R: A Language and Environment for
Statistical Computing

Reference Index

The R Development Core Team

Version 2.11.0 (2010-04-22)

Copyright (©) 1999-2010 R Foundation for Statistical Computing.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see

http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 The base package 1
base-package L 1
Device ... e e e e 1
Machine e e e 2
Platform . . . L L e e 4
abbreviate e e e e e e e e 5
o4 () o P 7
all . . e 8
alllequal L 10
alllnames L L e e e 11
ANY . . v v e e e e e e e e e e e e e e e e e e 12
101 0 1 13
append L e e e e 14
apply . . e 15
ATES o v v e e e e e e e e e e e e 16
Arithmetic e 17
AITAY © o v o v v e 19
asdataframe L L L e e e 20
AS.NVIFONMENT v o i i e e e e e e e e e e e e e e e e 22
as.function L L 22
as.POSIX* . . . e 23
ASIS . e e 25
ASSIN . . . L e e e e e e 26
assignOPs L e e 28
attach e e e 29
L1 5 O 30
attributes L e e e e 32
autoload L 33
backsolve L e e e 34
basename e e e 35
Bessel e e e 36
bindenv e e e 38
body 40
DQUOLe e e e e e e e 41
Browser e e e e e 42
browserText e e e 43
builtins L e e 44
DY . 45
C e e e e e 46
call e 47
callCC e e 48

ii

CONTENTS
capabilities 49
CAL . o e e e e e e e e 51
chind e 52
charexpand e e 55
character e e 55
charmatch 57
chartr e e 58
chol e e e 59
chol2inv e 61
class . .. e e 62
Col . . e e 64
Colon e e e 65
COlSUMS e e e 66
commandATgs e e e e e e e 67
COMIMENL v v v e o e e e e e e e e e e e e e e 68
CompariSon e e e e e e e 69
COMPIEX e e e e 71
conditionsS L e e 72
conflicts e e 75
CONNECHIONS v i e i e i e e e e e e e e e e e e e e 76
Constants e e e e e e e 84
contributors L e e e e e 85
Control 85
CONVETLETS . . & v v v v e 87
copyright e 88
Crossprod e 89
Cstack_info e 90
CUMSUIM & & v v v v v e 90
CUL . . o e e e e e 91
cut POSIXt e 93
data.class L e 95
dataframe L. e 96
datamatrixX e e e e 98
date e e 99
Dates e e 100
DateTimeClasses i e e e 101
def .o e e e 103
debug e 105
Defunct e 106
delayedAssSign e e e e e e 107
deparseo L e e e 108
deparseOpts e e e e 109
Deprecated e 111
det . . e 111
detach e 112
diag . . . e e e 114
diff . . e 115
difftime 117
dim ..o e e 118
dimnames e 119
do.call e 121

CONTENTS il

dput . ..o e 124
drop . . . e 125
dump . ..o e 126
duplicated e e e 127
dyndoad e 129
eapply e 132
CIZEI v v e e e e e e e e 133
encodeString 134
Encoding e 136
NVIFONMENT v v vt ettt e e e e e e e e e e e e e e 137
EnvVar e e 139
eval . .. 141
EXISIS . v e e 144
expand.grid L 145
EXPIESSION .« . v vt e e e e e e e e e 146
Extract e 147
Extract.data.frame 152
Extract.factor 154
Extremes e e 155
factor e e e e e 157
file.access e 160
file.choose 161
fileinfo L 162
filepath e 163
file.Show e e e e 164
files . . . e 165
files2 e 167
findInterval e e 168
force L 169
Foreign e 170
formals e e 173
format L 174
format.Date 176
formatinfo 178
format.pval L 180
formatC e e e e 180
formatDL 184
function e 185
funprog L e 186
BC e e 188
GC.UME o e e e e e e 189
GCLOTLUTE o . v v ot e e e e e e e e e e e e e e e e e e 190
BEL . e e e e 191
getDLLRegisteredRoutines L . 192
getLoadedDLLs 194
getNativeSymbollnfo 195
GEeHEXt L 197
getwd ... e 198
3 199
GIED & o v e e e e e e e e e e e e e e e 200
GroupGeneriC e e e 204

97770) & P 206

v

CONTENTS
hexmode e e e 207
Hyperbolic e 208
170 4 1 209
icuSetCollate 211
identical 212
identity e 214
ifelse e 215
INTEZET o o o e e 216
INEraction o ot i e e e e e e e e 217
INETACtIVE o o o e o e e e e e e e e e e e e e e e e 218
Internal e 219
InternalMethods 220
invisible 221
is.finite . .. L. e 221
is.function L L e 223
is.danguage L e 224
1S.ODJECt . . . o 224
ISR e 225
ISTECUISIVE . . . vt v v o e e e e e e e e e e e e e e e e 226
is.single . . .o 227
isaunsorted L. L L e e e e 227
ISOdatetime e e e 228
1SSA L e e e 228
ISSymmetric L e e e e e e e 229
JIEET . . L e 230
kappa 231
kronecker e e 233
110n_Info s 234
Iabels e e 235
lapply e 235
Lastvalue e e e 238
length e 238
levels e e e 239
libPaths e 241
library e e e e 242
library.dynam 246
LICENSE e e e e e e 248
O 248
listfiles e 250
load e 251
locales e e e 253
log . o o e 254
Logic e e e 256
logical 258
lowertri e 259
IS . o e e 260
mMake.names o e e e e e e e e e e e e e 261
make.unique e e e 262
mapply e e e e e 263
margin.table 265
MALOLVEC . . . v v v v e e e e e e e e e e e e e e e e e 266

match e e e e 266

CONTENTS v

match.arg L e e 268
match.call L e 269
match.fun e e 270
MathFun e e e e 271
matmulto e e e e 272
MAIX . . v e o e 273
maxCol e e 274
101) 1 276
MEMCOMPIESS .« . . ¢ v v v e vt e 277
MEMOTY o e e e e e e e e e 278
Memory-limits 279
memory.profile 281
TMETEE . o v v v e o e 281
MESSAZE .+« v v v v v e 283
MISSING . . o o ot e e e e e e e 285
mMOode e e e e e e 286
NA . e 287
NAME . . v v v v v v e 288
NAMES . . v o v v v e 290
DATES .« v o v v e 291
nchar . . . L L e 292
nlevels e e e 293
NOQUOLE . o o v v v e e e e e e e e e e e e e e 294
705 04 1P 295
NotYet e e e e 296
NTOW & o v v v e 297
ns-dblcolon e 298
ns-hookS L e e e 299
ns-load e e e e 300
DS-TOPENV o i e e e e e e 301
NULL . . . e 302
NUIMETIC .« v v v v v v e 303
NumericConstants 0 e e e e e 304
NUMETIC_VEISION v v v e e e e e e e e e e e e e e e 305
OCtMOde e e e e e e 307
OMLEXIL & v v v v e 308
Ops.Date e 309
103 015 1073 13 310
OFder o o e e e e e e 316
OULET & o v v v e e i e 319
Paren 320
PATSE . . o i e e e e e e e e e e e 321
PASe . . . e e e e e e 322
patheexpand 324
pmatch. 324
POlyroot L e e e 326
POSOBNV . . o . o i e e e e e e e e e 327
PIEtLY . o o e 327
Primitive 329
PIINt . . . o e 330
print.dataframe oL 331

print.default L 332

vi

CONTENTS
PIMAriX o vt e e e e e e e e e e e 334
Proc.time e e e e e e 335
prod . .o e 336
prop.table e e 337
pushBack 338
6) 339
QR.Auxiliaries e e 342
QUIt .. e 343
QUOLES o o e e e e e 344
R.Version e 346
Random e 347
Random.user 351
TANZE + v v v e 352
rank ... e e e e 353
rapply . .o 355
TAW & v e e e e e e e e e e e e e e e e e e 356
rawConnection 357
rawConversion e e e e e e e e e e 358
RAULIS e 360
readBin e e e 361
readChar e e e 363
readline L. e e 365
readlines L e e e 366
real .. oL e e 367
Recall e 368
regfinalizer L 368
TEEEX . v v v e 369
TEMOVE . o v v i v e e e e e e e e e e e e e e e 373
() o O 374
replace L 376
Reserved e 377
TV o o v e e e e e e e e e e e e e 377
Rhome e 378
rle . . e e 379
Round e 380
round.POSIXt e 381
TOW & v et e e e e e e e e e e 382
TOWAMES . & v v v v v v e 383
row/colnames L e e e e e e e 384
TOWSUIN . . & vttt vt e 385
sampleo e 386
SAVE . v i i e e e e e e e e e e e e e e 388
scale . . oL L e 391
o7 1 392
Search e 396
seek ..o e 396
SEU « v e e e e e e e 398
seq.Dateo 400
$eq.POSIXt e 401
SEQUEIICE .« v v v v v v e 402
serialize e 403

] 404

CONTENTS vii

setTimeLimit e 405
showConnections e 406
shQuote e e 407
SIZN . . o e e 408
SignalS. e e e e 409
Sink ..o 409
slicedndex L. 411
SlotOp e 412
socketSelect 413
SOIVE . . o o e 413
SOTE o v v e e e e e e e e e e 415
SOUICE & v v v e e e e e e e e e e e e e e e 417
Special L e e e e 419
SPLit . . 422
Sprintf e 424
SQUOLE o 427
srefile .o L 429
STArtup . . . o e e e e e e 431
STOD . . L e 434
StOpIfnot L 435
SIIPHME . . . o v v o e e e e e e e e e e e e e e 436
strsplit L 440
] 3 () 442
SIIEIIM . . . v o o e e e e e e e e e e e e 443
SITUCTUTE . . . o v ot e et e e e e e e e e e e e e e e e e e e 443
SLIWIAD . . v o e e e e e e e e e e 444
SubSet e 445
SUDSHItULE e 447
SUDSLT 448
] 10 0 450
SUMIMATY .+« o v v v v e 451
SVA . 452
SWEED © v v e e e e e e e e e 454
SWItch e 455
SYNEAX . . o o o e e e e e e e e e e 457
SYS.EENV L L e e e e e e e e 458
Sys.getpid oL e 459
Sys.glob e 459
Sys.anfoo 460
Sys.docaleconv L. e e e 461
SYS.PATENL .+ o v v vt e 462
Sys.readlink 465
SYSSEENV .« v v v v e 465
Sysssleep . . . e 466
SYS.SOUICE .+ o v v v v v v e e e e e e e e e e e e e e e e e 467
SYSHME . . . o v o e e e e e e e e e 468
Sys.which 469
SYSIEIM . . . v e e e e e e e 470
system.file e 472
SYSIEMLLME o L e e e e e e 472
b 473

viii CONTENTS
tabulate L e e 477
tapply . . e e e e 478
taskCallback e 479
taskCallbackManager 481
taskCallbackNames e 483
tempfileo 484
textCoNNection e e e e e e e 485
tilde e 487
MEZONES v v v v o e e e e e e e e e e e e e e e e e e e 487
tOStringo 489
rACE . . . v v e e e e e e e e e e e e e e e e e e e 490
traceback e 493
traCeMEIM v v v e e e e e e e e e e e e 495
transform L. L 496
Trig . . . e 497
Ty . e 498
typeof . . . e 499
UNIQUE . . o o o oo e e e e e e e e e e e e e e e e 500
unlink L L e 502
unlist e e 503
UNNAME . & . v v v v v e 504
UseMethod e e 505
userhoOKS e e e 507
utf8CoNVersion L. e e e 508
VECIOT . . o o o e o e e e e e e e e e e e e e e e e e e 509
WAIMING . . o v v v v e 511
WarNINGs o e e e e e e e 512
weekdays L 513
which e 514
which.min 516
With . . e 517
withVisible e 518
WIILE . . . o o e o e e e e e e e e e e 519
writelines e 520
XM .. e 521
zapsmall e e e 522
zpackages L e e e e 522
ZUtIlS . . L e e e 523

2 The datasets package 525
datasets-package e 525
ability.cov e e 525
airmiles e 526
AirPassengers L 527
airquality L 528
anscombe e e e e e 529
AENU e e e e e e e e e e e e e e e e 530
attitude L e e e 531
AUSHIES & . o v v o e e e e e e e e e e e 532
beavers e e e e 532
Blsales e 533
BOD . . . e e e 534

CONTENTS ix

ChickWeight e 536
chickwts L e 537
CO2 . e 538
COZ . vt e e 539
crimtab . . . L. 539
diSCOVETIES . . . v v o e e e e e e e e e e e e e e e e e e 541
DNase e 542
esoph . . . e 543
CUID . o v v e i e e e e e e e e e e e 544
eurodist L e 545
EuStockMarkets e e 545
faithful o 546
Formaldehyde e 547
freeny L 548
HairEyeColor 549
Harman23.cor 550
Harman74.cor e 550
Indometh 551
INfert e e e e e e 552
InsectSprays 553
TS . o o e 553
islands L L e 555
JohnsonJohnson 555
LakeHuron e 556
Ih e 556
LifeCycleSavings 557
Loblolly e 558
longley e 558
Iynx . o e e e e 559
morley e 560
MECATS .+ v v v v v e 561
nhtemp e e e e e 561
Nile . . . e 562
NOLEIM o o vttt e e e e e e e 563
occupationalStatus L. L L e 564
Orange e e e 565
OrchardSprays 566
PlantGrowth e 567
PIECID . o o o o e e e 567
presidents L. e e e e e e e 568
PIESSUIE v v v vttt i e e e e e e e e e e 569
Puromycin. 569
QUAKES . . o o e e e e e e e e e e e e e e e e e e 571
randu e e e e e e 571
TIVEIS © v v v e v e e e e e e e e e e e e e e 572
TOCK . . e 573
sleep e 573
Stackloss L e 574
SEALE e e e e 575
sunspot.month e 576
SUNSPOLYEAT « .« « v v v v v v et e e e e e e e e e e e e e e e e e 577

SUNSPOLS . v v v v v v e 577

X CONTENTS

SWISS . . v v v e e e 578
Theoph e 579
Titanic L e 580
ToothGrowth e 581
tECTING« o v v vt e e e e e e e e e 582
LIEBS .« . v v v o e e e e e e e e e e e e e e e e e e 583
UCBAAMISSIONS« o oot s e e e e 584
UKDriverDeaths e 585
UKgas e e e 586
UKLungDeaths 587
USAccDeaths e 587
USAITESES . . . o o o e e e e 588
USJudgeRatings e e e 588
USPersonalExpenditure e 589
USPOD « v o e e e e e e e e e e e e e e e e e 590
VADeaths e e 590
VOICANO e e e e e e e e e e e e 591
warpbreaks L L L 592
WOIMETL .« o v v v v e e e e e e e e e e e e e e e 593
WorldPhones 593
WWWusage e 594
3 The grDevices package 597
grDevices-package L e 597
as.graphicsAnnot 597
ASTASIET L . e e e e e e e e e e 598
boxplot.stats e 599
CAITO . . . o o it e 601
check.options L e 603
chull o e 604
) 10 L 605
col2rgb . . L e e 605
colorRamp. e 607
ColOrs e 608
contourLines L 609
convertColor e 610
densCols e e e 612
dev . . . e e e e 613
devinteractive L. e e 615
dev.sizeo e 616
dev2 . .o e 616
devZbitmap 618
devAskNewPage 620
Devices e e e e e 621
embedFonts L 622
eXtendrange e e e e e e e e e e e 623
getGraphicsEvent L 623
2 625
gray.colors 626
hel oo o e 627
Hershey e e e 629
WSV . e 632

Japanese L e 633

CONTENTS xi

make.rgb . ..o 634
n2mfrowo e 635
nelass ..o e 636
palette 637
Palettes 638
PAf . e 640
pdfioptions 644
PICEX . . o o e e e e e e 645
plotmath L e 646
PHE . o e 651
POSESCIIPL . . . o o o e 654
postscriptFonts 660
PSOPLIONS . . o o o e e e e e e e e e e e e e e 662
QUATEZ . o o v e 664
quartzFonts 666
recordGraphics L e 667
recordPlot 668
54 o 669
rgb2hsv . .o e e 670
savePlot L e 672
trans3d e e 673
TypelFont e 673
@ 1 675
XITFonts o o e 679
XA . e 680
XY.COOTAS .« . v v v i e e e e e e e 682
xyTable 683
XYZ.COOTAS o o o e e e e 684
4 The graphics package 687
graphics-package L 687
abline 687
AITOWS .+« o o v e e e e e e e e e e e e e e 689
assoCplot L e e e 690
AXIS . . o e 692
AXIS . v v e e e e e e e 693
axis. POSIXct o e 695
axTicks e 697
barplot 698
bOX . . e 701
boxplot e e 702
boxplotmatrix 705
DXp . . e 706
cdplot . . . e 709
Clip . .. 711
COMMOUL .« « v vt v v e ettt e e e e e e e e e e e e 712
convertXY e e 714
coplot . . . e 715
CUIVE . v v v v i e e et e e e e e e e e e e e e e 718
dotchart 719
filled.contour 721
fourfoldplot e e e 723

frame e e e 725

xii CONTENTS
grid ... e 725
hist. . . . e 726
histPOSIXt e 729
identify 731
IMAZE . . . o o o o e e 733
layout 735
legend 737
lines o e 742
locatoro 743
matploto e 744
mosaicplot 746
MEEXE . . o o oot e e e e e e e e 749
PAITS . . o o e e e e e 751
panel.smooth L 753
PAT . o o e e e e e 754
PEISD -« o e e e e e e e e e e 762
PIe . . e 765
Plot . e 767
plot.dataframe e 768
plotdefault 769
plotdesign e 771
plotfactor 773
plotformula 774
plothistogram 775
plot.table e 776
plot.window e e 77
PIOLXY .« o e 778
POINES . . . e e e 779
polygono 783
rasterlmage 785
TECE o o e i e e e e e e 786
TUZ o v o e 787
R0 (=) 788
SEEMENLS e 791
smoothScatter 792
SPINeplot L e e e e 793
SEATS . . ot e e e e e e e e e e e e e 796
SEBM . . L L e 799
stripchart L 800
strwidth oL 801
sunflowerplot L 803
SYmbols e e e 805
XL . . e e e 807
title . . . e e 809
UNIES . . o oo e e e e e e e e e e e 811
xsplineo 812

5 The grid package 815
grid-package 815
absolute.SIZe e 816
AITOW .+ o o o et e e e e e e e e e e e e e e 817
convertNative e 817

dataViewport e e e e e 818

CONTENTS xiii

drawDetails 819
editDetails 820
gEdit. . . . 821
GetNAMES L e e 822
0 1 822
gPath e 824
Grid 825
Grid Viewports 826
gridaadd 829
Grid.aITOWS e e e e e e e 830
grid.cap e e e 833
gridircle 833
grid.Clip e 835
grid.collection 836
grid.CONVert e e 837
grid.COPY .« . o o e e e e e 839
grid.curve 840
griddisplay.list e e 842
griddraw L. 843
grideedit L 844
gridframe L e e e 845
grid.get 846
grid.grabo 847
gridgrillo 848
grid.grob Lo 849
gridJayout 851
gridines L e 852
griddocator 854
gridIS . .o e e e 855
grid.move.to e 857
Grid.NeWPAZE e e e 859
gridnull 859
gridipack 860
gridpplace 862
grid.plotand.degend 863
grid.points e 863
grid.polygon 864
grid.pretty . . . oL oL e e e e e e e 866
grid.prompt e 866
ridraster e e e e 867
gridrecord 869
gridireCt L 870
gridorefresh L e 871
gridremove e 871
grid.SEgMENtS e e 872
grid.Set . .. L e e e e e e 874
grid.showlayout 875
grid.show.viewport L L. 876
griditeXt L e e e e e e e e 877
eridXaxXiS e 879
grid.xspline 880

grid.yaXiS e e 883

Xiv CONTENTS
grobName 884
grobWidth e 884
grobX .. e e e e 885
plotViewport 886
POP-VIEWPOIT o o o ot e e 886
PUSh.VIEWPOIT o o 887
Querying the Viewport Tree L 888
roundreCt L e e e e e e 889
ShowVIewport o e e e 890
stringWidth oL oo 891
3 891
UNIEC . v o e 893
unitlength L e 894
UNILPMIN . . o v v e ot e 894
UNIETEP .« . . v v v v e e e e e e e e e e e e e e 895
validjust Lo 896
validDetails e e e e e 896
vpPath L 897
widthDetails e e 898
Working with Viewports 899
xDetails e e e e 901
xsplinePoints 902

