnsthe node wherethetable can beread. If thevaluenowher e isreturned,
the tableis not loaded, or it resides at a remote node which is not running.

e where_to_write. Thisargument returnsalist of the nodesthat currently hold an active replica of the table.

e Wi ld_pattern. Thisargument returns a structure which can be given to the various match functions for a
certain table. A record tuple iswhere al record fields have thevalue' ' .

transaction(Fun [[, Args], Retries]) -> {aborted, Reason} | {atonic,
Resul t O Fun}

This function executes the functional object Fun with arguments Ar gs as a transaction.

The code which executes inside the transaction can consist of a series of table manipulation functions. If something
goeswrong inside the transaction as aresult of auser error or acertain table not being available, the entire transaction
isaborted and the functiont r ansact i on/ 1 returnsthetuple{ abort ed, Reason}.

If dl iswell, {at omi ¢, Resul t O Fun} is returned where Resul t O Fun is the value of the last expression
in Fun.

A function which adds afamily to the database can be written asfollowsif we haveastructure{ f anmi | y, Fat her,
Mot her, ChildrenList}:

add_fam ly({famly, F, M Children}) ->

ChildOds = lists:map(fun oid/1, Children),

Trans = fun() ->
mesi a: wri t e(F#person{children = ChildQ ds},
mesi a: wri t e(M¢person{children = ChildQ ds},
Wite = fun(Child) -> mesia:wite(Child) end,
lists:foreach(Wite, Children)

end,

mmesi a: transacti on(Trans).

oid(Rec) -> {elenent(1, Rec), element(2, Rec)}.

This code adds a set of people to the database. Running this code within one transaction will ensure that either the
whole family is added to the database, or the whol e transaction aborts. For example, if thelast child isbadly formatted,
or the executing process terminatesduetoan' EXI T' signal while executing the family code, the transaction aborts.
Accordingly, the situation where half afamily is added can never occur.

It isalso useful to update the database within atransaction if several processes concurrently update the same records.
For example, the function r ai se(Name, Anount), which adds Anount to the salary field of a person, should
be implemented as follows:

96 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

rai se(Name, Anount) ->
mmesi a: transaction(fun() ->
case mmesi a: w ead({ person, Nane}) of
[Pl ->
Sal ary = Anmpunt + P#person. sal ary,
P2 = P#person{salary = Sal ary},
mesi a: wit e(P2)
->

mesi a: abort ("No such person")

end
end) .

When this function executes within a transaction, several processes running on different nodes can concurrently
executether ai se/ 2 function without interfering with each other.

Since M nesia detects deadl ocks, atransaction can be restarted any number of times. Thisfunction will attempt arestart
asspecifiedinRet ri es. Ret ri es must beaninteger greater than O or theatomi nf i ni t y. Defaultisi nfinity.

transformtabl e(Tab, Fun, NewAttributelList, NewRecordNane) -> {aborted, R |
{atom c, ok}

Thisfunction appliestheargument Fun to all recordsin thetable. Fun isafunction which takesarecord of theold type
and returns a transformed record of the new type. The Fun argument can also be the atom i gnor e, it indicates that
only the meta data about the table will be updated. Usage of i gnor e isnot recommended but included as a possibility
for the user do to his own transform. NewAt t r i but eLi st and NewRecor dNane specifies the attributes and the
new record type of converted table. Table name will awaysremain unchanged, if therecord nameischanged only the
mnesia functions which uses table identifiers will work, e.g. mmesi a: wri t e/ 3 will work but mesi a: write/ 1
will not.

transformtabl e(Tab, Fun, NewAttributelList) -> {aborted, R} | {atom c, ok}

Invokesmmesi a: transform tabl e(Tab, Fun, NewAttributeList, RecNane) whereRecNane is
mesi a: t abl e_i nfo(Tab, record_nane).

traverse_backup(Source, [SourcehMbd,] Target, [TargetMd,] Fun, Acc) -> {ok,
Last Acc} | {error, Reason}

With this function it is possible to iterate over a backup, either for the purpose of transforming it into a new backup,

or just reading it. The arguments are explained briefly below. See the Mnesia User's Guide for additional details.

e Sour ceMd and Tar get Mod are the names of the modules which actually access the backup media.

e Source and Tar get are opague data used exclusively by the modules Sour ceMbd and Tar get Mod for the
purpose of initializing the backup media.

e Acc isaninitia accumulator value.

 Fun(Backupltems, Acc) isappliedto each item inthe backup. The Fun must return atuple
{Backupl t enrs, NewAcc}, where Backupl t ens isalist of valid backup items, and NewAcc isanew
accumulator value. The returned backup items are written in the target backup.

e Last Acc isthelast accumulator value. Thisisthe last NewAc ¢ value that was returned by Fun.

uninstall _fallback() -> ok | {error, Reason}
Invokesmmesi a: uni nstal | _fal | back([{scope, global}]).

Ericsson AB. All Rights Reserved.: Mnesia | 97

mnesia

uninstall _fallback(Args) -> ok | {error, Reason}

Thisfunctionisusedto de-install afallback beforeit has been used to restore the database. Thisisnormally adistributed
operation that is either performed on all nodes with disc resident schema or none. Uninstallation of fallbacks requires
Erlang to be up and running on all involved nodes, but it does not matter if Mnesiais running or not. Which nodes that
are considered as disc-resident nodes is determined from the schemainfo in the local fallback.

Ar gs isalist of the following tuples:

« {nodul e, BackupMod}.Seemesi a:install _fall back/ 2 aboutthesemantics.
« {scope, Scope} Seemesi a:install _fallback/ 2 aboutthe semantics.
e {mmesia_dir, AlternateDir} Seemmesi a:install _fall back/ 2 aboutthe semantics.

unsubscri be(Event Cat egory)
Stops sending events of type Event Cat egor y to the caller.

wait_for_tables(TabList, Tineout) -> ok | {tineout, BadTabList} | {error,
Reason}

Some applications need to wait for certain tables to be accessble in order to do useful work.
mesi a: wai t _for_tabl es/ 2 hangs until al tables in the TabLi st are accessible, or until ti meout is
reached.

wr ead({Tab, Key}) -> transaction abort | RecordLi st
Invokemmesi a: read(Tab, Key, wite).

write(Record) -> transaction abort | ok
Invokemmesi a: wite(Tab, Record, wite) whereTabisel enent (1, Record).

write(Tab, Record, LockKind) -> transaction abort | ok
Writesthe record Recor d to the table Tab.
The function returns ok, or aborts if an error occurs. For example, the transaction abortsif no per son table exists.

The semantics of thisfunction is context sensitive. Seermesi a: act i vi t y/ 4 for moreinformation. In transaction
context it acquiresalock of type LockKi nd. Thefollowing lock typesare supported: wri t e andst i cky_write.

wite | ock _table(Tab) -> ok | transaction abort
Invokesmmesi a: | ock({tabl e, Tab}, wite).

Configuration Parameters

Mnesia reads the following application configuration parameters:

e -mmesia access_nodul e Modul e. The name of the Mnesia activity access callback module. The default
ismtmesi a.

e -mmesia auto_repair true | fal se.Thisflagcontrolswhether Mnesiawill try to automatically repair
files that have not been properly closed. The defaultist r ue.

e -mmesia backup_nodul e Modul e. The name of the Mnesia backup callback module. The default is
mesi a_backup.

e -mmesi a debug Level Controlsthe debug level of Mnesia. Possible values are;

98 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia

none
No trace outputs at all. Thisisthe default setting.
ver bose

Activatestracing of important debug events. Thesedebug eventsgenerate{ mesi a_i nf o, Format, Args}
system events. Processes may subscribe to these events with rmesi a: subscri be/ 1. The events are always
sent to Mnesia's event handler.

debug

Activates all events at the verbose level plus full trace of all debug events. These debug events generate
{mesia_info, Format, Args} system events. Processes may subscribe to these events with
mesi a: subscri be/ 1. The events are always sent to the Mnesia event handler. On this debug level, the
Mnesia event handler starts subscribing to updates in the schemartable.

trace

Activatesall eventsat thelevel debug. On this debug level, the Mnesiaevent handler starts subscribing to updates
on al Mnesiatables. This level is only intended for debugging small toy systems since many large events may
be generated.

fal se
An diasfor none.
true

An diasfor debug.