6 The methods package 903
methods-package 903
BasicFunsList e e 904
AS o e e e e e e e e e e e e e 904
BasicClasses i i e e e e e e e e 908
callGeneric e e e e e e 910
callNextMethod e 911
CaNCOBICE v v v v o e e e e e e e e e e e e e e e e e e 913
chind2 e e e 914
Classes i e e e e e 915
classesTOAM e e e e e e 919
classRepresentation-class L. e 920
Documentation e e e e 921
dotsMethods e 923
environment-class L. e e 926
findClass e e e e 926
findMethods L e 928
fixPrel.8 e 931
genericFunction-class L oL 932
GenericFunctions e 933
getClass 936
getMethod 938
getPackageName 940
hasArg e e 941
implicitGeneric 942
inheritedSlotNames 944
initialize-methods 945
IS o e e e e 946
isSealedMethod L. 951

language-class L e e 952

CONTENTS XV

LinearMethodsList-class 953
makeClassRepresentation e 954
method.skeleton 955
MethodDefinition-class 956
Methods e 957
MethodsList-class e e e 964
MethodWithNext-class e 965
NEW . o v o e e e e e e e e e e e e e e e e e e 966
nonStructure-class e e 968
ObjectsWithPackage-class 969
promptClass L 969
promptMethods 971
TEPIeSentation vt e e e e e e e e e e e e e e e e 972
S3Part e e 973
SAgroupGeneric oL e e e e e e e e e 976
SClassExtension-class 978
selectSuperClasses L 979
SetClass 980
setClassUnion e 984
SEtGENETIC . . . v . v e e e e e e e e 986
setMethod e 991
setOIdClass e e e 994
Show e e e 999
showMethods 1000
signature-class L e e e e 1002
Slot . . L 1003
StructureClasses e e e 1004
testinheritedMethods 1006
TraceClasses v i i i e e e e e 1008
validObject 1009
7 The stats package 1013
stats-package 1013
.checkMFCIlasses e e e 1013
act . . e 1014
acf2AR . . e e e e 1016
addl e 1017
addmargins 1019
AZEICZAE ot e e e e e e e e e e e 1021
AIC . e 1023
alias e e e 1025
ANOVA & . v v v i e e e e e e e e e e e e e e e e e e 1026
anova.glm 1027
anova.lm L e 1029
anova.mlm L e 1030
ansariteSt e e e e e e e 1032
10 1035
approxfun 1036
1 O 1038
arolS . . . oL L e e e 1041
AMIMA o e e s e e e e e e e e e e e e e e e e 1043
arima.Sim ot e e e e e e e e e e e e e e e e e 1047

arima0 e e e e 1048

XVi

CONTENTS

ARMAacf e 1052
ARMAOMA e e e 1053
as.helust L L e e 1053
asOneSidedFormula 1054
AVE . o o e 1055
bandwidth e 1056
bartlett.test L e e e e e e 1057
Beta e e 1059
binomutest e e e e e e 1061
Binomial 1062
biplot e 1064
biplot.princomp 1065
birthday e 1066
Box.test e e 1067
C o e e 1069
o 1 o) 1070
case/variable.names e 1071
Cauchy e e 1072
chisqutest 1073
Chisquare e 1075
cmdscale L. e e 1078
coef . . e e 1079
COmPIete.CASES e e e e e 1080
confint e e 1081
constrOptim e e e 1082
CONITASE o v e o e e e e e e e e e e e e e e e e e 1084
CONMTASES . . o o v o v e e e e e e e e e e e e e e e e e e e 1085
CONVOIVE e e e 1087
COPhENELIC o o it e e e e e e e e 1088
070) O 1089
COLEESE . . o vt e o e e e e e e e e 1092
COV.WE . o ot e e e e e e e e e e e e 1095
CPEIAIL . . . v v v vttt e e e e e e e e e e e e 1096
CULTEE . . v vt v v e e e e e e e e e e e e e e e e e 1097
decompose e e e e e e e 1098
deleteresponse 1099
dendrapply 1100
dendrogram L e e e e e 1102
density L. e 1105
deriv e e 1109
deviance e e e e e e e 1111
dfiresidual 1112
diffinv e 1113
dist. . . . e e e e 1114
dummy.coef 1117
ecdf . . L e e 1118
effaovlist e 1120
effects e 1121
embed L e e 1122
expand.model.frame 1123
Exponential 1124

extractAIC e e e 1125

CONTENTS Xvil

factanal 1127
factor.scope L e 1130
family e 1131
FDist e e e e 1134
. e e e e 1136
filter e 1137
fisher.test e 1138
fitted e 1141
fivenum e 1142
flignertest e e e e e 1143
formula 1144
formulanls 1146
friedman.test L. e 1147
ftable e 1149
ftableformula 1151
GammaDist e e 1152
GeOMELTiC o e e e 1154
getlnitial L e e 1155
glm . Lo 1156
glm.control 1161
glm.summaries e e e e e e e e e e 1162
helust e e e e 1163
heatmap 1166
HoltWinters e e 1169
Hypergeometric 1172
identify.hclust oL 1173
influence.measures e e e e e 1174
INEEZIAte o o v e e e e 1177
interaction.plot L e e e e 1179
IQR . . e 1181
isempty.model 1182
ISOTEZ . v v o e o e e e e e e e e e e e e e e e 1183
KalmanLike e 1184
kernapply 1186
kernel e 1187
kmeans e e 1188
kruskal.test L. L e e e 1190
Ks.test . . . e e e e e 1192
ksmooth 1194
lag . . . e 1195
lag.plot e 1196
Line e 1197
Im .. e 1198
Imfit e 1201
Iminfluence 1203
Im.Summaries o e e e e e e e e e e e 1204
loadings 1206
J0SS . . . e e e 1207
loess.control L e 1209
Logistic e 1210
loglik o o 1211

XViii

CONTENTS

Lognormal 1214
JOWeSS o e 1216
Is.ddiag o 1217
[S.print o e e e e e e 1218
Isfit . . e 1219
mad . .. e e e e e 1220
mahalanobis e e e 1221
make.link L 1222
makepredictcall 1223
MANOVA .+ ¢ o v v v e e e e e e e e e e e e e e e e e 1224
mantelhaen.test L. L 1225
mauchly.test 1227
MCNEMALIESt o o o ottt e e e e e e e e 1229
median. e e e e e e e e e e e 1230
medpolish 1231
model.extract 1233
model.frame e e 1234
model.matrix e e e e e e e e e e e 1236
model.tables 1237
monthplot 1239
MOOd.tESt L L e e e e 1241
Multinom e e e 1242
NAACHON v b s e e e 1243
NA.CONLZUOUS v v v v e i e 1244
nafail e e e 1245
NAPIINL o oo o e e e e e e 1246
naresid L. L e 1246
NegBinomial 1247
NEXIN . . o vt e e e e e e e e e e e 1249
1100 0 1250
nlminb e e e e e e 1252
NS . . e 1255
nls.control L. e 1260
NLSStASYyMptoticC o v e e e 1261
NLSstClosestX o o oo e e 1262
NLSStLfASYMPLOte o o o e e e 1262
NLSStRtASYMPLOte o o o e 1263
Normal e 1264
numericDeriv e e e 1266
offset e 1267
ONEWAY.LESE v o i e e e e e e e e e e e e e 1267
OPLIM o oo e 1269
OPtIMIZE o o v o e 1274
orderdendrogram 1276
padjust . ..o 1277
PAITWISE.PrOP.LESt o . . e e e e e e e e e 1279
pairwise.t.test L 1280
pairwise.table oL 1281
pairwise.wilcox.test L L e e 1281
plotact 1282
plotdensity L 1284

plotHoltWinters e 1284

CONTENTS Xix

plotisoreg e 1285
plotIm L e 1287
Plot.ppr . . .o 1289
plotprofilenls e 1290
PIOLSPEC . . . o o o e e e e 1291
plotstepfun 1292
PIOLES . o o o e e e e e 1294
Poisson L 1296
POISSOMLEESt o o i e e 1297
POLY . o e e 1299
POWET .« . o i e e e e e 1300
POWELANOVALESE . . . o o v v v v v v e e e e e e e e e e e 1301
POWELPIOP.LESt v v o o e e e e e e e e e e e e e 1302
POWELLIESt e e e e e e e 1303
PPtest e 1304
PPOINES o o o e e e e e e e e e e 1305
20 1306
PICOMD . . o v o i e e e e e e e e e e e e e e e e e e e 1309
predict 1312
predict Arima e 1313
predict.glm L e e 1314
predict.HoltWinterso 1316
predict.Im 1317
predictdoesso e e 1319
predictnls L. e 1321
predict.smooth.spline L 1322
preplot e e 1323
PrNCOMP .« . . o v v v e ittt e e e e e 1324
print.powerhtest. L. L e e 1326
PIINEES .« . . oo e e e 1327
printCoefmat 1328
profile e e 1329
profilenls 1330
PIOJ o o e 1331
PIOPLESt . . o o o o e e e e e e e e 1333
prop.trend.testo . L e e e e 1335
0 T3 103 5 1 1336
quade.test e e e e e e e 1337
quantile L 1339
r2dtable 1341
read.ftable 1342
rect.hclust 1344
relevel . . . oL e 1345
reorderdefault oL 1345
reorder.dendrogram Lo 1346
replications e e e e e e e 1347
reshape L 1349
residuals oL L L 1351
runmed ... L e e 1352
scatter.smooth e 1354
SCreeplot e 1356

SA L 1357

XX

CONTENTS

SE.CONIIASE . . o v v v v v v e e e e e e e e e e e 1357
selfStart L e 1359
SENAMES L e e e 1361
Shapiro.test e e e e e e e 1362
SignRank e 1363
simulate e e 1364
SmMooth oL e 1366
smooth.spline L e 1367
smoothEnds 1371
sortedXyData e e 1372
SPEC.AT « o v v v e 1373
SPEC.PEIAML . o« o v e e e e e e e e e e e e e 1374
SPEC.LAPET .« v v o e e e e e e e e e e e e e e e e e e 1376
SPECIIUIN .+« v v v v v e et e e e e e e e e e e e e e e e e e e e 1377
splinefun 1378
SSasymp e e e 1381
SSasympOff L 1382
SSasympOrig e e e e e 1383
SSDIEXP . .« o 1384
SSD . 1385
SSfol . e 1386
SSEpl . 1387
SSEOMPertzo e e e e 1388
SSlogis e e 1389
SSmicmeno 1390
SSweibull L 1391
] o 1392
stat.anova L L e e e 1393
stats-deprecated L. L e e e 1394
]) o 1394
stepfun. 1396
StL e 1398
stimethods L 1400
StructTS e 1401
SUMMATY.A0V .« o v v v v v e e e e e e e e e e e e e e e e e e e 1403
summary.glmo e e e e e 1405
summary.Imo 1407
SUMMATY.MANOVA .+ . o v v v e v v e e e e e e e e e e e e e e e e e 1409
summary.nls e e e e 1410
SUMMATY.PINCOMP .+ .+« v v v v v v e e e e e e e e e e e e e e e e e 1412
SUPSINU . . v v i e e e e e e e e e e e e e 1413
SYMOUIML . .+« v v vt e 1414
LIBSE . o o e e 1416
TDist e 1418
termplot 1420
TBIMS . . . o i e e e e e e e e e 1422
terms.formulao L. oL 1423
terms.ObjJect e e 1424
ME o e e e 1425
toeplitz L 1426
IS e e 1427

CONTENTS XxXi

tS.plOt . L e 1429
ESLUNION o e e e e e e e e e e e e e e 1430
tsdiag e e e 1431
ISP . o e e e e e e e e e e e e 1432
tsSmooth e e 1432
Tukey o 1433
TukeyHSD 1434
Uniform e 1436
UNITOOL .« . v v ot e 1437
update . ..o L e e 1439
updateformula 1440
VALLESE o . e e e e e e e e e e e e 1441
VAMMAX . . o o v v e e e e e e e e e e e e e e e e e 1442
VEOV & v v v e e e e e e e e e e e e e e e e e 1443
Weibull e 1444
weighted.mean L 1445
weighted.residuals 1446
WIICOX.EESt e e 1447
WilcoXon e e e e 1450
WINdOW e e e e e e 1452
Xtabs . . . L e e e e e e e 1453
8 The tools package 1457
tools-package L e 1457
buildVignettes 1457
charsets e e e 1458
checkFF e e 1459
checkMDSsSUmMS e e e e e e e 1460
checkRd e 1461
checkRdaFiles e 1463
checkTnF e 1464
checkVignettes 1465
codoC . .. e e e e 1466
delimMatch e e 1467
dependsOnPKgs e 1468
encoded_text_to_latex e 1469
fileutils e e e 1470
getDepList. 1471
HTMLheader e e 1473
HTMLINKS e e e e 1474
installFoundDepends 1474
makeLazyLoading 1475
mdSSUmM e e e e e e 1476
package.dependencies 1477
parse_Rd L 1477
QC . e e 1479
RA2ZHTML e e 1480
RAiff . . . e e e 1483
Rdindex e e e e 1483
RdTextFilter e e e 1484
Rdutils e e 1485
read.00Index e 1486

readNEWS . . . e e 1487

XXii CONTENTS
showNonASCII e 1488
startDynamicHelp 1489
SweaveTeXFilter e 1490
testInstalledPackage L 1490
teXi2AVI e e e e e e 1491
toHTML o e 1492
tools-deprecated 1493
undoC L e e e 1493
vignetteDepends e e 1494
write_PACKAGES e 1495
XZEUEXE . . o o o o e e e e e e e e e 1497

9 The utils package 1499
utils-package 1499
alarm .. oL e e e 1499
APIOPOS + o o e e e e e e e e e e e e e e 1500
aspell . . . e e 1502
available.packages 1503
BATCH e 1504
browseEnv L e e e e 1505
browseURL e e e 1506
browseVignettes 1507
bug.report e e e e e 1508
CAPLUTE.OULPUL o v v v o i e 1511
chooseBioCmirror. e e 1512
chooseCRANMIITOr ot e e e e e e e e e e 1512
CItAtION o o e e e e e e e e e e e e e e e 1513
CItEntry L 1514
close.socket 1516
combn e 1517
compareVersion 1518
COMPILE e 1519
contriburl L 1519
countfields L 1520
data . ..o e 1521
dataentry e e e e 1523
debugger 1525
demo L e e e 1527
download.file 1528
download.packages e 1530
edit . . .o e 1531
edit.dataframe 1532
example L e 1534
file.edit e e e e e 1536
file_test e e 1537
findLineNum 1537
fiX . e 1539
flush.console 1540
format e e e e 1540
getAnywhere 1541
getFromNamespace L 1542
getS3method L. e 1543

glob2rx . . oL e e e e 1544

CONTENTS Xxiil

head L 1545
help . . . e 1547
helporequest 1549
help.search e 1551
help.start 1553
INSTALL e 1554
install.packages e e 1556
installed.packages 1559
LINK . . e 1560
localeToCharset e 1560
IS.Str . . e e e e e e 1561
Maintainer o oo e e e e e e e e 1563
make.packages.html Lo 1564
make.socket L L 1565
MEMOTY.S1Z€ . « . . v v v e e e it e e e e e e e e e e e 1566
MENU . o ottt e e e e e e e e e e e e e e 1567
methods e e e 1568
mirrorAdmin 1569
modifyList. 1570
MEWS .+ o v v v i e 1570
normalizePath 1572
1] 1572
object.size 1573
package.skeleton 1574
packageDescriptiono 1576
packageStatus L 1577
PACE . o o e e e e 1578
PEISON . . . v o v ittt e e e e 1579
PkgUtils o e 1580
PIOMPL oo e e e 1581
promptData e 1583
promptPackage e 1584
QUESHioN e e e e e e e e e e 1585
FCeT0) 1] 0 (<) 1587
read DIF L e 1591
read.fortran L e e 1594
read Wl . . L L L 1595
read.socket oL 1596
read.table L L e e e 1597
TECOVET « v v v v v e e e e e e e e e e e e e e e 1601
relist . . e 1603
REMOVE e 1605
remove.packages L e e 1606
RHOME e 1606
TOMAN .« ¢ v v v v e e e e e e e e e e e e e e e e e 1606
Rprof . . . e 1607
Rprofmem 1608
Rscript o o 1610
RShowDoc e 1611
RSiteSearch e 1612
TEAZS © o o o e e e e e e e e e e e e e 1613

XX1V

Index

CONTENTS

RweavelLatex e 1616
SAVEhiStOTY e e e e e 1618
select.list L e e 1620
sessionlnfo oL 1621
SetRepositories 1621
SHLIB 1622
StaCK e 1623
] 5 1625
summaryRprof o 1627
SWEAVE v o e e e e 1629
SweaveSyntConv e e e 1631
13 1632
toLateX e 1633
txtProgressBar. L 1634
LYPE.CONVEIT . . o . v v vt ettt et e e e e e e e e e e e e e e 1635
L34 Ur Y 1636
UNZIP .« « o o o o e e e e e e e e e e 1637
update.packages L. e e e e e e e 1638
url.show L oL 1641
URLencode e 1641
utils-deprecated L. 1642
VIEW . . o e 1643
VIGNELE o . e e e e e e e e e e e e e 1643
write.table L L 1645
zipfile.extract 1647

1649

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use 1ibrary (help="base").

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the active
device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base name
space.

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always "null
device™", and there are as many entries as the maximal number of graphics devices which have
been simultaneously active. If a device has been removed, its entry will be "" until the device
number is reused.

.Machine

.Machine

Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As all current implementations of
R use 32-bit integers and almost all use IEC 60059 floating-point (double precision) arithmetic, all
but the last two values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e—324.

Value

A list with components

double.

eps

the smallest positive floating-point number x such that 1 + x != 1.
It equals double.base ~ ulp.digits if either double.base is
2 or double.rounding is 0; otherwise, it is (double.base "
double.ulp.digits) / 2. Normally 2.220446e-16.

double.neg.eps

double.

double.

double.

double

double.

a small positive floating-point number x such that 1 - x != 1. It
equals double.base ”~ double.neg.ulp.digits if double.base
is 2 or double.rounding is 0; otherwise, it is (double.base "
double.neg.ulp.digits) / 2. Normally 1.110223e-16. As
double.neg.ulp.digits is bounded below by - (double.digits +
3), double.neg.eps may not be the smallest number that can alter 1 by
subtraction.

xmin the smallest non-zero normalized floating-point number, a power of the radix,
i.e.,,double.base ~ double.min.exp. Normally 2.225074e-308.

xmax the largest normalized floating-point number. Typically, it is equal to (1
- double.neg.eps) * double.base ”~ double.max.exp, buton
some machines it is only the second or third largest such number, being too small
by 1 or 2 units in the last digit of the significand. Normally 1.797693e+308.
Note that larger unnormalized numbers can occur.

base the radix for the floating-point representation: normally 2.

.digits

the number of base digits in the floating-point significand: normally 53.

rounding

the rounding action, one of.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;

.Machine 3

2 if floating-point addition rounds in the IEEE style;

3 if floating-point addition chops, and there is partial underflow;

4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;

5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow.

Normally 5.

double.guard the number of guard digits for multiplication with truncating arithmetic. It is
1 if floating-point arithmetic truncates and more than double digits base-
double.base digits participate in the post-normalization shift of the floating-
point significand in multiplication, and 0 otherwise.
double.ulp.digits
the largest negative integer i such that 1 + double.base "~ i != 1,ex-
cept that it is bounded below by — (double.digits + 3).Normally -52.
double.neg.ulp.digits
the largest negative integer i suchthat 1 - double.base "~ 1 != 1,ex-
cept that it is bounded below by - (double.digits + 3).Normally -53.
double.exponent
the number of bits (decimal places if double.base is 10) reserved for the
representation of the exponent (including the bias or sign) of a floating-point
number. Normally 11.
double.min.exp
the largest in magnitude negative integer i such that double.base ~ i is
positive and normalized. Normally —-1022.
double.max.exp
the smallest positive power of double .base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 2147483647.

sizeof.long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

sizeof.longlong
the number of bytes in a C long long type. Will be zero if there is no such
type, otherwise usually 8.

sizeof.longdouble
the number of bytes ina C long double type. Will be zero if there is no such
type, otherwise possibly 12 (most 32-bit builds) or 16 (most 64-bit builds).

sizeof.pointer
the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

Note

sizeof.longdouble only tells you the amount of storage allocated for a long double (which
are used internally by R for accumulators in e.g. sum, and can be read by readBin). Often what
is stored is the 80-bit extended double type of IEC 60059, padded to the double alignment used on
the platform — this seems to be the case for the common R platforms using ix86 and x86_64 chips.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14, 4, 303-311.

See Also

.Platform

.Plat form for details of the platform.

Examples

.Machine

or for a neat printout
noquote (unlist (format (.Machine)))

.Platform

Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.