-mesia core_dir Directory. The name of the directory where Mnesia core files is stored or false.
Setting it implies that also ram only nodes, will generate a corefileif acrash occurs.

-mesi a dc_dunp_limt Nunber. Controlshow oftendi sc_copi es tablesare dumped from memory.
Tables are dumped when fi | esi ze(Log) > (filesize(Tab)/Dc_dunp_|imt). Lower values
reduces cpu overhead but increases disk space and startup times. The default is 4.

-mesia dir Directory. The name of the directory where al Mnesia data is stored. The name of the
directory must be unique for the current node. Two nodes may, under no circumstances, share the same Mnesia
directory. The results are totally unpredictable.

-mesi a dunp_l og_| oad_regul ation true | fal se.Controlsif thelogdumpsshould be performed
asfast as possible or if the dumper should do its own load regulation. Thisfeature istemporary and will disappear
inafuturerelease. The default isf al se.

-mesi a dunp_l og_update_in_place true | false.Controlsiflog dumps are performed on a
copy of the original datafile, or if thelog dump is performed on the original datafile. The defaultist r ue

-mesia dunp_|log wite threshold Max, where Max is an integer which specifies the maximum
number of writes allowed to the transaction log before a new dump of the log is performed. It defaults to 100
log writes.

-mesia dunp_log tine_threshold Max, where Max is an integer which specifies the
dump log interval in milliseconds. It defaults to 3 minutes. If a dump has not been performed within
dunp_l og_ti me_t hreshol d milliseconds, then a new dump is performed regardless of how many writes
have been performed.

-mesi a event _nodul e Mbdul e. The name of the Mnesia event handler callback module. The default
ismmesi a_event.

-mesi a extra_db_nodes Nodes specifiesalist of nodes, in addition to the ones found in the schema,
with which Mnesia should also establish contact. The default valueisthe empty list[] .

-mesi a fal | back_error_function {User Mdul e, User Func} specifiesauser supplied callback
function which will be called if afallback isinstalled and mnesia goes down on another node. Mnesia will call

Ericsson AB. All Rights Reserved.: Mnesia | 99

mnesia

the function with one argument the name of the dying node, e.g. User Modul e: User Func(Dyi ngNode) .
Mnesiashould be restarted or el se the database could beinconsistent. The default behaviour isto terminate mnesia.

e -mmesia max_wait_for_deci sion Ti neout . Specifies how long Mnesiawill wait for other nodes to
share their knowledge regarding the outcome of an unclear transaction. By default the Ti meout isset to theatom
i nfinity,whichimpliesthat if Mnesia upon startup encounters a "heavyweight transaction" whose outcome
isunclear, the loca Mnesiawill wait until Mnesiais started on some (in worst cases all) of the other nodes that
were involved in the interrupted transaction. Thisis a very rare situation, but when/if it happens, Mnesia does
not guess if the transaction on the other nodes was committed or aborted. Mnesia will wait until it knows the
outcome and then act accordingly.

If Ti meout issettoaninteger valuein milliseconds, Mnesiawill force"heavyweight transactions’ to befinished,
even if the outcome of the transaction for the moment is unclear. After Ti meout milliseconds, Mnesia will
commit/abort the transaction and continue with the startup. This may lead to a situation where the transaction
is committed on some nodes and aborted on other nodes. If the transaction was a schema transaction, the
inconsistency may be fatal.

e -mmesia no_table_ | oaders NUMBER specifies the number of parallel table loaders during start. More
loaders can be good if the network latency is high or if many tables contains few records. The default valueis 2.

e -mmesia send_conpressed Level specifiesthelevel of compression to be used when copying atable
from the local node to another one. The default level is 0.
Level must beaninteger intheinterval [0, 9], with O representing no compression and 9 representing maximum
compression. Before setting it to a non-zero value, make sure the remote nodes understand this configuration.

e -mmesia schema_l ocati on Loc controlswhere Mnesiawill look for its schema. The parameter Loc may
be one of the following atoms:
di sc
Mandatory disc. The schema is assumed to be located in the Mnesia directory. If the schema cannot be found,
Mnesiarefusesto start. Thisisthe old behavior.
ram

Mandatory RAM. The schema resides in RAM only. At start-up, a tiny new schema is generated. This default
schema just contains the definition of the schema table and only resides on the local hode. Since no other nodes
are found in the default schema, the configuration parameter ext r a_db_nodes must be used in order to let
the node share its table definitions with other nodes. (The ext ra_db_nodes parameter may also be used on
disc based nodes.)

opt _di sc

Optional disc. The schema may reside either on disc or in RAM. If the schemais found on disc, Mnesia starts
as a disc based node and the storage type of the schematableisdi sc_copi es. If no schemaisfound on disc,
Mnesia starts as a disc-less hode and the storage type of the schematable isr am _copi es. The default value
for the application parameter isopt _di sc.

First the SASL application parameters are checked, then the command line flags are checked, and finally, the default
value is chosen.

See Also
mnesia_registry(3), mnesia_session(3), glc(3), dets(3), ets(3), disk _log(3), application(3)

100 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia_frag_hash

mnesia_frag_hash

Erlang module

Themodulemmesi a_f r ag_hash definesacallback behaviour for user defined hash functions of fragmented tables.

Which module that is selected to implement the mesi a_f r ag_hash behaviour for a particular fragmented table
is specified together with the other frag_properti es. The hash_nodul e defines the module name. The
hash_st at e definestheinitia hash state.

It implements dynamic hashing which isakind of hashing that grows nicely when new fragments are added. It iswell
suited for scalable hash tables

Exports

init_state(Tab, State) -> NewState | abort(Reason)

Types:
Tab = atom()
State =term()

NewState = term()
Reason =term()

This function is invoked when a fragmented table is created with rmesi a: cr eat e_t abl e/ 2 or when a normal
(un-fragmented) table is converted to be a fragmented table with mesi a: change_t abl e _frag/ 2.

Note that the add_f r ag/ 2 function will be invoked one time each for the rest of the fragments (all but number 1)
as apart of the table creation procedure.

St at e istheinitial value of thehash_st at ef rag_property. TheNewSt at e will bestoredashash_st at e
among the other f r ag_pr operti es.

add frag(State) -> {NewState, IterFrags, Additional LockFrags} | abort(Reason)
Types:

State = term()

NewState = term()

Iter Frags = [integer ()]

AdditionalL ockFrags = [integer ()]

Reason =term()

In order to scale well, it is a good idea ensure that the records are evenly distributed over al fragments including the
new one.

The NewSt at e will be stored ashash_st at e among the other f r ag_pr operti es.

As a part of the add_f r ag procedure, Mnesia will iterate over all fragments corresponding to the | t er Fr ags
numbers and invoke key t o_frag_number (NewSt at e, Recor dKey) for each record. If the new fragment
differs from the old fragment, the record will be moved to the new fragment.

Astheadd_f r ag procedureisapart of aschematransaction Mnesiawill acquire awritelocks on the affected tables.
That is both the fragments corresponding to | t er Fr ags and those corresponding to Addi t i onal LockFr ags.

del _frag(State) -> {NewState, IterFrags, Additional LockFrags} | abort(Reason)
Types:

Ericsson AB. All Rights Reserved.: Mnesia | 101

mnesia_frag_hash

State=term()

NewState = term()

Iter Frags = [integer ()]
AdditionalL ockFrags = [integer ()]
Reason = term()

The NewSt at e will be stored ashash_st at e among the other f r ag_pr operti es.

As a part of the del _f r ag procedure, Mnesia will iterate over all fragments corresponding to the | t er Fr ags
numbers and invoke key t o_frag_number (NewSt at e, Recor dKey) for each record. If the new fragment
differs from the old fragment, the record will be moved to the new fragment.