Usage

.Platform

Value

A list with at least the following components:

O0S.type

file.sep

dynlib.ext

GUI

endian

pkgType

path.sep

r_arch

character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

character string, giving the file separator used on your platform: " /" on both
Unix-alikes and on Windows (but not on the once port to Classic Mac OS).

character string, giving the file name extension of dymamically loadable
libraries, e.g., ".d11" on Windows and ".so" or ".s1" on Unix-alikes.
(Note for Mac OS X users: these are shared objects as loaded by dyn . load
and not dylibs: see dyn . load.)

character string, giving the type of GUI in use, or "unknown" if no GUI can
be assumed. Possible values are for Unix-alikes the values given via the ‘—g’
command-line flag ("X11", "Tk"), "AQUA" (running under R.app on Mac
0OS X), "Rgui" and "RTerm" (Windows) and perhaps others under alternative
front-ends or embedded R.

character string, "big" or "1ittle", giving the endianness of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

character string, the preferred setting for options ("pkgType"). Val-
ues "source", "mac.binary", "mac.binary.leopard" and
"win.binary" are currently in use.

character string, giving the path separator, used on your platform, e.g., ": "
on Unix-alikes and "; " on Windows. Used to separate paths in environment
variables such as PATH and TEXINPUTS.

character string, possibly "". The name of the architecture-specific directory
used in this build of R.

abbreviate 5

AQUA
.Platform$GUT is set to "AQUA" under the Mac OS X GUI, R. app. This has a number of
consequences:
» the DISPLAY environment variable is set.
* appends ‘/usr/local/bin’ to the PATH environment variable.
* the default graphics device is set to quartz.

* selects native (rather than Tk) widgets for the graphics = TRUE options of menu and
select.list.

* HTML help is displayed in the internal browser.

* The spreadsheet-like data editor/viewer uses a Quartz version rather than the X11 one.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

Examples

Note: this can be done in a system-independent way
by file.info () $isdir
if(.Platform$0S.type == "unix") {
system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function (dir)
sapply (dir, function(d)system.test ("-d", d))

dir.exists(c(R.home (), "/tmp", "~", "/NO"))%# > T T T F
}
abbreviate Abbreviate Strings
Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless st rict=TRUE.

Usage

abbreviate (names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE,
method = c("left.kept", "both.sides"))

6 abbreviate

Arguments
names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.
minlength the minimum length of the abbreviations.

use.classes logical (currently ignored by R).

dot logical: should a dot (" . ") be appended?
strict logical: should minlength be observed strictly? Note that setting
strict=TRUE may return non-unique strings.
method a string specifying the method used with default "1eft . kept", see ‘Details’
below.
Details
The algorithm (method = "left.kept") used is similar to that of S. For a single string it

works as follows. First all spaces at the beginning of the string are stripped. Then (if necessary)
any other spaces are stripped. Next, lower case vowels are removed (starting at the right) followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper case
letters are stripped.

Characters are always stripped from the end of the word first. If an element of name s . arg contains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space. This has
NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the original names.arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic inter-
nal abbreviate () algorithm is applied to the characterwise reversed strings; if there are still
duplicated abbreviations and if strict=FALSE as by default, minlength is incremented by
one and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names . arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument: no
other attributes are retained.

Warning
This is really only suitable for English, and does not work correctly with non-ASCII characters in

multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr.

agrep

Examples

x <= c("abcd",
abbreviate (x,
abbreviate (%,

"efgh", "abce")
2)
2, strict=TRUE)# >> 1st and 3rd are == "ab"

(st.abb <- abbreviate (state.name, 2))

table (nchar (st.abb))# out of 50, 3 need 4 letters
as <- abbreviate (state.name, 3, strict=TRUE)
as[which (as == "Mss")]

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate (state.name, 2, method="both")

table (nchar (st.ab2))

Compare the two methods:

cbind (st.abb,

st.ab2)

agrep

Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within the string x (the second
argument) using the Levenshtein edit distance.

Usage

agrep (pattern, x, ignore.case = FALSE, value = FALSE,
max.distance = 0.1, useBytes = FALSE)

Arguments

pattern

ignore.case

value

max.distance

a non-empty character string to be matched (not a regular expression!). Coerced
by as.character to a string if possible.

character vector where matches are sought. Coerced by as.charactertoa
character vector if possible.

if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length (will be replaced by the smallest integer not less
than the corresponding fraction of the pattern length), or a list with possible
components

all: maximal (overall) distance

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default to all. The
component names can be abbreviated.

useBytes logical. in a multibyte locale, should the comparison be character-by-character

(the default) or byte-by-byte.

Details

The Levenshtein edit distance is used as measure of approximateness: it is the total number of

insertions, deletions and substitutions required to transform one string into another.

As from R 2.10.0 this uses tre by Ville Laurikari (http://http://laurikari.net/

tre/), which supports MBCS character matching much better than the previous version.

Value

Either a vector giving the indices of the elements that yielded a match, or, if value is TRUE, the

matched elements (after coercion, preserving names but no other attributes).

Author(s)

Original version by David Meyer. Current version by Brian Ripley.

See Also

grep

Examples

agrep ("lasy", "1 lazy 2")

agrep ("lasy", c(" 1 lazy 2", "1 lasy 2"), max = list(sub = 0))

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)

agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max 2, value = TRUE)
()

1
agrep ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

"

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

zero or more logical vectors. Other objects of zero length are ignored, and the

rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

http://http://laurikari.net/tre/
http://http://laurikari.net/tre/

all 9

Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . . . (after coercion), after removing
NAs if requested by na.rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur

if na.rm = FALSE and ... contains no FALSE values and at least one NA value).

S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm

Note

That a1l (logical (0)) is true is a useful convention: it ensures that

all(all(x), all(y)) == all(x,y)

even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

any, the ‘complement’ of a11, and stopifnot (x) whichisan all (*) ‘insurance’.

Examples
range (x <- sort (round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

10 all.equal

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal (x,y) is a utility to compare R objects x and y testing ‘near equality’. If they
are different, comparison is still made to some extent, and a report of the differences is returned.
Don’tuse all.equal directly in if expressions—either use 1sTRUE (all.equal (....))
or identical if appropriate.

Usage

all.equal (target, current, ...)

S3 method for class 'numeric':

all.equal (target, current,
tolerance = .MachineS$Sdouble.eps ©~ 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal (target, current,
check.attributes = TRUE, check.names = TRUE, ...)

Arguments
target R object.
current other R object, to be compared with target.
Further arguments for different methods, notably the following two, for numer-
ical comparison:
tolerance numeric > 0. Differences smaller than tolerance are not considered.
scale numeric scalar > 0 (or NULL). See ‘Details’.
check.attributes
logical indicating if the attributes (.) of target and current should
be compared as well.
check.names logical indicating if the names (.) of target and current should be com-
pared as well (and separately from the attributes).
Details

There are several methods available, most of which are dispatched by the default method, see
methods ("all.equal"). all.equal.list and all.equal.language provide com-
parison of recursive objects.

Numerical comparisons for scale = NULL (the default) are done by first computing the mean
absolute difference of the two numerical vectors. If this is smaller than tolerance or not finite,
absolute differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividing) by scale.

For complex arguments, the modulus Mod of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

attr.all.equal isused for comparing attributes, returning NULL or a character vec-
tor.

all.names 11

Value
Either TRUE (NULL for attr.all.equal) or a vector of mode "character" describing the
differences between target and current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal (pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)

stopifnot (

all.equal (tan(d45), rep(1l,10))) # TRUE, but

all (tan (d45) == rep(l,10)) # FALSE, since not exactly
(

all.equal (tan(d45), rep(1l,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage
all.names (expr, functions = TRUE, max.names = -1L, unique = FALSE)
all.vars (expr, functions = FALSE, max.names = —-1L, unique = TRUE)
Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in the
result.
max.names the maximum number of names to be returned. —1 indicates no limit (other than
vector size limits).
unique a logical value which indicates whether duplicate names should be removed
from the value.
Details

These functions differ only in the default values for their arguments.

12 any

Value

A character vector with the extracted names.

Examples

all.names (expression(sin(x+y)))
all.vars (expression (sin (x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any (..., na.rm = FALSE)

Arguments
zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.
na.rm logical. If true NA values are removed before the result is computed.
Details
This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as this
is often unintentional.

This is a primitive function.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in . .. (after coercion), after removing
NAs if requested by na.rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur

ifna.rm = FALSE and ... contains no TRUE values and at least one NA value).
S4 methods
This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,

na.rm.

aperm 13
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also
all, the ‘complement’ of any.
Examples
range (x <- sort (round(stats::rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")
aperm Array Transposition
Description
Transpose an array by permuting its dimensions and optionally resizing it.
Usage
aperm(a, perm, resize = TRUE)
Arguments
a the array to be transposed.
perm the subscript permutation vector, which must be a permutation of the integers
1:n, where n is the number of dimensions of a. The default is to reverse the
order of the dimensions.
resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).
Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a,

and the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.uk> did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Brooks/Cole.

Wadsworth &

14 append

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
X <- array(l:24, 2:4)

xt <- aperm(x, c(2,1,3))
StOpiant (t(xt[,,2]1) == xI[,,21,
t(xtl,,31) == xI[,,3],
t(xtl,,4]) == x[,,4])
append Vector Merging
Description

Add elements to a vector.

Usage

append (x, values, after = length(x))

Arguments

X the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append (1:5, 0:1, after=3)

apply 15

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array or

matrix.
Usage
apply (X, MARGIN, FUN, ...)
Arguments
X an array, including a matrix.
MARGIN a vector giving the subscripts which the function will be applied over. 1 indicates
rows, 2 indicates columns, ¢ (1, 2) indicates rows and columns.
FUN the function to be applied: see ‘Details’. In the case of functions like +, $*+%,
etc., the function name must be backquoted or quoted.
optional arguments to FUN.
Details

If X is not an array but has a non-null dim value, apply attempts to coerce it to an array via
as.matrix if it is two-dimensional (e.g., data frames) or via as.array.

FUN is found by a call to match. fun and typically is either a function or a symbol (e.g. a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension c (n,
dim(X) [MARGIN]) if n > 1. If nequals 1, apply returns a vector if MARGIN has length 1
and an array of dimension dim (X) [MARGIN] otherwise. If n is 0, the result has length O but not
necessarily the ‘correct’ dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
prod (dim (X) [MARGIN]) with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as . vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lapply, tapply, and convenience functions sweep and aggregate.

16 args

Examples

Compute row and column sums for a matrix:

x <— cbind(x1l = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <—- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind (cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot (apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, cl, c2) c(mean(x[cl]), mean(x[c2]))
apply(x,1, cave, cl="x1", c2=c("x1","x2"))

ma <- matrix(c(1l:4, 1, 6:8), nrow = 2)

ma

apply (ma, 1, table) #--> a list of length 2

apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot (dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call

z <- array(l:24, dim=2:4)

zseq <- apply(z, 1:2, function(x) seg_len (max(x)))
zseq ## a 2 x 3 matrix

typeof (zseq) ## list

dim(zseq) ## 2 3

zseql[l,]

apply(z, 3, function(x) seg_len(max(x)))

a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage

args (name)

Arguments
name a function (a closure or a primitive). If name is a character string then the
function with that name is found and used.
Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Arithmetic 17

Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that some primitives
do not make use of named arguments and match by position rather than name.

NULL in case of a non-function.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help.

Examples

args(c)
args (graphics::plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

Usage

X +y

X -y

X *x Yy

x /'y

x Ny

X %%y

x %/% y
Arguments

X, Y numeric or complex vectors or objects which can be coerced to such, or other

objects for which methods have been written.

Details

The binary arithmetic operators are generic functions: methods can be written for them individually
or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

18 Arithmetic

1 ~ yandy ~ 0arel, always. x ~ y should also give the proper limit result when either
argument is infinite (i.e., +— Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real arguments, $% can be subject to catastrophic loss of accuracy if x is much larger than v,
and a warning is given if this is detected.

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, — for subtraction, » for multiplication, / for
division and ~ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
$% y) + vy * (x %/% y) (up to rounding error) unless y == 0 where the result is

NA_integer_ or NaN (depending on the typeof of the arguments). See http://en.
wikipedia.org/wiki/Modulo_operation for the rationale.

If either argument is complex the result will be complex, and if one or both arguments are numeric,
the result will be numeric. If both arguments are integer, the result of / and ~ is numeric and of the
other operators integer (with overflow returned as NA with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the class and tsp attribute
of whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(el, e2).

Note

** is translated in the parser to *, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it has been deprecated in S for 20 years, it was still accepted in 2008.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sqrt for miscellaneous and Special for special mathematical functions.
Syntax for operator precedence.

%% for matrix multiplication.

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

array 19

Examples

<- -1:12

+ 1

* x + 3

$ 2 #-— 1is periodic
/% 5

XX DN X X

o° o

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array (data = NA, dim =
as.array(x, ...)

is.array (x)

length (data), dimnames = NULL)

Arguments
data a vector (including a list) giving data to fill the array.
dim the dim attribute for the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.
dimnames either NULL or the names for the dimensions. This is a list with one component
for each dimension, either NULL or a character vector of the length given by
dim for that dimension. The list can be named, and the list names will be used
as names for the dimensions. If the list is shorter than the number of dimensions,
it is extended by NULLs to the length required
x an R object.
additional arguments to be passed to or from methods.
Details

An array in R can have one, two or more dimensions. It is simply a vector which is stored with
additional attributes giving the dimensions (attribute "dim") and optionally names for those di-
mensions (attribute "dimnames™").

A two-dimensional array is the same thing as amatrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions:
str does distinguish them in recent versions of R.

The "dim" attribute is an integer vector of length one or more containing non-negative values: the
product of the values must match the length of the array.

The "dimnames" attribute is optional: if present it is a list with one component for each dimen-
sion, either NULL or a character vector of the length given by the element of the "dim" attribute
for that dimension.

is.array is a primitive function.

20 as.data.frame

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim [names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., hasa dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

Note

is.array is a primitive function.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

(11 [,2] [,3] [,4]
#01,1 1 3 2 1
#12,] 2 1 3 2
as.data.frame Coerce to a Data Frame
Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage
as.data.frame (x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'character':

as.data.frame(x, ...,
stringsAsFactors = default.stringsAsFactors())

S3 method for class 'matrix':
as.data.frame (x, row.names = NULL, optional = FALSE, ...,

as.data.frame 21

stringsAsFactors = default.stringsAsFactors())

is.data.frame (x)

Arguments
x any R object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syntactic
names: see make .names) is optional.
additional arguments to be passed to or from methods.
stringsAsFactors
logical: should the character vector be converted to a factor?
Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data. frame: two examples are matrices of class "model .matrix" (which
are included as a single column) and list objects of class "POSIX1t" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unless I.

Value

as.data.frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

References
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional argu-
ments if called directly).

22 as.function

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search path.

Usage

as.environment (object)

Arguments
object the object to convert. If it is already an environment, just return it. If it is a
number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.
Value

The corresponding environment object.

Note

This is a primitive function.

Author(s)
John Chambers

See Also

environment for creation and manipulation, search.

Examples

as.environment (1) ## the global environment

identical (globalenv (), as.environment (1)) ## is TRUE
try(as.environment ("package:stats")) ## stats need not be loaded
as.function Convert Object to Function
Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

as.POSIX* 23

Usage

as.function(x, ...)

Default S3 method:

as.function(x, envir = parent.frame(), ...)
Arguments
X object to convert, a list for the default method.

additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv () instead if this is what you want, as the special
handling of NULL may change in a future release.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist (a=,b=2,a+b))

as.function(alist (a=,b=2,a+b)) (3)
as.POSIX«* Date-time Conversion Functions
Description

Functions to manipulate objects of classes "POSIX1t" and "POSIXct" representing calendar
dates and times.

24 as.POSIX*

Usage
as.POSIXct(x, tz = "", ...)
as.POSIX1lt(x, tz = "", ...)

S3 method for class 'character':
as.POSIX1lt(x, tz = "", format, ...)

S3 method for class 'numeric':
as.POSIX1lt(x, tz = "", origin, ...)

S3 method for class 'POSIX1lt':
as.double(x, ...)

Arguments

An object to be converted.

tz A timezone specification to be used for the conversion, if one is required.
System-specific (see time zones), but "" is the current timezone, and "GMT"
is UTC (Universal Time, Coordinated).

further arguments to be passed to or from other methods.
format character string giving a date-time format as used by st rpt ime.

origin a date-time object, or something which can be coerced by
as.POSIXct (tz="GMT") to such an object.

Details

The as.POSIX« functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, includ-
ing objects of the other class and of classes "Date", "date" (from package date), "chron"
and "dates" (from package chron) to these classes. Dates without times are treated as being at
midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors: if it is not specified and no standard format works for the first non-NA input
an error is thrown.

Logical NAs can be converted to either of the classes, but no other logical vectors can be.
The as.double method converts "POSIX1t" objects to "POSIXct".

If you are given a numeric time as the number of seconds since an epoch, see the examples.

Value
as.POSIXct and as.POSIX1t return an object of the appropriate class. If tz was specified,
as.POSIX1t will give an appropriate "t zone" attribute.

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIX1t" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use format .POSIX1t or format .POSIXct.

AsIs 25

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but it will probably be ignored.

See Also

DateTimeClasses for details of the classes; st rpt ime for conversion to and from character repre-
sentations. Sys .t imezone for details of the (system-specific)naming of time zones.

Examples

(z <= Sys.time()) # the current datetime, as class "POSIXct"
unclass (z) # a large integer

floor (unclass (z)/86400) # the number of days since 1970-01-01 (UTC)
(z <- as.POSIX1lt (Sys.time())) # the current datetime, as class "POSIX1t"
unlist (unclass(z)) # a list shown as a named vector

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
z <- 1472562988
ways to convert this

as.POSIXct (z, origin="1960-01-01") # local
as.POSIXct(z, origin="1960-01-01", tz="GMT") # in UTC
as.POSIXct (z, origin=ISOdatetime(1960,1,1,0,0,0)) # local
ISOdatetime (1960,1,1,0,0,0) + =z # local

SPSS dates (R-help 2006-02-16)
z <— ¢ (10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct (z, origin="1582-10-14", tz="GMT"))

as.POSIX1lt (Sys.time(), "GMT") # the current time in UTC
Not run: ## These may not be correct names on your system

as.POSIX1lt (Sys.time (), "America/New_York") # in New York
as.POSIX1lt (Sys.time(), "EST5EDT") # alternative.
as.POSIX1lt (Sys.time (), "EST") # somewhere in Eastern Canada
as.POSIX1t (Sys.time (), "HST") # in Hawaiil

as.POSIX1lt (Sys.time (), "Australia/Darwin")

End (Not run)

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

I(x)

Arguments

x an object

26 assign

Details
Function I has two main uses.

e In function data.frame. Protecting an object by enclosing it in I () in a call to
data. frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns. I can also be used to
protect objects which are to be added to a data frame, or converted to a data frame via
as.data.frame.

It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" hasa
few of its own methods, including for [, as.data.frame, print and format.

* In function formula. There it is used to inhibit the interpretation of operators such as "+",
"—m_omi"and "~" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms . formula.

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage
assign(x, value, pos = -1, envir = as.environment (pos),
inherits = FALSE, immediate = TRUE)
Arguments
X a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning.
value a value to be assigned to x.
pos where to do the assignment. By default, assigns into the current environment.
See the details for other possibilities.
envir the environment to use. See the details section.
inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

assign 27

Details

There are no restrictions on name: it can be a non-syntactic name (see make .names).

The pos argument can specify the environment in which to assign the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach and with.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see 1lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-,get,exists, environment.

Examples

for(i in 1:6) { #-—- Create objects 'r.1', 'r.2', ... 'r.6' ——
nam <- paste("r",i, sep=".")

assign(nam, 1:i)

}

ls (pattern = "*r..s")

##-— Global assignment within a function:

myf <- function(x) {

innerf <- function(x) assign("Global.res", x"2, envir = .GlobalEnv)
innerf (x+1)

t

myf (3)

Global.res # 16

a <- 1:4
assign("all]l", 2)
all] == 2 #FALSE

get ("a[l]") == 2 #TRUE

28

assignOps

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

x <—- value
X <<- value
value -> x
value —->> x

x = value
Arguments
x a variable name (possibly quoted).
value a value to be assigned to x.
Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <- and = assign into the environment in which they are evaluated. The operator
<- can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the
complete expression typed at the command prompt) or as one of the subexpressions in a braced list
of expressions.

The operators <<— and —>> cause a search to made through the environment for an existing defi-
nition of the variable being assigned. If such a variable is found (and its binding is not locked) then
its value is redefined, otherwise assignment takes place in the global environment. Note that their
semantics differ from that in the S language, but are useful in conjunction with the scoping rules of
R. See ‘“The R Language Definition’ manual for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]1). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <— = <<- group right to left, the other from left to right.

Value

value. Thusonecanuse a <- b <- ¢ <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

attach 29

See Also

assign, environment.

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage
attach (what, pos = 2, name = deparse(substitute (what)),
warn.conflicts = TRUE)
Arguments
what ‘database’. This can be a data.frame ora 1ist or a R data file created with
save or NULL or an environment. See also ‘Details’.
pos integer specifying position in search () where to attach.
name name to use for the attached database.

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object . conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously loaded packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos=1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
Sys.source.

Names starting "package : " are reserved for 1 ibrary and should not be used by end users. The
name given for the attached environment will be used by search and can be used as the argument
to as.environment.

30 attr

There are hooks to attach user-defined table objects of class "UserDefinedDatabase",
supported by the Omegahat package RObjectTables. See http://www.omegahat.org/
RObjectTables/.