Note that all recordsin the last fragment must be moved to another fragment as the entire fragment will be del eted.

Asthedel _frag procedureisa part of aschematransaction Mnesiawill acquire awrite locks on the affected tables.
That is both the fragments corresponding to | t er Fr ags and those corresponding to Addi t i onal LockFr ags.

key to frag nunber(State, Key) -> FragNum | abort(Reason)
Types.

FragNum = integer ()()

Reason =term()

Thisfunctionisinvoked whenever Mnesianeedsto determinewhich fragment acertain record belongsto. It istypically
invoked at read, write and delete.

mat ch_spec_to_frag_nunmbers(State, MatchSpec) -> FragNuns | abort(Reason)
Types:

MatcSpec = ets select_match_spec()

FragNums = [FragNum]

FragNum = integer ()

Reason = term()

This function is invoked whenever Mnesia needs to determine which fragments that needs to be searched for a
MatchSpec. It istypically invoked at select and match_object.

See Also
mnesia(3)

102 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia_registry

mnesia_registry

Erlang module

The module mesi a_regi stry isusualy part of erl _i nterface, but for the time being, it is a part of the
Mnesia application.

mesi a_r egi st ry ismainly an module intended for internal usage within OTP, but it has two functions that are
exported for public use.

On C-nodes er| _i nt er f ace has support for registry tables. These reside in RAM on the C-node but they may
also be dumped into Mnesia tables. By default, the dumping of registry tables via erl _i nt erface causes a
corresponding Mnesiatable to be created withrmesi a_regi stry: creat e_t abl e/ 1 if necessary.

The tables that are created with these functions can be administered as all other Mnesia tables. They may be included
in backups or replicas may be added etc. The tables are in fact norma Mnesia tables owned by the user of the
corresponding er | _i nt er f ace registries.

Exports

create_tabl e(Tab) -> ok | exit(Reason)

Thisisawrapper function for mesi a: cr eat e_t abl e/ 2 which creates atable (if there is no existing table) with
an appropriate set of at t r i but es. Thetablewill only reside on the local node and its storage type will be the same
asthe schenma table on the local node, ie. { r am copi es, [node()]} or{di sc_copi es, [node()]}.

Itisthisfunction that isused by er | _i nt er f ace to create the Mnesiatable if it did not already exist.

create_tabl e(Tab, TabDef) -> ok | exit(Reason)

Thisisawrapper function for mesi a: cr eat e_t abl e/ 2 which creates atable (if there is no existing table) with
an appropriate set of at t ri but es. The attributes and TabDef are forwarded to mesi a: create_t abl e/ 2.
For example, if the table should resideasdi sc_onl y_copi es on al nodes a call would look like:

TabDef = [{{disc_only_copies, node()]|nodes()]}],
mesi a_regi stry:create_tabl e(ny_reg, TabDef)

See Also
mnesia(3), erl_interface(3)

Ericsson AB. All Rights Reserved.: Mnesia | 103

	Mnesia
	User's Guide
	Introduction
	About Mnesia
	The Mnesia DataBase Management System (DBMS)
	Features
	Add-on Applications
	Scope and Purpose
	Prerequisites
	About This Book

	Getting Started with Mnesia
	Starting Mnesia for the first time
	An Introductory Example
	The Example Database
	Defining Structure and Content
	The Program
	The Program Explained
	Initial Database Content
	Adding Records and Relationships to the Database
	Writing Queries

	Building A Mnesia Database
	Defining a Schema
	Schema Functions

	The Data Model
	Starting Mnesia
	Initializing a Schema and Starting Mnesia
	The Start-Up Procedure

	Creating New Tables

	Transactions and Other Access Contexts
	Transaction Properties
	Atomicity
	Consistency
	Isolation
	Durability

	Locking
	Sticky Locks
	Table Locks
	Global Locks

	Dirty Operations
	Record Names versus Table Names
	Activity Concept and Various Access Contexts
	Nested transactions
	Pattern Matching
	Iteration