Value

The environment is returned invisibly with a "name" attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

Examples

require (utils)

summary (women$height) # refers to variable 'height' in the data frame
attach (women)
summary (height) # The same variable now available by name

height <- height=*2.54 # Don't do this. It creates a new variable
in the user's workspace
find ("height")

summary (height) # The new variable in the workspace
rm (height)
summary (height) # The original variable.

height <<- height%25.4 # Change the copy in the attached environment
find("height")

summary (height) # The changed copy
detach ("women")
summary (women$Sheight) # unchanged

Not run: ## create an environment on the search path and populate it
sys.source ("myfuns.R", envir=attach (NULL, name="myfuns"))

End (Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- wvalue

http://www.omegahat.org/RObjectTables/
http://www.omegahat.org/RObjectTables/

attr 31

Arguments
X an object whose attributes are to be accessed.
which a non-empty character string specifying which attribute is to be accessed.
exact logical: should which be matched exactly?
value an object, the new value of the attribute, or NULL to remove the attribute.
Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the at-
tributes of x, then (unless exact = TRUE) a unique partial match. (Setting
options (warnPartialMatchAttr=TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the 1evels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

Both are primitive functions.

Value

For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <= 1:10
attr(x,"dim") <- c (2, 5)

32 attributes

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes (obj)
attributes (obj) <- value
mostattributes (obj) <- value

Arguments

obj an object

value an appropriate named list of attributes, or NULL.
Details

Unlike attr it is possible to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and t sp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of 1evels which should be set for factors via the levels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when valid whereas an attributes assignment would give an
error if any are not.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement method for attributes).

Both forms of attributes are primitive functions.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr.

autoload 33

Examples

x <— cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes (x)

strip an object's attributes:
attributes (x) <- NULL
x # now just a vector of length 6

mostattributes (x) <- list (mycomment = "really special", dim = 3:2,
dimnames = 1list (LETTERS[1:3], letters[l1:5]), names = paste(l:6))
x # dim(), but not {dim}names
autoload On-demand Loading of Packages
Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if £i1e was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

Usage

autoload (name, package, reset = FALSE, ...)
autoloader (name, package, ...)

.AutoloadEnv
.Autoloaded
Arguments
name string giving the name of an object.
package string giving the name of a package containing the object.
reset logical: for internal use by autoloader.

other arguments to 1ibrary.

Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

34 backsolve

Examples

require (stats)

autoload ("interpSpline", "splines")
search ()

l1s ("Autoloads")

.Autoloaded

x <— sort(stats::rnorm(1l2))
y <= x"2

is <- interpSpline(x,y)
search () ## now has splines
detach ("package:splines")
search ()

is2 <- interpSpline (x,y+x)
search () ## and again
detach ("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description
Solves a system of linear equations where the coefficient matrix is upper (or ‘right’, ‘R’) or lower

(‘left’, ‘L) triangular.

x <—- backsolve (R, b) solves Rx = b, and
x <- forwardsolve (L, b) solves Lx = b, respectively.
Usage

backsolve (r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve (l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

Arguments
r,1l an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.
x a matrix whose columns give the right-hand sides for the equations.
k The number of columns of r and rows of x to use.
upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.
transpose logical; if TRUE, solve r’ xy = z for y, i.e,, t (r) %*% y == x.
Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

Note that forwardsolve(L, b) is just a wrapper for backsolve(L, b,
upper.tri=FALSE).

basename 35

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

See Also

chol, gr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r $x% y # == x = (8,4,2)

backsolve (r, x, transpose = TRUE) # 8 -12 -5

basename Manipulate File Paths

Description

basename removes all of the path up to and including the last path separator (if any).

dirname returns the part of the path up to but excluding the last path separator, or " . " if there
is no path separator.

Usage
basename (path)
dirname (path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion is done: see the description of path.expand.

Trailing path separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

On Windows this will accept either \ or / as the path separator, but dirname will return a path
using / (except if a network share, when the leading \ \ will be preserved). Only expect these to be
able to handle complete paths, and not for example just a share or a drive.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

If an element of path is NA, so is the result.

36 Bessel

Note
These are not wrappers for the POSIX system functions of the same names: in particular they do not
have the special handling of the path " /" and of returning " . " for empty strings in basename.
See Also

file.path, path.expand.

Examples

basename (file.path("", "pl", "p2", "p3", c("filel", "file2")))
dirname (file.path("","pl", "p2", "p3", "filename"))

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J,, and Y,,, and Modified
Bessel functions (of first and third kind), I,, and K,,.

Usage
besselIl (x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ (x, nu)
besselY (x, nu)
Arguments
X numeric, > 0.
nu numeric; The order (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(1) or underflow (K,), respectively.

Details

If expon.scaled = TRUE, e *I,(z), or e* K, (x) are returned.

For v < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for be sse1K which is symmetric in nu.

Value
Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of the
corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler <maechler@stat.math.ethz.ch.>

Bessel 37

Source

The C code is a translation of Fortran routines from http://www.netlib.org/specfun/
r[ijkylbesl.

References

Abramowitz, M. and Stegun, L. A. (1972) Handbook of Mathematical Functions. Dover, New York;
Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, such as gamma, I'(z), and beta, B(z).
Examples

require (graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)

plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu=nu), col = nu+2)

legend (0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <= c(-.8, .8)

plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)

legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu's

xXx <— 2:7

nu <- seq(-10, 9, length.out = 2001)
op <- par(lab = c(l6, 5, 7))

matplot (nu, t (outer (xx, nu, bessell)), type = "1", ylim = c(-50, 200),
main = expression (paste("Bessel ", I[nu] (x), " for fixed ", x,
", as ", f(nu))),
xlab = expression (nu))
abline (v=0, col = "light gray", lty = 3)
legend (5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))

par (op)

x0 <- 27 (-20:10)
plot (x0, x07-8, log="xy", ylab="",type="n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale")
for(nu in sort (c(nus, nus+.5)))

lines (x0, besseld(x0, nu=nu), col = nu+2)
legend (3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

col = nus + 2, lwd = 1)

plot (x0, x07-8, log="xy", ylab="", type="n",

main = "Bessel Functions K_nu(x) near 0\n log - log scale")
for(nu in sort (c(nus, nus+.5)))
lines (x0, besselK(x0, nu=nu), col = nu+2)

legend (3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

38 bindenv
col = nus + 2, lwd = 1)
x <— x[x > 0]
plot (x, x, ylim=c(le-18, 1lell), log = "y", ylab = "", type = "n",
main = "Bessel Functions K_nu(x)")
for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)
legend (0, le-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)
yl <= c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
main = "Bessel Functions Y_nu(x)")
for (nu in nus) {
Xx <— x[x > .6*xnu]
lines (xx, besselY (xx, nu=nu), col = nu+2)
}
legend (25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)
negative nu in bessel_Y —-- was bogus for a long time
curve (besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = '")
for(nu in c(seq(-0.2, -2, by = -0.1)))
curve (besselY (x, nu), add = TRUE)
title (expression (besselY (x, nu) * " "o
{nu == 1list (-0.1, -0.2, ..., =2)1}))
bindenv Binding and Environment Adjustments
Description
These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.
Usage
lockEnvironment (env, bindings = FALSE)
environmentIsLocked (env)
lockBinding (sym, env)
unlockBinding (sym, env)
bindingIsLocked (sym, env)
makeActiveBinding (sym, fun, env)
bindingIsActive (sym, env)
Arguments
env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string

fun a function taking zero or one arguments

bindenv 39

Details

The function lockEnvironment locks its environment argument, which must be a normal en-
vironment (not base). (Locking the base environment and name space may be supported later.)
Locking the environment prevents adding or removing variable bindings from the environment.
Changing the value of a variable is still possible unless the binding has been locked. The name
space environments of packages with name spaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installs fun so that getting the value of sym calls fun with no arguments,
and assigning to sym calls fun with one argument, the value to be assigned. This allows the
implementation of things like C variables linked to R variables and variables linked to databases. It
may also be useful for making thread-safe versions of some system globals.

Value
The xisLocked functions return a length-one logical vector. The remaining functions return
NULL, invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockEnvironment (e)

get ("x", envir = e)

assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings

e <- new.env ()

assign("x", 1, envir = e)

get ("x", envir = e)

lockBinding ("x", e)

try(assign("x", 2, envir = e)) # error
unlockBinding ("x", e)

assign("x", 2, envir = e)

get ("x", envir = e)

active bindings
f <- local({
x <= 1
function (v) {
if (missing(v))
cat ("get\n")
else {
cat ("set\n")
X <<—- v

40 body
X
}
b
makeActiveBinding ("fred", f, .GlobalEnv)
bindingIsActive ("fred", .GlobalEnv)
fred
fred <- 2
fred
body Access to and Manipulation of the Body of a Function
Description
Get or set the body of a function.
Usage
body (fun = sys.function(sys.parent ()))
body (fun, envir = environment (fun)) <- value
Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value an object, usually a language object: see section ‘Value’.
Details
For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent environment. If it is not specified, the function calling body is used.
The bodies of all but the simplest are braced expressions, that is calls to {: see the ‘Examples’
section for how to create such a call.
Value
body returns the body of the function specified. This is normally a language object, most often a
call to {, but it can also be an object (e.g. pi) to be the return value of the function.
The replacement form sets the body of a function to the object on the right hand side, and (po-
tentially) resets the environment of the function. If value is of class "expression" the first
element is used as the body: any additional elements are ignored, with a warning.
Note
Prior to R 2.9.0, list values of value needed to be supplied as a single-element list of the list: this
was undocumented prior to R 2.8.1 so is unlikely to actually occur.
See Also

alist,args, function.

bquote

Examples

body (body)
f <- function(x) x"5
body (f) <- quote (5"x)

or equivalently body(f) <- expression (5"x)

£(3) # = 125
body (£)

creating a multi-expression body
e <- expression(y <- x"2, return(y))

or a list

41

body (f) <- as.call(c(as.name("{"), e))
f
£(8)
bquote Partial substitution in expressions
Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in . () are evaluated in the specified where environment.

Usage

bguote (expr, where = parent.frame())

Arguments

expr A language object.

where An environment.

Value

A language object.

See Also

quote, substitute
Examples
require (graphics)

a <- 2

bquote (a == . (a))
substitute(a == A, list (A = a))

plot(1:10, a*(1:10), main = bquote (

42 browser

to set a function default arg
default <- 1

bguote (function(x, y = . (default)) x+y)
browser Environment Browser
Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser (text="", condition=NULL, expr=TRUE, skipCalls=0L)

Arguments
text a text string that can be retrieved once the browser is invoked.
condition a condition that can be retrieved once the browser is invoked.
expr An expression, which if it evaluates to TRUE the debugger will invoked, other-
wise control is returned directly.
skipCalls how many previous calls to skip when reporting the calling context.
Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

The purpose of the text and condition arguments are to allow helper programs (e.g. external
debuggers) to insert specific values here, so that the specific call to browser (perhaps its location in
a source file) can be identified and special processing can be achieved. The values can be retrieved
by calling browserText and browserCondition.

The purpose of the expr argument is to allow for the illusion of conditional debugging. It is an
illusion, because execution is always paused at the call to browser, but control is only passed to the
evaluator described below if expr evaluates to TRUE. In most cases it is going to be more efficient
touse an i f statement in the calling program, but in some cases using this argument will be simpler.

The skipCalls argument should be used when the browser () call is nested within another
debugging function: it will look further up the call stack to report its location.

At the browser prompt the user can enter commands or R expressions. The commands are

c (or just return) exit the browser and continue execution at the next statement.
cont synonym for c.

n enter the step-through debugger. This changes the meaning of c: see the documentation for
debug.

where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

browserText 43

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options (deparse.max.lines).

This is a primitive function but does argument matching in the standard way.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also
debug, and t raceback for the stack on error. browserText for how to retrieve the text and
condition.
browserText Functions to Retrieve Values Supplied by Calls to the Browser
Description

A call to browser can provide context by supplying either a text argument or a condition argument.
These functions can be used to retrieve either of these arguments.

Usage

browserText (n=1)
browserCondition (n=1)
browserSetDebug (n=1)

Arguments

n The number of contexts to skip over, it must be non-negative.

Details

Each call to browser can supply either a text string or a condition. The functions browserText
and browserCondition provide ways to retrieve those values. Since there can be multiple
browser contexts active at any time we also support retrieving values from the different contexts.
The innermost (most recently initiated) browser context is numbered 1 other contexts are numbered
sequentially.

browserSetDebug provides a mechanism for initiating the browser in one of the calling
functions. See sys.frame for a more complete discussion of the calling stack. To use
browserSetDebug you select some calling function, determine how far back it is in the call
stack and call browserSetDebug with n set to that value. Then, by typing c at the browser
prompt you will cause evaluation to continue, and provided there are no intervening calls to browser
or other interrupts, control will halt again once evaluation has returned to the closure specified. This
is similar to the up functionality in gdb or the "step out" functionality in other debuggers.

44 builtins

Value

browserText returns the text, while browserCondit ion returns the condition from the spec-
ified browser context.

browserSetDebug returns NULL, invisibly.

Note

It may be of interest to allow for querying further up the set of browser contexts and this function-
ality may be added at a later date.

Author(s)

R. Gentleman

See Also

browser

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins (internal = FALSE)

Arguments
internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.
Details

builtins () returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use 1s (baseenv (), all=TRUE).

builtins (TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as . Internal (foo (args ...)) for foo in the list.

Value

A character vector.

by 45

by Apply a Function to a Data Frame Split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage
by (data, INDICES, FUN, ..., simplify = TRUE)
Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow (data).
FUN a function to be applied to data frame subsets of data.
further arguments to FUN.
simplify logical: see tapply.
Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

Object data will be coerced to a data frame by the default method, but if this results in a 1-column
data frame, the objects passed to FUN are dropped to a subsets of that column. (This was the
long-term behaviour, but only documented since R 2.7.0.)

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

See Also

tapply

Examples

require (stats)

attach (warpbreaks)

by (warpbreaks[, 1:2], tension, summary)

by (warpbreaks[, 1], list(wool = wool, tension = tension), summary)
by (warpbreaks, tension, function(x) lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- by (warpbreaks, tension, function(x) lm(breaks ~ wool, data = x))

sapply (tmp, coef)

detach ("warpbreaks")

46 c

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage
c(..., recursive=FALSE)
Arguments
objects to be concatenated.
recursive logical. If recursive = TRUE, the function recursively descends through
lists (and pairlists) combining all their elements into a vector.
Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even if recursive = TRUE.

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note
too that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

This is a primitive function.

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ..., recursive = FALSE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

call 47

Examples

c(l,7:9)
c(l:5, 10.5, "next")

uses with a single argument to drop attributes

x <— 1:4

names (x) <- letters([1:4]
X

c(x) # has names
as.vector (x) # no names
dim(x) <- c(2,2)

X

c(x)

as.vector (x)

append to a list:

11 <= list(A =1, c="C")

do *not=* use

c(ll, d = 1:3) # which is == (11, as.list(c(d=1:3))
but rather

c(ll, d = 1list(1:3))# c() combining two lists

c(list (A=c(B=1)), recursive=TRUE)

c(options (), recursive=TRUE)
c(list (A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call™.

Usage

call (name, ...)
is.call (x)
as.call (x)

Arguments
name a non-empty character string naming the function to be called.
arguments to be part of the call.
x an arbitrary R object.
Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of
the named function applied to the given arguments (name must be a quoted string which gives the
name of a function to be called). Note that although the call is unevaluated, the arguments . . . are
evaluated.

48 callCC

call is a primitive, so the first argument is taken as name and the remaining arguments as argu-
ments for the constructed call: if the first argument is named the name must partially match name.

is.call is used to determine whether x is a call (i.e., of mode "call™").

Objects of mode "1ist" can be coerced to mode "call". The first element of the list becomes
the function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

All three are primitive functions. call is ‘special’: it only evaluates its first argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-
tions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <= call ("round", 10.5)

is.call (cl)# TRUE

cl

such a call can also be evaluated.

eval (cl)# [1] 10

A <- 10.5

call ("round", A) # round(10.5)
call ("round", quote(A)) # round(A)

f <- "round"

call (f, quote (A)) # round (A7)

1f we want to supply a function we need to use as.call or similar
f <- round

Not run: call(f, quote(Ad)) # error: first arg must be character
(g <—= as.call(list(f, quote(A))))

eval (g)

alternatively but less transparently

g <- list(f, quote(A))

mode (g) <-— "call"

°)

eval (g)

see also the examples in the help for do.call

callcCcC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

capabilities 49

Usage

callCC (fun)

Arguments

fun function of one argument, the exit procedure.

Details

callcCcC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callccC immediately returns, with the value supplied to the exit function as the value returned by
callcCcC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC (function(k) 1)

(
callCC (function (k) k(1))
callCC (function (k) {k(1); 2})
callCC (function (k) repeat k(1))
capabilities Report Capabilities of this Build of R
Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities (what = NULL)

Arguments
what character vector or NULL, specifying required components. NULL implies that
all are required.
Value

A named logical vector. Current components are

jpeg Is the jpeg function operational?

png Is the png function operational?

tiff Is the t i £ £ function operational?

tcltk Is the teltk package operational? Note that to make use of Tk you will almost

always need to check that "X11" is also available.

50 capabilities

X11 Are the X11 graphics device and the X11-based data editor available? This
loads the X11 module if not already loaded, and checks that the default display
can be contacted unless a X11 device has already been used.

aqua Are the R. app GUI components and the quart z function operational? Only
on some Mac OS X builds. Note that this is distinct from .Platform$GUI
== "AQUA", which is true when using the Mac R . app console.

http/ftp Are url and the internal method for download. £file available?

sockets Are make . socket and related functions available?

libxml Is there support for integrating 1 ibxm1 with the R event loop?

fifo are FIFO connections supported?

cledit Is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘~—no-readline’ was not used when R
was invoked.

iconv is internationalization conversion via i conv supported? Always true as from R
2.10.0.

NLS is there Natural Language Support (for message translations)?

profmem is there support for memory profiling?

cairo is there support for type="Cairo" in X11, png,jpeqg, tiff and bmp, and
for the svg, cairo_pdf and cairo_ps devices?

Note to Mac OS X users

Capabilities " jpeg", "png" and "tif£" refer to the X11-based versions of these devices. If
capabilities ("aqua") is true, then these devices with t ype="quartz" will be available,
and out-of-the-box will be the default type. Thus for example the t i £ £ device will be available if
capabilities ("aqua") || capabilities ("tiff") if the defaults are unchanged.

See Also

.Platform

Examples

capabilities()

if (!capabilities ("http/ftp"))
warning ("internal download.file() is not available")

See also the examples for 'connections'.

cat 51

cat Concatenate and Print

Description
Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat (... , file = "", sep =" ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments
R objects (see ‘Details’ for the types of objects allowed).
file A connection, or a character string naming the file to print to. If " " (the default),
cat prints to the standard output connection, the console unless redirected by
sink. Ifitis " | cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.
sep a character vector of strings to append after each element.
fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by ‘"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if £i11 is TRUE, or the value of £111 if this is numeric.
Non-positive £i11 values are ignored, with a warning.
labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.
append logical. Only used if the argument £1i1le is the name of file (and not a connec-
tion or " | cmd"). If TRUE output will be appended to £1i1le; otherwise, it will
overwrite the contents of file.
Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep= string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘" \n"’ or if generated by filling (if argument
f£i11 is TRUE or numeric.)

If £ile is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt " mode and then closed again.

Currently only atomic vectors and names are handled, together with NULL and other zero-length
objects (which produce no output). Character strings are output ‘as is’ (unlike print.default
which escapes non-printable characters and backslash — use encodeString if you want to
output encoded strings using cat). Other types of R object should be converted (e.g. by
as.character or format) before being passed to cat.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

52 cbind

Value

None (invisible NULL).

Note

If any element of sep contains a newline character, it is treated as a vector of terminators rather
than separators, an element being output after every vector element and a newline after the last.
Entries are recycled as needed.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(l, lambda=10)
print an informative message
cat ("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:
cat (paste (letters, 100« 1:26), fill = TRUE,
labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or rows,
respectively. These are generic functions with methods for other R classes.

Usage
cbind (..., deparse.level = 1)
rbind (..., deparse.level = 1)
Arguments

vectors or matrices. These can be given as named arguments. Other R ob-
jects will be coerced as appropriate: see sections ‘Details’ and ‘Value’. (For
the "data.frame" method of cbind these can be further arguments to
data.frame such as stringsAsFactors.)

deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default, deparse.level
= 1 or 2 constructs labels from the argument names, see the ‘Value’ section
below.

cbind 53

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Value

For the default method, a matrix combining the . . . arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame (..., check.names =
FALSE) . This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unless stringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

54 cbind

Dispatch

The method dispatching is not done via UseMethod (), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.
2. We inspect each class in turn to see if there is an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a
data frame.
Examples
m <- cbind(l, 1:7) # the 'l' (= shorter vector) is recycled
m
m <— cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m

cbind(1:7, diag(3))# vector is subset -> warning

cbind (0, rbind(l, 1:3))

cbind (I=0, X=rbind(a=1l, b=1:3)) # use some names
xx <- data.frame (I=rep(0,2))
cbind (xx, X=rbind(a=1, b=1:3)) # named differently

cbind (0, matrix(l, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind (0, matrix(l, nrow=2, ncol=0)))#-> 2 x 1

deparse.level

dd <- 10

rbind(1:4, c=2, "a++" = 10, dd, deparse.level=0)# middle 2 rownames
rbind(1:4, c=2, "at++" = 10, dd, deparse.level=1l)# 3 rownames (default)
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=2)# 4 rownames

char.expand 55

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand (input, target, nomatch = stop("no match"))
Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value
A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character (length = 0)
as.character (x,)
is.character (x)

56 character
Arguments
length desired length.
X object to be coerced or tested.
further arguments passed to or from other methods.
Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods. Further, for as.character the default method calls
as.vector, so dispatch is first on methods for as.character and then for methods for
as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

Value

character creates a character vector of the specified length. The elements of the vector are all
equal to "".

as.character attempts to coerce its argument to character type; like as.vector it strips
attributes including names. For lists it deparses the elements individually, except that it extracts the
first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

Note

as.character truncates components of language objects to 500 characters (was about 70 before
1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search (keyword = "character") gives even more links.

deparse, which is normally preferable to as . character for language objects.

Examples

form <- y ~a + b + c
as.character (form) ## length 3
deparse (form) ## like the input

a0 <— 11/999 # has a repeating decimal representation

charmatch 57

(al <- as.character (a0))

format (a0, digits=16) # shows one more digit

a2 <- as.numeric(al)

a2 - a0 # normally around -le-17
as.character (a2) # normally different from al
print (c (a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch (x, table, nomatch = NA_integer_)

Arguments
x the values to be matched: converted to a character vector by as.character.
table the values to be matched against: converted to a character vector.
nomatch the (integer) value to be returned at non-matching positions.

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomat ch is returned.

NA values are treated as the string constant "NA".

Value
An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples
charmatch ("", "") # returns 1
charmatch ("m", c("mean", "median", "mode")) # returns 0

charmatch ("med", c("mean", "median", "mode")) # returns 2

58 chartr

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr (old, new, Xx)
tolower (x)

toupper (x)

casefold(x, upper = FALSE)

Arguments
X a character vector, or an object that can be coerced to character by
as.character.
old a character string specifying the characters to be translated. If a character vector
of length 2 or more is supplied, the first element is used with a warning.
new a character string specifying the translations. If a character vector of length 2 or
more is supplied, the first element is used with a warning.
upper logical: translate to upper or lower case?.
Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If o1d contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8, when it will be in UTF-8 when the system has Unicode wide characters.

See Also

sub and gsub for other substitutions in strings.

chol 59

Examples

x <— "MiXeD cAsgE 123"
chartr ("iXs", "why", x)
chartr ("a-cX", "D-Fw", Xx)
tolower (x)

toupper (x)

"Mixed Case" Capitalizing - toupper(every first letter of a word)

.simpleCap <- function (x) {

s <— strsplit(x, "™ ")[[1]]
paste (toupper (substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")

}
.simpleCap ("the quick red fox Jjumps over the lazy brown dog")
—> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function (s, strict = FALSE) {

cap <- function(s) paste (toupper (substring(s,1,1)),

{s <- substring(s,2); if(strict) tolower(s) else s},
sep = "", collapse = " ")

sapply (strsplit (s, split = " "), cap, USE.NAMES = !is.null (names(s)))
}
capwords (c ("using AIC for model selection"))
—> [1] "Using AIC For Model Selection"
capwords (c ("using AIC", "for MODEL selection"), strict=TRUE)

-> [1] "Using Aic" "For Model Selection"
~an anann
'bad' 'good'
—— Very simple insecure crypto —-—
rot <- function(ch, k = 13) {
pO0 <- function(...) paste(c(...), collapse="")

A <- c(letters, LETTERS, " '")
I <- seqg_len(k); chartr(p0(A), pO(c(A[-I], A[I])), ch)

pw <— "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ' decrypt''
rot (crypw, 54 - 13)# -> the original:
stopifnot (identical (pw, rot (crypw, 54 - 13)))

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

60 chol

Usage

chol (x, ...)

Default S3 method:

chol (x, pivot = FALSE, LINPACK = pivot, ...)
Arguments
X an object for which a method exists. The default method applies to real sym-

metric, positive-definite matrices.
arguments to be based to or from methods.
pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used in the non-pivoting case (for compatibility
with R < 1.7.0)?

Details

chol is generic: the description here applies to the default method.

This is an interface to the LAPACK routine DPOTRF and the LINPACK routines DPOFA and
DCHDC.

Note that only the upper triangular part of x is used, so that R’ R = 2 when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be com-
puted. The rank of x is returned as attr (Q, "rank"), subject to numerical errors. The pivot is
returned as attr (Q, "pivot"). Itisno longerthe casethatt (Q) %$+% Qequals x. However,
setting pivot <- attr(Q, "pivot") and oo <- order (pivot),itistruethatt (Q[,
oo]l) %*% QI[, oo] equals x, or, alternatively, t (Q) %*% Q equals x[pivot, pivot].
See the examples.

Value
The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R'R =
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. STAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

http://www.netlib.org/lapack/lug/lapack_lug.html

chol2inv 61

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <-= chol(m))

t(cm) %$*x% cm #-—— = 'm'

crossprod(cm) #-— = 'm'

now for something positive semi-definite
x <—- matrix(c(l:5, (1:5)"2), 5, 2)

x <- cbind(x, x[, 1] + 3xx[, 2])

m <- crossprod(x)

gr (m) $Srank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol () unlike gr() does not use a tolerance.
try(chol (m))

(Q <= chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by

pivot <- attr(Q, "pivot")

crossprod(Q[, order (pivot)]) # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))

try (chol (m)) # fails

try(chol (m, LINPACK=TRUE)) # fails

(Q <— chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m

chol2inv Inverse from Choleski (or QR) Decomposition

Description
Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X’X)~! from the (R part) of the QR decomposition of X.

Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments
x a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?

62 class

Details
This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

Value

The inverse of the matrix whose Choleski decomposition was given.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: STAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
athttp://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1l, 1:3, c(1,3,7)))
ma %$*% chol2inv(cma)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class (x)

class (x) <— value

unclass (x)

inherits(x, what, which = FALSE)

oldClass (x)
oldClass (x) <- value

Arguments
x a R object
what, wvalue a character vector naming classes. value can also be NULL.

which logical affecting return value: see ‘Details’.

http://www.netlib.org/lapack/lug/lapack_lug.html

class 63

Details

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. If the object does not have a class attribute, it has an implicit class,
"matrix", "array" or the result of mode (x) (except that integer vectors have implicit class
"integer"). (Functions 01dClass and 01dClass<-— get and set the attribute, which can also
be done directly.)

When a generic function fun is applied to an object with class attribute c ("first",
"second"), the system searches for a function called fun.first and, if it finds it, applies
it to the object. If no such function is found, a function called fun.second is tried. If no class
name produces a suitable function, the function fun.default is used (if it exists). If there is no
class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning a zero-length vector or NULL removes
the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class (x) matched by the element of what; zero
indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

All but inherits are primitive functions.

Formal classes

An additional mechanism of formal classes is available in packages methods which is attached by
default. For objects which have a formal class, its name is returned by class as a character vector
of length one.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as (object, wvalue) isthe way to coerce an object to a particular class.

The analogue of inherits for formal classes is is.

Note

Functions 01dClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some
interpolated classes: see the link) rather than o1dClass. However, group generics dispatch on the
oldClass for efficiency, and internal generics only dispatch on objects for which is.object is
true.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <— 10

class (x) # "numeric"
oldClass (x) # NULL
inherits(x, "a") #FALSE

64 col

class(x) <= c("a", "b")

inherits (x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c¢"), TRUE) # 1 2 O

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object, or a factor of
column labels.

Usage

col (x, as.factor = FALSE)

Arguments
X a matrix-like object, that is one with a two-dimensional dim.
as.factor a logical value indicating whether the value should be returned as a factor of
column labels (created if necessary) rather than as numbers.
Value

An integer (or factor) matrix with the same dimensions as x and whose i j-th element is equal to j
(or the j-th column label).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1l:12, 3, 4)
mal[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
x <- matrix (0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <=1

Colon 65

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.
to (maximal) end value of the sequence.

a, b factors of same length.

Details

The binary operator : has two meanings: for factors a : b is equivalent to interaction(a, b)
(but the levels are ordered and labelled differently).

For numeric arguments from:to is equivalent to seq (from, to), and generates a sequence
from from to to in steps of 1 or 1-. Value to will be included if it differs from from by an
integer up to a numeric fuzz of about 1e—7.

Value

For numeric arguments, a numeric vector. This will be of type integer if from is integer-
valued and the result is representable in the integer type, otherwise of type "double" (aka mode
"numeric™").

For factors, an unordered factor with levels labelled as 1a: 1b and ordered lexicographically (that
is, 1Db varies fastest).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq.
As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

66 colSums
Examples
1:4
pi:6 # real
6:pi1 # integer
fl <= gl(2,3); f1
£2 <- gl(3,2); f2
fl:f2 # a factor, the "cross" fl x f2
colSums Form Row and Column Sums and Means
Description
Form row and column sums and means for numeric arrays.
Usage
colSums (x, na.rm = FALSE, dims = 1)
rowSums (X, na.rm = FALSE, dims = 1)
colMeans (x, na.rm = FALSE, dims = 1)
rowMeans (X, na.rm = FALSE, dims = 1)
Arguments
X an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.
na.rm logical. Should missing values (including NaN) be omitted from the calcula-
tions?
dims integer: Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. For
rowx, the sum or mean is over dimensions dims+1, .. .;forcolx itisover
dimensions 1 :dims.
Details
These functions are equivalent to use of apply with FUN = meanor FUN = sum with appropri-
ate margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties
of NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the result will be one
of NaN or NA, but which might be platform-dependent.
Value
A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
dimnames (or names for a vector result) are taken from the original array.
If there are no values in a range to be summed over (after removing missing values with na.rm =
TRUE), that component of the output is set to 0 (»Sums) or NA (xMeans), consistent with sum
and mean.
See Also

apply, rowsum

commandArgs 67

Examples

Compute row and column sums for a matrix:

x <= cbind(x1l = 3, x2 = c(4:1, 2:5))

rowSums (x); colSums (x)

dimnames (x) [[1]] <—- letters[1:8]

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
x[] <- as.integer (x)

rowSums (x); colSums (x)

x[] <= x < 3

rowSums (x); colSums (x)

x <= cbind(x1l = 3, x2 = c(4:1, 2:5))

x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans (x, na.rm = TRUE); colMeans (x, na.rm = TRUE)

an array

dim (UCBAdmissions)
rowSums (UCBAdmissions); rowSums (UCBAdmissions, dims = 2)
colSums (UCBAdmissions); colSums (UCBAdmissions, dims

Il
N

complex case

x <— cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)
x[3,] <= NA; x[4, 2] <- NA

rowSums (x); colSums (x); rowMeans (x); colMeans (x)
rowSums (x, na.rm = TRUE); colSums(x, na.rm = TRUE)

rowMeans (x, na.rm = TRUE); colMeans (x, na.rm = TRUE)
commandArgs Extract Command Line Arguments
Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs (trailingOnly = FALSE)

Arguments

trailingOnly logical. Should only arguments after ‘~—args’ be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the ‘——args’ command-
line flag to R, as all of the command line after that flag is skipped.

68 comment

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after
‘-—args’.
See Also

Startup BATCH

Examples

commandArgs ()

Spawn a copy of this application as it was invoked,
subject to shell quoting issues

system(paste (commandArgs (), collapse=" "))

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data. frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment (x)
comment (x) <- value

Arguments

x any R object

value a character vector, or NULL.
See Also

attributes and attr for other attributes.

Examples

x <—- matrix(1:12, 3,4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

X

comment (x)

Comparison 69

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

x < Y

X > v

X <=y

X >=y

X == y

X | = y
Arguments

X, Yy atomic vectors, symbols, calls, or other objects for which methods have been

written.

Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops) group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character — in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect
the locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

Character strings can be compared with different marked encodings (see Encoding): they are
translated to UTF-8 before comparison.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Missing values (NA) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

70 Comparison

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments

c(el, e2).
Note
Do not use == and ! = for tests, such as in if expressions, where you must get a single TRUE

or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and != do not allow for the finite representa-
tion of fractions, nor for rounding error. Using all.equal with identical is almost always
preferable. See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see http://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(http://unicode.org/reports/trl0/) is likely to be increasingly influential. Where
available R makes use of ICU (http://site.icu-project.org/ for collation.

See Also

factor for the behaviour with factor arguments.
Syntax for operator precedence.

icuSetCollate to tune the string collation algorithm when ICU is in use.

Examples

x <- stats::rnorm(20)
x < 1

x[x > 0]
x1l <= 0.5 - 0.3
x2 <= 0.3 0.1

x1l == x2 # FALSE on most machines
identical (all.equal (x1, x2), TRUE) # TRUE everywhere

z <- c(32:126, 160:255) # range of most 8-bit charsets, Latin-1 in Unicode
X <— 1f(110n_info () SMBCS) {
intToUtf8(z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple= TRUE)
by number
writelines (strwrap (paste(x, collapse=" "), width = 60))

http://en.wikipedia.org/wiki/Collating_sequence
http://en.wikipedia.org/wiki/Collating_sequence
http://unicode.org/reports/tr10/
http://site.icu-project.org/

complex 71

by locale collation

writelines (strwrap (paste (sort (x), collapse=" "), width = 60))
complex Complex Vectors
Description
Basic functions which support complex arithmetic in R.
Usage
complex (length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex (x, ...)
is.complex (x)

Re (z)
Im(z)
Mod (z)
Arg(z)
Conij(z)
Arguments
length.out numeric. Desired length of the output vector, inputs being recycled as needed.
real numeric vector.
imaginary numeric vector.
modulus numeric vector.
argument numeric vector.
X an object, probably of mode complex.
z an object of mode complex, or one of a class for which a methods has been
defined.
further arguments passed to or from other methods.
Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. All forms of NA and NaN are coerced to a complex NA, for which both
the real and imaginary parts are NA.

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. The modulus
and argument are also called the polar coordinates. If z = x + iy with real z and y, for r =
Mod(z) = v/2? 4+ y?, and ¢ = Arg(z), x = r * cos(¢) and y = r * sin(¢). They are all internal

72 conditions

generic primitive functions: methods can be defined for them individually or via the Complex
group generic.

In addition, the elementary trigonometric, logarithmic, exponential, square root and hyperbolic
functions are implemented for complex values.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require (graphics)
0i ~ (=3:3)

matrix (11~ (-6:5), nrow=4) #- all columns are the same
0 ~ 1i # a complex NaN

create a complex normal vector

z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):

z2 <= 1:2 + 1i%(8:9)

The Arg(.) is an angle:
zz <— (rep(l:4,len=9) + 1ix(9:1))/10
zz.shift <- complex (modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste ("Rotation by "," ", pi == 180"0)))
abline (h=0,v=0, col="blue", lty=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description
These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.

Usage

tryCatch (expr, ..., finally)
withCallingHandlers (expr, ...)

signalCondition (cond)

conditions

simpleCondition (message, call = NULL

()
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)
simpleMessage (message, call = NULL)

S3 method for class 'condition':
as.character(x, ...)

S3 method for class 'error':
as.character(x, ...)

S3 method for class 'condition':
print(x, ...)

S3 method for class 'restart':
print(x, ...)

conditionCall (c)

S3 method for class 'condition':
conditionCall (c)
conditionMessage (c)

S3 method for class 'condition':
conditionMessage (c)

withRestarts (expr, ...)

computeRestarts (cond = NULL)
findRestart (name, cond = NULL)
invokeRestart (r, ...)
invokeRestartInteractively (r)

isRestart (x)
restartDescription (r)
restartFormals (r)

.signalSimpleWarning (msg, call)
.handleSimpleError (h, msg, call)

Arguments
c a condition object.
call call expression.
cond a condition object.
expr expression to be evaluated.
finally expression to be evaluated before returning or exiting.
h function.
message character string.
msg character string.
name character string naming a restart.
r restart object.
X object.

additional arguments; see details below.

73

74 conditions

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the . . . argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current t ryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the
evaluation of expr. If no condition is signaled when evaluating expr then t ryCatch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single t ryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the t ryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in
name=function form where the function is the handler to call when the restart is invoked. An-
other simple variant is as name=st ring where the string is stored in the description field of

conflicts 75

the restart object returned by findRestart; in this case the handler ignores its arguments and
returns NULL. The most flexible form of a restart specification is as a list that can include several
fields, including handler, description, and test. The test field should contain a function
of one argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if
it does not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

.signalSimpleWarningand .handleSimpleError are used internally and should not be
called directly.

References

The t ryCat ch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and t ry is essentially a simplified version of t ryCatch.

Examples

tryCatch(l, finally=print ("Hello"))
e <- simpleError ("test error")

Not run:

stop (e)

tryCatch(stop(e), finally=print ("Hello"))
tryCatch(stop ("fred"), finally=print ("Hello"))

End (Not run)

tryCatch(stop(e), error = function(e) e, finally=print ("Hello"))
tryCatch (stop ("fred"), error = function(e) e, finally=print ("Hello"))
withCallingHandlers ({ warning("A"); 1+2 }, warning = function(w) {})

Not run:
{ withRestarts(stop ("A"), abort = function() {}); 1 }

End (Not run)

withRestarts (invokeRestart ("foo", 1, 2), foo = function(x, y) {x + v})
conflicts Search for Masked Objects on the Search Path
Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

76 connections
Usage
conflicts (where = search (), detail = FALSE)
Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the search
path.
Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[1] "1m"

#

Spackage:base
[1] "Im"

Remove things from your "workspace" that mask others:
remove (list = conflicts (detail=TRUE) $.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage
file

url (

gzfi

bzfi

xzfi

(description = "", open = "", blocking = TRUE,

encoding = getOption ("encoding"), raw = FALSE)

description, open = "", blocking = TRUE,

encoding = getOption ("encoding"))

le (description, open = "", encoding = getOption ("encoding"),
compression = 6)

le (description, open = "", encoding = getOption("encoding"),
compression = 9)

le (description, open = "", encoding = getOption ("encoding"),

compression = 6)

connections

unz (description,

encoding

pipe (description,

fifo(description,
encoding =

socketConnection (host =

open (con,
S3 method
open (con,

close (con,
S3 method
close (con,

flush (con)

isOpen (con,

open =

type =

rw =

77

filename, open =
= getOption ("encoding"))

nn
4

open = "", encoding = getOption ("encoding"))
open = "", blocking = FALSE,
getOption ("encoding"))
"localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption ("encoding"))

.)

for class 'connection':

"r", blocking = TRUE, ...)
.)
for class 'connection':

"rw", ...)

n ")

isIncomplete (con)

Arguments

description

open

blocking
encoding

raw

compression

filename
host
port
server
con

type

rw

character string. A description of the connection: see ‘Details’.

character. A description of how to open the connection (if it should be opened
initially). See section ‘Modes’ for possible values.

logical. See the ‘Blocking’ section.
The name of the encoding to be used. See the ‘Encoding’ section.

logical. If true, a ‘raw’ interface is used which will be more suitable for argu-
ments which are not regular files, e.g. character devices. This suppresses the
check for a compressed file when opening for text-mode reading, and asserts
that the ‘file’ may not be seekable.

integer in 0-9. The amount of compression to be applied when writing, from
none to maximal available. For xzfile can also be negative: see the ‘Com-
pression’ section.

a filename within a zip file.

character. Host name for port.

integer. The TCP port number.

logical. Should the socket be a client or a server?

a connection.

character. Currently ignored.

character. Empty or "read" or "write", partial matches allowed.

arguments passed to or from other methods.

78 connections

Details

The first nine functions create connections. By default the connection is not opened (except for
socketConnection), but may be opened by setting a non-empty value of argument open.

For £11e the description is a path to the file to be opened or a complete URL (when it is the same as
calling url), or "" (the default) or "clipboard™" (see the ‘Clipboard’ section). Use "stdin"
to refer to the C-level ‘standard input’ of the process (which need not be connected to anything
in a console or embedded version of R), provided the C99 function fdopen is supported on the
platform. (See also stdin () for the subtly different R-level concept of stdin.)

For url the description is a complete URL, including scheme (such as ‘http://’, ‘ftp://’
or ‘file://’). Proxies can be specified for HTTP and FTP url connections: see
download.file.

For gzfile the description is the path to a file compressed by gzip: it can also open for reading
uncompressed files and (as from R 2.10.0) those compressed by bzip2, xz or 1zma.

For bz file the description is the path to a file compressed by bzip2.