	Miscellaneous Mnesia Features
	Indexing
	Distribution and Fault Tolerance
	Table Fragmentation
	The Concept
	Fragmentation Properties
	Management of Fragmented Tables
	Extensions of Existing Functions
	Load Balancing

	Local Content Tables
	Disc-less Nodes
	More Schema Management
	Mnesia Event Handling
	System Events
	Table Events

	Debugging Mnesia Applications
	Concurrent Processes in Mnesia
	Prototyping
	Object Based Programming with Mnesia

	Mnesia System Information
	Database Configuration Data
	Core Dumps
	Dumping Tables
	Checkpoints
	Files
	Start-Up Files
	The Log File
	The Data Files

	Loading of Tables at Start-up
	Recovery from Communication Failure
	Recovery of Transactions
	Backup, Fallback, and Disaster Recovery
	Backup
	Restore
	Fallbacks
	Disaster Recovery

	Combining Mnesia with SNMP
	Combining Mnesia and SNMP

	Appendix A: Mnesia Error Messages
	Errors in Mnesia

	Appendix B: The Backup Call Back Interface
	mnesia_backup callback behavior

	Appendix C: The Activity Access Call Back Interface
	mnesia_access callback behavior

	Appendix D: The Fragmented Table Hashing Call Back Interface
	mnesia_frag_hash callback behavior

	Reference Manual
	mnesia
	abort/1
	activate_checkpoint/1
	activity/2
	activity/4
	add_table_copy/3
	add_table_index/2
	all_keys/1
	async_dirty/2
	backup/1
	backup_checkpoint/2
	change_config/2
	change_table_access_mode/2
	change_table_copy_type/3
	change_table_load_order/2
	clear_table/1
	create_schema/1
	create_table/2
	deactivate_checkpoint/1
	del_table_copy/2
	del_table_index/2
	delete/1
	delete/3
	delete_object/1
	delete_object/3
	delete_schema/1
	delete_table/1
	dirty_all_keys/1
	dirty_delete/1
	dirty_delete/2
	dirty_delete_object/1
	dirty_delete_object/2
	dirty_first/1
	dirty_index_match_object/2
	dirty_index_match_object/3
	dirty_index_read/3
	dirty_last/1
	dirty_match_object/1
	dirty_match_object/2
	dirty_next/2
	dirty_prev/2
	dirty_read/1
	dirty_read/2
	dirty_select/2
	dirty_slot/2
	dirty_update_counter/2
	dirty_update_counter/3
	dirty_write/1
	dirty_write/2
	dump_log/0
	dump_tables/1
	dump_to_textfile/1
	error_description/1
	ets/2
	first/1
	foldl/3
	foldr/3
	force_load_table/1
	index_match_object/2
	index_match_object/4
	index_read/3
	info/0
	install_fallback/1
	install_fallback/1
	install_fallback/2
	is_transaction/0
	last/1
	load_textfile/1
	lock/2
	match_object/1
	match_object/3
	move_table_copy/3
	next/2
	prev/2
	read/1
	read/2
	read/3
	read_lock_table/1
	report_event/1
	restore/2
	s_delete/1
	s_delete_object/1
	s_write/1
	schema/0
	schema/1
	select/2
	select/4
	select/1
	set_debug_level/1
	set_master_nodes/1
	set_master_nodes/2
	snmp_close_table/1
	snmp_get_mnesia_key/2
	snmp_get_next_index/2
	snmp_get_row/2
	snmp_open_table/2
	start/0
	stop/0
	subscribe/1
	sync_dirty/2
	sync_transaction/3
	system_info/1
	table/1
	table_info/2
	transaction/2
	transform_table/4
	transform_table/3
	traverse_backup/4
	uninstall_fallback/0
	uninstall_fallback/1
	unsubscribe/1
	wait_for_tables/2
	wread/1
	write/1
	write/3
	write_lock_table/1

	mnesia_frag_hash
	init_state/2
	add_frag/1
	del_frag/1
	key_to_frag_number/2
	match_spec_to_frag_numbers/2

	mnesia_registry
	create_table/1
	create_table/2