For xzf1ile the description is the path to a file compressed by xz (http://en.wikipedia.
org/wiki/Xz) or (for reading only) 1zma (http://en.wikipedia.org/wiki/LZMA).

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with “.zip’ extension if required.

For pipe the description is the command line to be piped to or from.

For fifo the description is the path of the fifo. (Windows does not have fifos, so attempts to use
this function there are an error.)

All platforms support file, gzfile,bzfile, xzfile unz and url ("file://") connec-
tions. The other types may be partially implemented or not implemented at all. (They do work on
most Unix platforms, and all but £i fo on Windows.)

The intention is that £ile and gzfile can be used generally for text input (from files and URLSs)
and binary input respectively.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection. This will happen automatically in due course (with a
warning) if there is no longer an R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see st dout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented).

If fora file or fifo connection the description is "", the file/fifo is immediately opened (in
"w+" mode unless open = "w+b" is specified) and unlinked from the file system. This provides
a temporary file/fifo to write to and then read from.

Value
file,pipe, fifo,url,gzfile,bzfile, xzfile, unz and socketConnection return
a connection object which inherits from class "connection" and has a first more specific class.
isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether last read attempt was blocked, or for an output
text connection whether there is unflushed output.

http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/LZMA

connections 79

URLs

A note on ‘file://’ URLs. The most general form (from RFC1738) is
‘file://host/path/to/file’, but R only accepts the form with an empty host field refer-
ring to the local machine. This is then ‘file:///path/to/file’, where ‘path/to/file’
is relative to /. So although the third slash is strictly part of the specification not part of the path,
this can be regarded as a way to specify the file ‘/path/to/file’. It is not possible to specify a relative
path using a file URL.

No attempt is made to decode an encoded URL: call URLdecode if necessary.

Note that ‘https://’ connections are not supported.

Modes
Possible values for the argument open are

"r"or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for both reading and writing.

If a file or fifo is created on a Unix-alike, its permissions will be the maximal allowed by the current
setting of umask (see Sys .umask).

For many connections there is little or no difference between text and binary modes. For file-like
connections on Windows, translation of line endings (between LF and CRLF) is done in text mode
only (but text read operations on connections such as readLines, scan and source work for
any form of line ending). Various R operations are possible in only one of the modes: for example
pushBack is text-oriented and is only allowed on connections open for reading in text mode, and
binary operations such as readBin, 1oad and save operations can only be done on binary-mode
connections.

The mode of a connection is determined when actually opened, which is deferred if open = ""
is given (the default for all but socket connections). An explicit call to open can specify the mode,
but otherwise the mode willbe "r". (gzfile,bzfile and xzfile connections are exceptions,
as the compressed file always has to be opened in binary mode and no conversion of line-endings
is done even on Windows, so the default mode is interpreted as "rb".) Most operations that need
write access or text-only or binary-only mode will override the default mode of a non-yet-open
connection.

Compression

R has for a long time supported gzip and bzip2 compression, and support for xz compression
(and read-only support for its precursor 1zma compression) was added in R 2.10.0.

For reading, the type of compression (if any) can be determined from the first few bytes of the
file, and this is exploited as from R 2.10.0. Thus for file (raw = FALSE) connections, if

80

connections

openis "", "r" or "rt" the connection can read any of the compressed file types as well as
uncompressed files. (Using "rb" will allow compressed files to be read byte-by-byte.) Similarly,
gzfile connections can read any of the forms of compression and uncompressed files in any read
mode.

(The type of compression is determined when the connection is created if open is unspecified and
a file of that name exists. If the intention is to open the connection to write a file with a different
form of compression under that name, specify open = "w" when the connection is created or
unlink the file before creating the connection.)

For write-mode connections, compress specifies now hard the compressor works to minimize the
file size, and higher values need more CPU time and more working memory (up to ca 800Mb for
xzfile (compress = 9)). For xzfile negative values of compress correspond to adding
the xz argument ‘—e’: this takes more time (double?) to compress but may achieve (slightly) better
compression. The default (6) has good compression and modest (100Mb memory usage): but if
you are using xz compression you are probably looking for high compression.

Choosing the type of compression involves tradeoffs: gzip, bzip2 and xz are successively less
widely supported, need more resources for both compression and decompression, and achieve more
compression (although individual files may buck the general trend). Typical experience is that
bzip2 compression is 15% better on text files than gzip compression, and xz with maximal
compression 30% better. The experience with R save files is similar, but on some large ‘.rda’ files
xz compression is much better than the other two. With current computers decompression times
even with compress = 9 are typically modest and reading compressed files is usually faster than
uncompressed ones because of the reduction in disc activity.

Encoding

The encoding of the input/output stream of a connection can be specified by name in the same
way as it would be given to iconv: see that help page for how to find out what encoding names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done.

Re-encoding only works for connections in text mode.

The encoding "UCS—-2LE" is treated specially, as it is the appropriate value for Windows ‘Unicode’
text files. If the first two bytes are the Byte Order Mark OxFFFE then these are removed as most
implementations of iconv do not accept BOMs. Note that some implementations will handle
BOMs using encoding "UCS-2" but many will not.

Requesting a conversion that is not supported is an error, reported when the connection is opened.
Exactly what happens when the requested translation cannot be done is in general undocumented.
On output the result is likely to be that up to the error, with a warning. On input, it will most likely
be all or some of the input up to the error.

Blocking

Whether or not the connection blocks can be specified for file, url (default yes) fifo and socket
connections (default not).

In blocking mode, functions using the connection do not return to the R evaluator until the
read/write is complete. In non-blocking mode, operations return as soon as possible, so on in-
put they will return with whatever input is available (possibly none) and for output they will return
whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

connections 81

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
R process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on HTTP/FTP URLs and on sockets are subject to the timeout set by
options ("timeout"). Note that this is a timeout for no response, not for the whole operation.
The timeout is set at the time the connection is opened (more precisely, when the last connection of
that type — ‘http:’, ‘ftp:’ or socket — was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file ().

Clipboard

filecanbeusedwithdescription = "clipboard" inmode "r" only. This reads the X11
primary selection (see http://standards.freedesktop.org/clipboards—-spec/
clipboards-latest.txt), which can also be specified as "X11_primary" and the sec-
ondary selection as "X11_secondary". On most systems the clipboard selection (that used by
‘Copy’ from an ‘Edit’ menu) can be specified as "X11_clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the selections may be able to do so via xclip (http:
//sourceforge.net/projects/xclip/), for example by pipe ("xclip —-1i", "w")
for the primary selection.

Mac OS X users can use pipe ("pbpaste") and pipe ("pbcopy", "w") toread from and
write to that system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, compressed and socket
connections.

The default open mode in R is "r" except for socket connections. This differs from S, where it is
the equivalent of "r+", known as "+ ".

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 character output limit on the length of line for fifo, gzfile, bzfile and xzfile
connections: longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

textConnection, seek, showConnections, pushBack.

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://sourceforge.net/projects/xclip/
http://sourceforge.net/projects/xclip/

82

connections

Functions making direct use of connections are readLines, readBin, readChar,
writelLines, writeBin, writeChar, cat, sink, scan, parse, read.dcf, load,
save, dput and dump.

capabilities to see if HTTP/FTP url, fifo and socketConnection are supported by
this build of R.

gzcon to wrap gz ip (de)compression around a connection.

memCompress for more ways to (de)compress and references on data compression.

Examples
zz <- file("ex.data", "w") # open an output file connection
cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat ("One more line\n", file = zz)

close(zz)
readLines ("ex.data")
unlink ("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzfile("ex.gz"))

close(zz)

unlink ("ex.gz")

zz <— bzfile("ex.bz2", "w") # bzip2-ed file

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

print (readlines (zz <- bzfile("ex.bz2")))

close(zz)

unlink ("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("testl", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat ("abc\ndef\n", file=Tfile)

readLines (Tfile)

seek (Tfile, 0, rw="r") # reset to beginning
readLines (Tfile)

cat ("ghi\n", file=Tfile)

readLines (Tfile)

close (Tfile)

unlink ("testl")

We can do the same thing with an anonymous file.
Tfile <- file()

cat ("abc\ndef\n", file=Tfile)

readLines (Tfile)

close (Tfile)

fifo example -- may fail, e.g. on Cygwin, even with OS support for fifos
if (capabilities("fifo")) {

zz <— fifo("foo-fifo", "w+")

writeLines ("abc", zz)

print (readLines (zz))

close(zz)

unlink ("foo-fifo")

connections

Unix examples of use of pipes

read listing of current directory
readLines (pipe ("1ls -1"))

remove trailing commas. Suppose

Not run: % cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479

End (Not run)

Then read this by

scan (pipe("sed -e s/,$// data2_"), sep=",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled

zz <- pipe (paste("sed s/\\\\./,/ >", "outfile"), "w")

cat (format (round (stats::rnorm(48), 4)), f£ill=70, file = zz)
close(zz)

file.show("outfile", delete.file=TRUE)

example for a machine running a finger daemon

con <- socketConnection (port = 79, blocking = TRUE)
writeLines (paste (system("whoami", intern=TRUE), "\r", sep=""), con)
gsub (" x$", "", readLines (con))

close (con)

Not run:

two R processes communicating via non-blocking sockets
R process 1

conl <- socketConnection (port = 6011, server=TRUE)
writeLines (LETTERS, conl)

close (conl)

R process 2

con2 <- socketConnection(Sys.info () ["nodename"], port = 6011)
as non-blocking, may need to loop for input

readLines (con2)

while (isIncomplete (con2)) {Sys.sleep(l); readLines (con2)}
close (con2)

examples of use of encodings

write a file in UTF-8

cat (x, file = (con <- file("foo", "w", encoding="UTF-8"))); close(con)
read a 'Windows Unicode' file

83

A <- read.table(con <- file("students", encoding="UCS-2LE")); close(con)

End (Not run)

84 Constants

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

Pr1

Details

R has a small number of built-in constants (there is also a rather larger library of data sets which
can be loaded with the function data).

The following constants are available:

* LETTERS: the 26 upper-case letters of the Roman alphabet;

* letters: the 26 lower-case letters of the Roman alphabet;

* month.abb: the three-letter abbreviations for the English month names;
* month.name: the English names for the months of the year;

* pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base name space taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data,DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.
Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4% (4xatan(1/5) - atan(1/239))

months in English

month.name

months in your current locale
format (ISOdate (2000, 1:12, 1), "%B")
format (ISOdate (2000, 1:12, 1), "%b")

contributors 85

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors ()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if (cond) expr
if (cond) cons.expr else alt.expr

for (var in seq) expr
while (cond) expr
repeat expr

break
next
Arguments

cond A length-one logical vector that is not NA. Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.

seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL. A factor value will be coerced to a character vector.

expr, cons.expr, alt.expr
An expression in a formal sense. This is either a simple expression or a so called
compound expression, usually of the form { exprl ; expr2 }.

86 Control

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g.,
after if (..) or for (....). Inparticular, you should not have a newline between } and else
to avoid a syntax error in entering a 1f ... else construct at the keyboard or via source.
For that reason, one (somewhat extreme) attitude of defensive programming is to always use braces,
e.g., for i f clauses.

The seqgin a for loop is evaluated at the start of the loop; changing it subsequently does not affect
the loop. If seq has length zero the body of the loop is skipped. Otherwise the variable var is
assigned in turn the value of each element of seq. You can assign to var within the body of the
loop, but this will not affect the next iteration. When the loop terminates, var remains as a variable
containing its latest value.

Value

if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen
if there is no else).

for, while and repeat return NULL invisibly. for sets var to the last used element of seq,
or to NULL if it was of length zero.

break and next do not return a value as they transfer control within the loop.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces.

ifelse, switch for other ways to control flow.

Examples

for(i in 1:5) print(l:1i)
for(n in c¢(2,5,10,20,50)) {
x <— stats::rnorm(n)
cat(n,":", sum(x*2),"\n")
}
f = factor(sample(letters[1l:5], 10, replace=TRUE))
for(i in unique(f)) print (i)

converters 87

converters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use in . C calls. The number and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters ()
getCConverterDescriptions ()
getCConverterStatus ()
setCConverterStatus (id, status)
removeCConverter (id)

Arguments
id either a number or a string identifying the element of interest in the converter list.
A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).
status a logical value specifying whether the element is to be considered active (TRUE)
or not (FALSE).
Details

The internal list of converters is potentially used when converting individual arguments in a .C
call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provide R user-level capabilities for investigating and managing

the list of converters. There is currently no mechanism for adding an element to the converter list
within the R language. This must be done in C code using the routine R_addToCConverter ().

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string of
each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The names
of the elements are the description strings returned by getCConverterDescriptions.

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and removed.
In the case that no such element was found, an error occurs.

88

Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

Examples

getNumCConverters ()
getCConverterDescriptions ()
getCConverterStatus ()

Not run:

old <- setCConverterStatus(l, FALSE)

setCConverterStatus (1, old)
End(Not run)

Not run:
removeCConverter (1)

removeCConverter (getCConverterDescriptions () [1])

End (Not run)

copyright

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see 1icense for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use

their work.

Details

The file ‘R_HOME/COPYRIGHTS?’ lists the copyrights in full detail.

http://developer.R-project.org/CObjectConversion.pdf

crossprod 89

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equiva-
lent to (but usually slightly faster than) the call t (x) %*% y (crossprod)or x %+% t (y)
(tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments
X, Vy numeric or complex matrices: y = NULL is taken to be the same matrix as x.
Vectors are promoted to single-column or single-row matrices, depending on the
context.
Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% and outer product $0%.

Examples
(z <— crossprod(l:4)) # = sum(l + 272 + 372 + 472)
drop (z) # scalar

x <= 1:4; names (x) <- letters[l:4]; x
tcrossprod(as.matrix(x)) # 1is
identical (tcrossprod(as.matrix(x)),
crossprod (t (x)))
tcrossprod(x) # no dimnames

m <— matrix(l:6, 2,3) ; v <= 1:3; v2 <- 2:1

stopifnot (identical (tcrossprod(v, m), v %$x% t(m)),
identical (tcrossprod(v, m), crossprod(v, t(m))),
identical (crossprod(m, v2), t(m) %$x% v2))

90 cumsum

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info ()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including Mac OS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses of R on platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.
current The estimated current usage (in bytes), possibly NA.
direction 1 (stack grows down, the usual case) or —1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info ()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
)

X
cummin (x

cut 91

Arguments
X a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.
Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with «). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or
via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum (1:10)

cumprod (1:10)
cummin(c(3:1, 2:0, 4:2))
cummax (c(3:1, 2:0, 4:2))

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut (x, ...)

Default S3 method:

cut (x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result FALSE, ...)

92 cut

Arguments
X a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more cut points or a single number (greater
than or equal to 2) giving the number of intervals into which x is to be cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using " (a, b] " interval notation. If labels = FALSE, simple integer codes

are returned instead of a factor.
include.lowest

logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result
logical: should the result be an ordered factor?
further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created that cover the single value.)

If a Labels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as " (b1, b2]", " (b2, b3]"etc. for right = TRUE
and as " [bl, b2)",...if right = FALSE. In this case, dig.lab indicates the minimum
number of digits should be used in formatting the numbers b1, b2, A larger value (up to
12) will be used if needed to distinguish between any pair of endpoints: if this fails labels such as
"Range3" will be used.

Value

A factor isreturned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table (cut (x, br)), hist (x, br, plot = FALSE) is more efficient and
less memory hungry. Instead of cut (x, labels = FALSE), findInterval () is more
efficient.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval ().

quantile for ways of choosing breaks of roughly equal content (rather than length), cut?2 in
package Hmisc for a canned way to form quantile groups.

cut. POSIXt

Examples

7 <— stats::rnorm(10000)

table (cut (Z, breaks = -6:06))
sum (table (cut (Zz, breaks = -6:6, labels=FALSE)))
sum (graphics::hist (Z, breaks = -6:6, plot=FALSE) $counts)

cut (rep(1,5),4) #-— dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <— rep(0:8, tx0)

stopifnot (table(x) == tx0)

table(cut(x, b = 8))
table (cut (x, breaks = 3*x(-2:5)))
table (cut (x, breaks 3x(-2:5), right = FALSE))

##-—— some values OUTSIDE the breaks

table (cx <- cut(x, breaks = 2%x(0:4)))

table (cxl <- cut(x, breaks = 2x(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-— the first 9 wvalues 0
which(is.na(cx1l)); x[is.na(cxl)] #-— the last 5 wvalues 8

Label construction:
y <- stats::rnorm(100)
table (cut (y, breaks = pi/3*(-3:
table (cut (y, breaks = pi/3*(-3:

)))
), dig.lab=4))

3
3

table (cut (y, breaks 1%(=3:3), dig.lab=4))

extra digits don't "harm" here

table (cut (y, breaks = 1%(-3:3), right = FALSE))
#—- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- c¢(1,2,3,4,5,2,3,4,5,6,7)

cut (aaa, 3)

cut (aaa, 3, dig.lab=4, ordered = TRUE)

one way to extract the breakpoints
labs <- levels (cut (aaa, 3))

cbind (lower = as.numeric(sub ("\\((.+),.*", "\\1", labs)),
upper = as.numeric(sub("[", 1%, ([*11%x)\\1", "\\1", labs)))
cut .POSIXt Convert a Date or Date-Time Object to a Factor
Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt':
cut (x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)

94 cut. POSIXt
S3 method for class 'Date':
cut (x, breaks, labels = NULL, start.on.monday = TRUE,
right = FALSE, ...)
Arguments
x an object inheriting from class "POSIXt" or "Date".
breaks a vector of cut points or number giving the number of intervals which x is to be
cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-

ceded by an integer and a space, or followed by "s". For "Date" objects only
"day", "week", "month", "quarter" and "year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are include for the default value
of right). If labels = FALSE, simple integer codes are returned instead
of a factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?
right, ... arguments to be passed to or from other methods.

Details

Using both right = TRUE and include.lowest = TRUE will include both ends of the
range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals be-
ginning on January 1, April 1, July 1 or October 1, based upon min (x) as appropriate.

Value

A factor is returned, unless Labels = FALSE which returns the integer level codes.

See Also

seq.POSIXt, seg.Date, cut

Examples

random dates in a 10-week period
cut (ISOdate (2001, 1, 1) + 70%x86400xstats::runif (100), "weeks")
cut (as.Date ("2001/1/1") 4+ 70xstats::runif (100), "weeks")

data.class

95

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class (x)

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode (x) .

Simply speaking, data.class (x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class (x) is "numeric" even when x is classed.

See Also

class

Examples

x <— LETTERS

data.class (factor (x))

data.class (matrix(x, ncol = 13))
data.class (list (x))
data.class (x)

has a class attribute
has a dim attribute
the same as mode (x)
the same as mode (x)

stopifnot (data.class(1l:2) == "numeric")# compatibility "rule"

96 data.frame
data.frame Data Frames
Description
This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by most of R’s modeling
software.
Usage
data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())
default.stringsAsFactors ()
Arguments
these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.
row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.
check.rows if TRUE then the rows are checked for consistency of length and names.
check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make . names) so that they are.
stringsAsFactors
logical: ~ should character vectors be converted to factors? The
‘factory-fresh’ default is TRUE, but this can be changed by setting
options (stringsAsFactors = FALSE).
Details

A data frame is a list of variables of the same number of rows with unique row names, given class
"data.frame". If no variables are included, the row names determine the number of rows.

The column names should be non-empty, and attempts to use empty names will have unsupported
results. Duplicate column names are allowed, but you need to use check.names = FALSE
for data. frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame (optional=TRUE). As that is a generic function, methods can be
written to change the behaviour of arguments according to their classes: R comes with many such
methods. Character variables passed to data.frame are converted to factor columns unless
protected by I or argument stringsAsFactors is false. If a list or data frame or matrix is
passed to data.frame it is as if each component or column had been passed as a separate
argument (except for matrices of class "model.matrix" and those protected by I).

data.frame 97

Objects passed to data . frame should have the same number of rows, but atomic vectors, fac-
tors and character vectors protected by I will be recycled a whole number of times if necessary
(including as from R 2.9.0, elements of list arguments).

If row names are not supplied in the call to data . frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as .matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

default.stringsAsFactors isautility that takes getOption ("stringsAsFactors")
and ensures the result is TRUE or FALSE (or throws an error if the value is not NULL).

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

How the names of the data frame are created is complex, and the rest of this paragraph is only the ba-
sic story. If the arguments are all named and simple objects (not lists, matrices of data frames) then
the argument names give the column names. For an unnamed simple argument, a deparsed version
of the argument is used as the name (with an enclosing I (...) removed). For a named ma-
trix/list/data frame argument with more than one named column, the names of the columns are the
name of the argument followed by a dot and the column name inside the argument: if the argument
is unnamed, the argument’s column names are used. For a named or unnamed matrix/list/data frame
argument that contains a single column, the column name in the result is the column name in the ar-
gument. Finally, the names are adjusted to be unique and syntactically valid unless check .names
= FALSE.

Note
In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with such
versions of R, supply a character vector as the row . names argument.

References
Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I,plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods, Math.data.frame etc, about Group methods for
data.frames; read.table, make.names.

Examples

1.3 <- LETTERS[1:3]
(d <= data.frame (cbind(x=1, y=1:10), fac=sample (L3, 10, replace=TRUE)))

The same with automatic column names:

98 data.matrix

data.frame (cbind(1, 1:10), sample (L3, 10, replace=TRUE))
is.data.frame (d)

do not convert to factor, using I()

(dd <- cbind(d, char = I(letters[1:10])))

rbind(class=sapply (dd, class), mode=sapply (dd, mode))

stopifnot (1:10 == row.names (d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows

(d.0 <— d[FALSE,]) # <0 rows> data frame (3 cols)
(d00 <- dO[FALSE,]) # NULL data frame with 0 rows
data.matrix Convert a Data Frame to a Numeric Matrix
Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage
data.matrix (frame, rownames.force = NA)
Arguments
frame a data frame whose components are logical vectors, factors or numeric vectors.

rownames . force

logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Any other column which is not numeric (ac-
cording to is.numeric)isconverted by as.numeric or, for S4 objects, as (, "numeric").
If all columns are integer (after conversion) the result is an integer matrix, otherwise a numeric
(double) matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames . force) and names.

Otherwise, the result of as . matrix.
Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

date 99

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seqg(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix (DF[1:2])

data.matrix (DF)

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date ()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on
POSIX’s ctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also
Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.
Examples
(d <= date())
nchar (d) == 24

something similar in the current locale
format (Sys.time (), "%a %b %d $H:%M:%S %Y")

100

Dates

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

Usage
S3 method for class 'Date':
summary (object, digits = 12, ...)
Arguments
object An object summarized.
digits Number of significant digits for the computations.

Further arguments to be passed from or to other methods.

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean

method or by adding or subtracting (see Ops .Date).

See Also

Sys.Date for the current date.

Ops .Date for operators on "Date" objects.

format .Date for conversion to and from character strings.
plot.Date and hist .Date for plotting.

weekdays for convenience extraction functions.

seq.Date, cut.Date, round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())

format (today, "%d %$b %Y") # with month as a word
(tenweeks <- seg(today, length.out=10, by="1 week"))

weekdays (today)
months (tenweeks)
as.Date(.leap.seconds)

next ten weeks

DateTimeClasses 101

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIX1t" and "POSIXct" representing calendar dates and times (to
the nearest second).

Usage

S3 method for class 'POSIXct':
print(x, ...)

S3 method for class 'POSIXct':
summary (object, digits = 15, ...)

time + z
z + time
time - z
timel lop time2

Arguments
x, object An object to be printed or summarized from one of the date-time classes.
digits Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.
Further arguments to be passed from or to other methods.
time date-time objects

timel, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

z a numeric vector (in seconds)
lop One of ==, ! =, <, <=, > or >=.
Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number of
seconds since the beginning of 1970 (in the UTC timezone) as a numeric vector. Class "POSIX1t"
is a named list of vectors representing

sec 0-61: seconds

min 0-59: minutes

hour 0-23: hours

mday 1-31: day of the month

mon 0-11: months after the first of the year.

year years since 1900.

wday 0-6 day of the week, starting on Sunday.

yday 0-365: day of the year.

102 DateTimeClasses

isdst Daylight Savings Time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the time_t data type)
and ‘local time’ (or broken-down time, the struct tm data type), from which they also inherit
their names. The components of "POSIX1t" are integer vectors, except sec.

"POSIXct" is more convenient for including in data frames, and "POSIX1t " is closer to human-
readable forms. A virtual class "POSIXt" inherits from both of the classes: it is used to allow
operations such as subtraction to mix the two classes. Note that length (x) is the length of the
corresponding (abstract) date/time vector, also in the "POSIX1t" case.

Components wday and yday of "POSIX1t" are for information, and are not used in the conver-
sion to calendar time. However, i sdst is needed to distinguish times at the end of DST: typically
lam to 2am occurs twice, first in DST and then in standard time. At all other times isdst can be
deduced from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and limited arithmetic are available for both classes. One can add or subtract
a number of seconds from a date-time object, but not add two date-time objects. Subtraction of
two date-time objects is equivalent to using di fftime. Be aware that "POSIX1t" objects will
be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIX1t" objects will often have an attribute "t zone", a character vector of length 3 giving
the timezone name from the TZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

"POSIXct" objects may also have an attribute "t zone", a character vector of length one. If
set to a non-empty value, it will determine how the object is converted to class "POSIX1t" and
in particular how it is printed. This is usually desirable, but if you want to specify an object in a
particular timezone but to be printed in the current timezone you may want to remove the "t zone"
attribute (e.g. by c (x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(24 days have been 86401 seconds long so far: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. This al-
ways covers the period 1970-2037, and on most machines back to 1902 (when time zones were in
their infancy). Outside the platform limits we use our own C code. This uses the offset from GMT
in use either for 1902 (when there was no DST) or that predicted for one of 2030 to 2037 (chosen so
that the likely DST transition days are Sundays), and uses the alternate (daylight-saving) timezone
only if i sdst is positive or (if —1) if DST was predicted to be in operation in the 2030s on that day.
(There is no reason to suppose that the DST rules will remain the same in the future, and indeed the
US legislated in 2005 to change its rules as from 2007, with a possible future reversion.)

It seems that some rare systems use leap seconds, but most ignore them (as required by POSIX).
This is detected and corrected for at build time, so all "POSIXct " times used by R do not include
leap seconds. (Conceivably this could be wrong if the system has changed since build time, just
possibly by changing locales or the ‘zoneinfo’ database.)

Using c on "POSIX1t" objects converts them to the current time zone, and on "POSIXct"
objects drops any "t zone" attributes (even if they are all marked with the same time zone).

A few times have specific issues. First, the leapseconds are ignored, and real times such as
"2005-12-31 23:59:60" are (probably) treated as the next second. However, they will never
be generated by R, and are unlikely to arise as input. Second, on some OSes there is a prob-
lem in the POSIX/C99 standard with "1969-12-31 23:59:59", which is —1 in calendar
time and that value is on those OSes also used as an error code. Thus as.POSIXct ("1969—
12-31 23:59:59", format="%Y-%m-%d %$H:%M:%S", tz="UTC") may give NA, and
hence as.POSIXct ("1969-12-31 23:59:59", tz="UTC") will give "1969-12-31

dcf 103

23:59:50". Other OSes (including the code used by R on Windows) report errors separately and
so are able to handle that time as valid.

Sub-second Accuracy
Classes "POSIXct" and "POSIX1t™" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options ("digits.secs") isset: see strftime.

Warning

Some Unix-like systems (especially Linux ones) do not have "TZ" set, yet have internal code that
expects it (as does POSIX). We have tried to work around this, but if you get unexpected results try
setting "TZ". See Sys.timezone for valid settings.

See Also

Dates for dates without times.

as.POSIXct and as.POSIX1t for conversion between the classes.
strptime for conversion to and from character representations.
Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut .POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays for convenience extraction functions.

Examples
(z <— Sys.time()) # the current date, as class "POSIXct"
Sys.time () - 3600 # an hour ago

as.POSIX1lt (Sys.time (), "GMT") # the current time in GMT

format (.leap.seconds) # all 24 leapseconds in your timezone
print (.leap.seconds, tz="PST8PDT") # and in Seattle's
dcf Read and Write Data in DCF Format
Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage
read.dcf (file, fields = NULL, all = FALSE)
write.dcf(x, file = "", append = FALSE,

indent = 0.1 % getOption("width"),
width = 0.9 x getOption ("width"))

104 dcf

Arguments
file either a character string naming a file or a connection. " " indicates output to the
console. For read.dcf this can name a compressed file (see gzfile).
fields Fields to read from the DCF file. Default is to read all fields.
all alogical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If a1l is false (default), only the last such occur-
rence is used.
X the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.
append logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.
indent a positive integer specifying the indentation for continuation lines in output en-
tries.
width a positive integer giving the target column for wrapping lines in the output.
Details

DCEF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-
rated by : (only the first : counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
characteris a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (=whitespace only) lines.

By default, read.dcf returns a character matrix with one row per record and one column per
field. Leading and trailing whitespace of field values is ignored. If a tag name is specified, but the
corresponding value is empty, then an empty string is returned. If the tag name of a field is never
used in a record, then NA is returned. If fields are repeated within a record, the last one encountered
is returned. Malformed lines lead to an error. If all is true, a data frame is returned, again with
one row per record and one column per field, and columns lists of character vectors for fields with
multiple occurrences, and character vectors otherwise.

Note that read.dcf(all = FALSE) reads the file byte-by-byte. This allows a
‘DESCRIPTION’ file to be read and only its ASCII fields used, or its ‘Encoding’ field used
to re-encode the remaining fields.

write.dcf does not write NA fields.

See Also

write.table.

debug 105

Examples

Not run:

Create a reduced version of the 'CONTENTS' file in package 'splines'

x <- read.dcf(file = system.file ("CONTENTS", package = "splines"),
fields = c("Entry", "Description"))

write.dcf (x)

End (Not run)

debug Debug a Function

Description

Set, unset or query the debugging flag on a function. The text and condition arguments are the
same as those that can be supplied via a call to browser. They can be retrieved by the user once
the browser has been entered, and provide a mechanism to allow users to identify which breakpoint
has been activated.

Usage

debug (fun, text="", condition=NULL)
debugonce (fun, text="", condition=NULL)
undebug (fun)

isdebugged (fun)

Arguments
fun any interpreted R function.
text a text string that can be retrieved when the browser is entered.
condition a condition that can be retrieved when the browser is entered.
Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands or R expressions. The commands are

n (or just return). Advance to the next step.

c continue to the end of the current context: e.g. to the end of the loop if within a loop or to the
end of the function.

cont synonym for c.
where print a stack trace of all active function calls.

Q exit the browser and the current evaluation and return to the top-level prompt.

106 Defunct

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the debug prompt is interpreted as an R expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
1s () lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

To debug a function is defined inside a function, single-step though to the end of its definition, and
then call debug on its name.

Using debug is persistent, and unless debugging is turned off the debugger will be entered on every
invocation (note that if the function is removed and replaced the debug state is not preserved). Use
debugonce to enter the debugger only the next time the function is invoked.

In order to debug S4 methods (see Methods), you need to use t race, typically calling browser,
e.g., as

trace("plot", browser, exit=browser, signature = c("track",
"missing"))

The number of lines printed for the deparsed call when a function is entered for debugging can be
limited by setting options (deparse.max.lines).

See Also

browser, trace; traceback to see the stack after an Error: ... message; recover
for another debugging approach.

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

Usage

.Defunct (new, package = NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Defunct is called from defunct functions. Functions should be listed in help ("pkg-
defunct") for an appropriate pkg, including base.

See Also

Deprecated.

base-defunct and so on which list the defunct functions in the packages.

delayedAssign 107

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)

functions.
Usage
delayedAssign(x, value, eval.env = parent.frame(l),
assign.env = parent.frame(1l))
Arguments
X a variable name (given as a quoted string in the function call)
value an expression to be assigned to x
eval.env an environment in which to evaluate value

assign.env anenvironment in which to assign x

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually ‘“forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise.

Examples

msg <— "old"

delayedAssign ("x", msqg)

msg <- "new!"

x #- new!

substitute (x) #- x (was 'msg' ?)

delayedAssign ("x", {
for(i in 1:3)
cat ("yippee!\n")
10

108 deparse

b

x"2 #- yippee
x"2 #- simple number

e <- (function(x, y =1, z) environment ()) (1+2, "y", {cat (" HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises
deparse Expression Deparsing
Description

Turn unevaluated expressions into character strings.

Usage
deparse (expr, width.cutoff = 60L,
backtick = mode (expr) %$in% c("call", "expression", " (", "function"),
control = c("keepInteger", "showAttributes", "keepNA"),
nlines = -1L)
Arguments
expr any R expression.

width.cutoff integer in [20, 500] determining the cutoff at which line-breaking is tried.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.
control character vector of deparsing options. See .deparseOpts.
nlines integer: the maximum number of lines to produce. Negative values indicate no
limit.
Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode "expression" used in expression) into character strings
(a kind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

Using control = "all" comes closestto making deparse () aninverse of parse (). How-
ever, not all objects are deparse-able even with this option and a warning will be issued if the func-
tion recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: see as.character for
more details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff byfes have been output and e.g. arg = value expressions will not be split
across lines.

deparseOpts 109

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require (stats); require (graphics)

deparse (args (1lm))
deparse (args (1lm), width = 500)
myplot <-
function(x, y) {
plot (x, y, xlab=deparse (substitute(x)),
ylab=deparse (substitute(y)))
}
e <- quote(foo bar")
deparse (e)
deparse (e, backtick=TRUE)
e <- quote(foo bar +1)
deparse (e)

deparse (e, control = "all")
deparseOpts Options for Expression Deparsing
Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts (control)

Arguments

control character vector of deparsing options.

110 deparseOpts

Details

This is called by deparse, dput and dump to process their control argument.

The control argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keepInteger Either surround integer vectors by as.integer () or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA_integer_ if there are no non-NA values in the vector, unless
"S_compatible" is set).

quoteExpressions Surround expressions with quote (), so they are not evaluated when re-
parsed.

showAttributes If the object has attributes (other than a source attribute), use
structure () to display them as well as the object value. This is the default for deparse
and dput.

useSource If the object has a source attribute, display that instead of deparsing the object.
Currently only applies to function definitions.

warnIncomplete Some exotic objects such as environments, external pointers, etc. can not be
deparsed properly. This option causes a warning to be issued if the deparser recognizes one of
these situations.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNA Integer, real and character NAs are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the default for dump,
and the options used by edit (which are fixed).

delayPromises Deparse promises in the form <promise: expression> rather than evaluating
them. The value and the environment of the promise will not be shown and the deparsed code
cannot be sourced.

S_compatible Make deparsing as far as possible compatible with S and R < 2.5.0. For com-
patibility with S, integer values of double vectors are deparsed with a trailing decimal point.
Backticks are not used.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays
the object’s value, but not its attributes. The default in deparse is to display the attributes as
well, but not to use any of the other options to make the result parseable. (dput and dump do
use more default options, and printing of functions without sources uses c ("keepInteger",
"keepNA").)

Using control = "all" comes closestto making deparse () aninverse of parse (). How-
ever, not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

Deprecated 111

Deprecated Marking Objects as Deprecated

Description

When an object is about removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated (new, package=NULL, msqg)

Arguments
new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the deprecated
function might be listed.
msg character string: A message to be printed, if missing a default message is used.
Details

.Deprecated ("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help ("oldName—-deprecated") (note the quotes).
Functions should be listed in help ("pkg-deprecated") for an appropriate pkg, including
base.

See Also

Defunct

base—deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det (x, ...)
determinant (x, logarithm = TRUE, ...)

112 detach

Arguments
x numeric matrix.
logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.
Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will
not produce an error.
Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithmis FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or —1 according to whether the determinant is positive or
negative.

Examples

(x <= matrix(1:4, ncol=2))
unlist (determinant (x))
det (x)

det (print (cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search () path of available R objects. Usually this is
either a data . frame which has been at tached or a package which was attached by 1ibrary.

Usage

detach (name, pos = 2, unload = FALSE, character.only = FALSE, force = FALSE)

Arguments
name The object to detach. Defaults to search () [pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.
pos Index position in search () of the database to detach. When name is a num-

ber, pos = name is used.

detach 113

unload A logical value indicating whether or not to attempt to unload the names-
pace when a package is being detached. If the package has a namespace and
unload is TRUE, then detach will attempt to unload the namespace via
unloadNamespace: if the namespace is imported by another namespace or
unload is FALSE, no unloading will occur.

character.only
a logical indicating whether name can be assumed to be character strings.

force logical: should a package be detached even though other loaded packages de-
pend on it?

Details

This is most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload=TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs). Further, registered S3 methods from the namespace will not be removed.
If you use 1ibrary on a package whose name space is loaded, it attaches the exports of the
already loaded name space. So detaching and re-attaching a package may not refresh some or all
components of the package, and is inadvisable.

Value

The return value is invisible. It is NULL when a package is detached, otherwise the environment
which was returned by attach when the object was attached (incorporating any changes since it
was attached).

Note

You cannot detach either the workspace (position 1) nor the base package (the last item in the search
list), and attempting to do so will throw an error.

Unloading some name spaces has undesirable side effects: e.g. unloading grid closes all graphics
devices, and on most systems tcltk cannot be reloaded once it has been unloaded and may crash R
if this is attempted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects,unloadNamespace, library.dynam.unload.

Examples

require (splines) # package
detach (package:splines)

or also
library(splines)

pkg <- "package:splines"

114 diag

detach (pkg, character.only = TRUE)

careful: do not do this unless 'splines' is not already loaded.
library (splines)
detach (2) # 'pos' used for 'name'

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function (db, pos=2)
{
name <- deparse (substitute (db))
attach (db, pos=pos, name=name)
print (search () [pos])
detach (name, character.only = TRUE)
}

attach_and_detach (women, pos=3)

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol)
diag(x) <- value

Arguments

X a matrix, vector or 1D array, or missing.
nrow, ncol Optional dimensions for the result when x is not a matrix.

value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.

Details

diag has four distinct usages:

1. x is a matrix, when it extracts the diagonal.
2. x is missing and nrow is specified, it returns an identity matrix.

3. x is a scalar (length-one vector) and the only argument, it returns a square identity matrix of
size given by the scalar.

4. x is a vector, either of length at least 2 or there were further arguments. This returns a matrix
with the given diagonal and zero off-diagonal entries.

It is an error to specify nrow or ncol in the first case.

diff 115

Value

If x is a matrix then diag (x) returns the diagonal of x. The resulting vector will have names if
the matrix x has matching column and rownames.

The replacement form sets the diagonal of the matrix x to the given value(s).

In all other cases the value is a diagonal matrix with nrow rows and ncol columns (if ncol is not
given the matrix is square). Here nrow is taken from the argument if specified, otherwise inferred
from x: if that is a vector (or 1D array) of length two or more, then its length is the number of rows,
but if it is of length one and neither nrow nor ncol is specified, nrow = as.integer (x).

When a diagonal matrix is returned, the diagonal elements are one except in the fourth case, when
x gives the diagonal elements: it will be recycled or truncated as needed, but fractional recycling
and truncation will give a warning.

Note
Using diag (x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length (x)) for consistent behaviour.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri,matrix.

Examples

require (stats)

dim(diag(3))
diag(10,3,4) # guess what?
all(diag(l:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames (M) <- c(colnames (M), rep("",3));
M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

116 diff
Usage
diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences =1, ...)

S3 method for class 'POSIXt':
diff(x, lag = 1, differences =1, ...)

S3 method for class 'Date':

diff(x, lag = 1, differences =1, ...)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the succes-
sive differences x [(1+1lag) :n] - x[1: (n-lag)].

If di fference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts,diffinv.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <— cumsum (cumsum(1:10))
diff(x, lag = 2)

diff (x, differences = 2)

diff (.leap.seconds)

difftime 117

difftime Time Intervals

Description

Time intervals creation, printing, and some arithmetic.

Usage
timel - time2
difftime(timel, time2, tz = "",
units = c("auto", "secs", "mins", "hours",
"daysll’ "weeks"))
as.difftime (tim, format = "%X", units = "auto")

S3 method for class 'difftime':

format (x, ...)
S3 method for class 'difftime':
units (x)

S3 replacement method for class 'difftime':
units (x) <- value

S3 method for class 'difftime':
as.double (x, units = "auto", ...)

Group methods, notably for round(), signif(), floor(), ceiling(),
trunc(), abs(); called directly, =*notx as Math():

S3 method for class 'difftime':

Math (x, ...)

Arguments

timel, time2 date-time or date objects.

tz a timezone specification to be used for the conversion. System-specific, but " "
is the current time zone, and "GMT" is UTC.

units character. Units in which the results are desired. Can be abbreviated.

value character. Like units above, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of t im: see st rpt ime. The default is a locale-

specific time format.
X an object inheriting from class "difftime".

arguments to be passed to or from other methods.

Details

Function di f ft ime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. The Math group method provides round,

118 dim

signif, floor, ceiling, trunc, abs, and sign methods for objects of this class, and there
are methods for the group-generic (see Ops) logical and arithmetic operations.

Ifunits = "auto", asuitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling di fft ime withunits =
"auto". Alternatively, as.difftime () works on character-coded or numeric time intervals;
in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and
multiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector by
a"difftime" object implicitly converts the numeric vector to a "difftime" object with the
same units as the "difftime" object. There are methods for mean and sum (via the Summary
group generic).

The units of a "difftime" object can be extracted by the units function, which also has an
replacement form. If the units are changed, the numerical value is scaled accordingly.

The as . double method returns the numeric value expressed in the specified units. Using units
= "auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

See Also

DateTimeClasses.

Examples

(z <- Sys.time () - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate (2001, 4, 26) - ISOdate (2001, 2, 206)

as.difftime(c("0:3:20", "11:23:15"))

as.difftime(c("3:20", "23:15", "2:"), format= "$H:$M")# 3rd gives NA
(z <= as.difftime(c(0,30,60), units="mins"))

as.numeric(z, units="secs")

as.numeric(z, units="hours")

format (z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim (x)
dim(x) <- value

dimnames 119

Arguments
X an R object, for example a matrix, array or data frame.
value For the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).
Details

The functions dim and dim<- are internal generic primitive functions.

dim has a method for data . frames, which returns the lengths of the row . names attribute of x
and of x (as the numbers of rows and columns respectively).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ncol, nrow and dimnames.

Examples

x <= 1:12 ; dim(x) <- c(3,4)
X

simple versions of nrow and ncol could be defined as follows
nrow(0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x) [2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage
dimnames (x)
dimnames (x) <- value
Arguments

X an R object, for example a matrix, array or data frame.

value a possible value for dimnames (x) : see the “Value’ section.

120 dimnames

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a mat rix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL, and a zero-length list to NULL. If value is a list shorter than the number of dimensions, as
from R 2.8.0 it is extended with NULLS to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.

Both are primitive functions.

Value

The dimnames of a matrix or array can be NULL or a list of the same length as dim (x) . If a list, its
components are either NULL or a character vector with positive length of the appropriate dimension
of x. The list can be named.

For the "data. frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

Note

Setting components of the dimnames, e.g. dimnames (A) [[1]] <- value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array,matrix, data. frame.

Examples

simple versions of rownames and colnames
could be defined as follows
rownames0 <- function(x) dimnames (x) [[1]]
colnames0 <- function(x) dimnames (x) [

do.call 121

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage
do.call (what, args, quote = FALSE, envir = parent.frame())
Arguments
what either a function or a non-empty character string naming the function to be
called.
args a list of arguments to the function call. The names attribute of args gives the
argument names.
quote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.
Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment,
not envir.). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes — leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such as subst itute, will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

Value

The result of the (evaluated) function call.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

122 double

Examples

do.call ("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments

tmp <- expand.grid(letters([l:2], 1:3, c("+", "=-"))
do.call ("paste", c(tmp, sep=""))

do.call (paste, list (as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A <= 2

f <- function(x) print (x"2)

env <- new.env()

assign ("A", 10, envir = env)

assign("f", f, envir = env)
f <- function(x) print (x)
f (A7) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir=env) # 4
do.call(f, list(A), envir=env) # 2
do.call("f list (quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list (as.name("A")), envir=env) # 100
eval (call("f", A)) # 2
eval (call ("f", quote(A))) # 2
eval (call("f", A), envir=env) # 4
eval (call("f", quote(A)), envir=env) # 100
double Double-Precision Vectors
Description

Create, coerce to or test for a double-precision vector.

Usage

double (length = 0)
as.double(x, ...)
is.double (x)

Il
o

single (length
as.single(x, ...)

Arguments

length desired length.
X object to be coerced or tested.

e further arguments passed to or from other methods.

double 123

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric (and real).

as.double is a generic function. It is identical to as.numeric (and as.real). Methods
should return an object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as . single and single are identical to as . double and double except they set the
attribute Csingle that is used in the .C and .Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to O.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes,
use storage .mode.) Character strings containing optional whitespace followed by either a dec-
imal representation or a hexadecimal representation (starting with 0x or 0X) can be converted.
as.double for factors yields the codes underlying the factor levels, not the numeric representa-
tion of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric
and real.

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric".

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as . double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
See Also

integer, numeric, storage.mode.

Examples

is.double (1)
all (double (3) == 0)

124 dput

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to recreate
the object.

Usage

dput (x, file = "",
control = c("keepNA", "keepInteger", "showAttributes"))

dget (file)

Arguments
X an object.
file either a character string naming a file or a connection. " " indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their
description.
Details

dput opens f£ile and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput ()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump,
not likely to be parsed as identical to the original. Use control = "all" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource"
in control. R currently saves source only for function definitions.

Value

For dput, the first argument invisibly.
For dget, the object created.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

drop 125

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"
dput (mean, "foo")
And read it back into 'bar'
bar <- dget ("foo")
unlink ("foo")
Create a function with comments
baz <- function(x) {
Subtract from one
1-x
}
and display it

dput (baz)
and now display the saved source
dput (baz, control = "useSource")
drop Drop Redundant Extent Information
Description

Delete the dimensions of an array which have only one level.

Usage

drop (x)

Arguments

X an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any). If
the result is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it
is useful to invoke drop directly.

See Also

dropl which is used for dropping terms in models.

Examples

dim(drop (array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2
drop(l:3 %$x% 2:4)# scalar product

126 dump

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R (or S) session.

Usage
dump (list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)
Arguments
list character. The names of one or more R objects to be dumped.
file either a character string naming a file or a connection. " " indicates output to the
console.
append if TRUE and file is a character string, output will be appended to £i1le; oth-
erwise, it will overwrite the contents of £ile.
control character vector indicating deparsing options. See .deparseOpts for their
description.
envir the environment to search for objects.
evaluate logical. Should promises be evaluated?
Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If fileisa
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the function save is
designed to be used for transporting R data, and will work with R objects that dump does not
handle.

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use

control = c("keepInteger", "warnIncomplete", "keepNA"). This willlose all
formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate =
FALSE might be intended.

duplicated 127

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base name space, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput, dget, write.
save for a more reliable way to save R objects.

Examples

x <= 1; y <= 1:10

dump (1ls (pattern = '""[xyz]"'), "xyz.Rdmped")
print (.Last.value)

unlink ("xyz.Rdmped")

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector or data frame are duplicates of elements with smaller sub-
scripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage
duplicated(x, incomparables = FALSE, ...)
Default S3 method:
duplicated(x, incomparables = FALSE,
fromLast = FALSE, ...)

S3 method for class 'array':
duplicated(x, incomparables = FALSE, MARGIN = 1,
fromLast = FALSE, ...)

128 duplicated

anyDuplicated(x, incomparables = FALSE, ...)
Default S3 method:
anyDuplicated(x, incomparables = FALSE,

fromLast = FALSE, ...)
S3 method for class 'array':
anyDuplicated(x, incomparables = FALSE,

MARGIN = 1, fromLast = FALSE, ...)
Arguments
X a vector or a data frame or an array or NULL.
incomparables
a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.
fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE.
arguments for particular methods.
MARGIN the array margin to be held fixed: see apply.
Details

These are generic functions with methods for vectors (including lists), data frames and arrays (in-
cluding matrices).

For the default methods, and whenever there are equivalent method definitions for duplicated
and anyDuplicated, anyDuplicated(x,...) is a “generalized” shortcut for
any (duplicated(x, ...)),in the sense that it returns the index i of the first duplicated entry
x [1] if there is one, and O otherwise. Their behaviours may be different when at least one of
duplicated and anyDuplicated has a relevant method.

duplicated(x, fromLast=TRUE) is equivalent to but faster than
rev (duplicated(rev(x))).

The data frame method works by pasting together a character representation of the rows separated
by \r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when f romLast=TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2).

Missing values are regarded as equal, but NaN is not equal to NA_real_.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Value

duplicated/(): For a vector input, a logical vector of the same length as x. For a data frame, a
logical vector with one element for each row. For a matrix or array, a logical array with the same
dimensions and dimnames.

anyDuplicated (): anon-negative integer (of length one).

dyn.load

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see

vector) or differ only in their attributes. In the worst case it is O(n?).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &

Brooks/Cole.

See Also

unique.

Examples

x <= c¢(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <—- x[!duplicated(x)])

similar, but not the same:

(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique (x) but unique (x) is more efficient
stopifnot (identical (xu, unique(x)),
identical (xu2, unique (x, fromLast = TRUE)))

duplicated(iris) [140:143]

duplicated(iris3, MARGIN = c (1, 3))
anyDuplicated(iris) ## 143

anyDuplicated (x)
anyDuplicated(x, fromLast = TRUE)

dyn.load Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran

subroutine is available.

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload (x)

is.loaded (symbol, PACKAGE = "", type = "")

130 dyn.load

Arguments

X a character string giving the pathname to a DLL, also known as a dynamic shared
object. (See ‘Details’ for what these terms mean.)

local a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

other arguments for future expansion.
symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, *.s0’, ‘.sl’, “.dI’, ...). This is intended to add
safety for packages, which can ensure by using this argument that no other pack-
age can override their external symbols. Use PACKAGE="base" for symbols
linked in to R. This is used in the same way as in .C, .Call, .Fortran and
.External functions

type The type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

Details

The objects dyn . load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’ on
all platforms except Mac OS X, which unfortunately uses the term for a different sort of sobject.
On Unix-alikes they are also called ‘dynamic shared objects’ (‘DSQ’), or ‘shared objects’ for short.
(The POSIX standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the ‘Writing R Extensions’ and ‘R Installation and Administration’ manuals for
how to create and install a suitable DLL.

Unfortunately a very few platforms (e.g. Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn . load mirror the different aspects of the mode argument to the
dlopen () routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the default values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own name space is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately.
The intended use is for library developers to call with value TRUE to check that all symbols are
actually resolved and for regular users to call with FALSE so that missing symbols can be ignored
and the available ones can be called.

The initial motivation for adding these was to avoid such termination in the _init () routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)

dyn.load 131

available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some (very old) systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning messages
emitted when unsupported options are used. This is done by setting either of the options verbose
or warn to be non-zero via the opt ions function.

There is a short discussion of these additional arguments with some example code available at
http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn . load is used for its side effect which links the specified DLL to the executing
R image. Callsto .C, .Call, .Fortran and .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See get LoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL. Note that unloading a DLL and then re-loading a
DLL of the same name may or may not work: on Solaris it uses the first version loaded.

is.loaded checks if the symbol name is loaded and hence available forusein .C or . Fortran
or .Call or .External. It will succeed if any one of the four calling functions would succeed
in using the entry point unless type is specified. (See .Fortran for how Fortran symbols are
mapped.)

Warning

Do not wuse dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system housekeeping.

Note

is.loaded requires the name you would give to . C etc and not (as in S) that remapped by defunct
functions symbol.C or symbol.For.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn . load uses
the dlopen mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library.dynam to be used inside a package’s .First.1ib initialization.
SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

http://cm.bell-labs.com/stat/duncan/R/dynload

132

Examples

is.loaded ("hcass2") #-> probably TRUE, as stats is loaded

eapply

(
is.loaded ("supsmu") # Fortran entry point in stats
is.loaded ("supsmu", "stats", "Fortran")
is.loaded ("PDF", type = "External")
eapply Apply a Function Over Values in an Environment

Description

eapply applies FUN to the named values from an environment and returns the results as a list.
The user can request that all named objects are used (normally names that begin with a dot are not).

The output is not sorted and no parent environments are searched.

This is a primitive function.

Usage
eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)
Arguments

env environment to be used.

FUN the function to be applied, found via match. fun. In the case of functions like
+, $* %, etc., the function name must be backquoted or quoted.
optional arguments to FUN.

all.names a logical indicating whether to apply the function to all values.

USE.NAMES logical indicating whether the resulting list should have names. Setting this
to FALSE is faster, useful however typically only when 1s (env) is already
given.

See Also

environment, lapply.

Examples

require (utils); require(stats)

env <—- new.env()

envSa <- 1:10

envs$beta <- exp(-3:3)

env$logic <- ¢ (TRUE,FALSE,FALSE, TRUE)

what have we there?

eapply (env, str)

note however, that 'ls.str(env)' is slightly nicer

compute the mean for each list element
eapply (env, mean)
unlist (eapply (env, mean, USE.NAMES = FALSE))

eigen

median and quartiles for each element (making use of "..." passing):

eapply (env, quantile, probs = 1:3/4)
eapply (env, quantile)

133

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real (double, integer, logical) or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments
X a matrix whose spectral decomposition is to be computed.
symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and

only its lower triangle (diagonal included) is used. If symmetric is not speci-
fied, the matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)?

Details

By default eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen (EISPACK = TRUE) provides an interface to the EISPACK routines RS, RG, CH and CG.

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to
plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen (EISPACK = TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between methods
and between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Value

The spectral decomposition of x is returned as components of a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod (values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

134 encodeString
vectors either a p X p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE
For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of
length of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.
Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).
References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines — EISPACK Guide. Springer-Verlag Lecture Notes in
Computer Science 6.
Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.
Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.
See Also
svd, a generalization of eigen; gr, and chol for related decompositions.
To compute the determinant of a matrix, the gr decomposition is much more efficient: det.
Examples
eigen (cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).
eigen(cbind(l,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen (print (cbind(c(0,11), c(-11i,0))))# Hermite ==> real Eigen values
3 x 3:
eigen(cbind(1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values
encodeString Encode Character Vector as for Printing
Description
encodeString escapes the strings in a character vector in the same way print.default
does, and optionally fits the encoded strings within a field width.
Usage

encodeString(x, width =

0, gquote = "", na.encode = TRUE,
justify = c("left", "right", "centre", "none"))

http://www.netlib.org/lapack/lug/lapack_lug.html

encodeString

Arguments

X

width

quote
na.encode

Jjustify

Details

135

A character vector, or an object that can be coerced to one by as.character.

integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.

character: quoting character, if any.
logical: should NA strings be encoded?

character: partial matches are allowed. If padding to the minimum field width is
needed, how should spaces be inserted? justify == "none" is equivalent
towidth = O, for consistency with format .default.

This escapes backslash and the control characters ‘\a’ (bell), ‘\b’ (backspace), ‘\ £’ (formfeed),
‘An’ (line feed), ‘\r’ (carriage return), ‘\t’ (tab) and ‘\v’ (vertical tab) as well as any non-
printable characters in a single-byte locale, which are printed in octal notation (‘\xyz’ with leading

zeroes).

Which characters are non-printable depends on the current locale. Windows’ reporting of printable
characters is unreliable, so there all other control characters are regarded as non-printable, and all
characters with codes 32-255 as printable in a single-byte locale. See print .default for how
non-printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Note

The default for width is different from format .default, which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"

print (x)

cat (x) # interprets escapes
cat (encodeString(x), "\n", sep="") # similar to print ()

factor (x) # makes use of this to print the levels

X <— C("a', "ab", "abcde")

encodeString
encodeString

(x
(x
encodeString (x
(x

encodeString

width = NA) # left justification

14

, width = NA, Jjustify = "c")

, width = NA, justify = "r")

, width = NA, quote = "'", Justify = "r")

136 Encoding

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding (x)
Encoding (x) <- value

enc2native (x)
enc2utf8 (x)

Arguments

X A character vector.

value A character vector of positive length.
Details

Character strings in R can be declared to be in "1atinl™ or "UTF-8". These declarations can
be read by Encoding, which will return a character vector of values "latinl", "UTF-8" or
"unknown", or set, when value is recycled as needed and other values are silently treated as
"unknown". ASCII strings will never be marked with a declared encoding, since their represen-
tation is the same in all encodings.

enc2native and enc2ut£8 convert elements of character vectors to the native encoding or
UTF-8 respectively, taking any marked encoding into account. They are primitive functions, de-
signed to do minimal copying.

There are other ways for character strings to acquire a declared encoding apart from explicitly set-
ting it (and these have changed as R has evolved). Functions scan, read.table, readLines,
and parse have an encoding argument that is used to declare encodings, i conv declares encod-
ings from its £ rom argument, and console input in suitable locales is also declared. intToUt £8
declares its output as "UTF-38", and output text connections are marked if running in a suitable lo-
cale. Under some circumstances (see its help page) source (encoding=) will mark encodings
of character strings it outputs.

Most character manipulation functions will set the encoding on output strings if it was de-
clared on the corresponding input. These include chartr, strsplit (useBytes = FALSE),
tolower and toupper as well as sub (useBytes = FALSE) and gsub (useBytes =
FALSE) . Note that such functions do not preserve the encoding, but if they know the input en-
coding and that the string has been successfully re-encoded (to the current encoding or UTF-8),
they mark the output.

substr does preserve the encoding, and chartr, tolower and toupper preserve UTF-
8 encoding on systems with Unicode wide characters. With their fixed and perl options,
strsplit, sub and gsub will give a marked UTF-8 result if any of the inputs are UTF-8.

paste and sprint f return a UTF-8 marked element if any of the inputs to that element is marked
as UTF-8.

environment 137

match, pmatch, charmatch, duplicated and unique all match in UTF-8 if any of the
elements are marked as UTF-8.

Value

A character vector.

Examples

x is intended to be in latinl
X <— "fa\xE7ile"

Encoding (x)

Encoding(x) <- "latinl"

X

xx <— iconv(x, "latinl", "UTF-8")
Encoding(c(x, xx))

c(x, xXx)

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment (fun = NULL)
environment (fun) <- value

is.environment (x)
.GlobalEnv
globalenv ()

.BaseNamespaceEnv

emptyenv ()
baseenv ()

new.env (hash = FALSE, parent = parent.frame(), size = 29L)

parent.env (env)
parent.env(env) <- value

environmentName (env)

env.profile (env)

138 environment

Arguments
fun a function,a formula, or NULL, which is the default.
value an environment to associate with the function
x an arbitrary R object.
hash a logical, if TRUE the environment will be hashed
parent an environment to be used as the enclosure of the environment created.
env an environment
size an integer specifying the initial size for a hashed environment. An internal de-
fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.
Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined. The enclosing environment is distinguished
from the parent frame: the latter (returned by parent . frame) refers to the environment of the
caller of a function.

When get or exists search an environment with the default inherits = TRUE, they look
for the variable in the frame, then in the enclosing frame, and so on.

The global environment . G1obalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv (). On the search path, each item’s
enclosure is the next item.

The object .BaseNamespaceEnv is the name space environment for the base package. The
environment of the base package itself is available as baseenv (). The ultimate enclosure of
any environment is the empty environment emptyenv (), to which nothing may be assigned.
If one follows the parent .env () chain of enclosures back far enough from any environment,
eventually one reaches the empty environment.

The replacement function parent .env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

The replacement form of environment, is.environment, baseenv, emptyenv and
globalenv are primitive functions.

Value
If fun is a function or a formula then environment (fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.
The replacement form sets the environment of the function or formula fun to the value given.
is.environment (obj) returns TRUE if and only if obj is an environment.
new.env returns a new (empty) environment enclosed in the parent’s environment, by default.
parent .env returns the parent environment of its argument.
parent .env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or " "
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported

EnvVar 139

by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

The envir argument of eval, get, and exists.

1s may be used to view the objects in an environment, and hence 1s.str may be useful for an
overview.

sys.source can be used to populate an environment.
Examples

f <- function() "top level function"

##-— all three give the same:

environment ()

environment (f)

.GlobalEnv

ls (envir=environment (stats::approxfun(l:2,1:2, method="const")))

is.environment (.GlobalEnv) # TRUE

el <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = el)

assign("a", 3, envir=el)

1s (el)

1s (e2)

exists("a", envir=e2) # this succeeds by inheritance

exists("a", envir=e2, inherits = FALSE)

exists("+", envir=e2) # this succeeds by inheritance

eh <- new.env(hash = TRUE, size = NA)

with (env.profile(eh), stopifnot(size == length(counts)))
EnvVar Environment Variables
Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect
the OS system functions which R uses, and others will affect add-on packages. But here are notes
on some of the more important ones. Those that set the defaults for options are consulted only at
startup (as are some of the others).

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations. This is consulted
when needed.

140 EnvVar

LC_ALL: (etc) Optional. Use to set various aspects of the locale — see Sys.getlocale. Con-
sulted at startup.

R_BATCH: Optional — set in a batch session.

R_BROWSER: The path to the default browser. Used to set the default value of
options ("browser").

R_COMPLETION: Optional. If set to FALSE, command-line completion is not used. (Not used by
Mac OS GUL)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be loaded in every
session. See options.

R_DOC_DTIR: The location of the R ‘doc’ directory. Set by R.

R_DVIPSCMD: The path to dvips. Defaults to the value of DVIPS, and if that is unset to a value
determined when R was built. Used by R CMD Rd2dvi, and at startup to set the default for
options ("latexcmd"),used by help (help_type="ps").

R_ENVIRON: Optional. The path to the site environment file: see Startup. Consulted at startup.

R_GSCMD: Optional. The path to GhostScript, used by dev2bitmap, bitmap and
embedFonts. Consulted when those functions are invoked.

R_HISTFILE: Optional. The path of the history file: see Startup. Consulted at startup and when
the history is saved.

R_HISTSIZE: Optional. The maximum size of the history file, in lines. Exactly how this is used
depends on the interface. For the readline command-line interface it takes effect when the
history is saved (by savehistory or at the end of a session).

R_HOME: The top-level directory of the R installation: see R .home. Set by R.
R_INCLUDE_DIR: The location of the R ‘include’ directory. Set by R.

R_LATEXCMD: The path to 1atex. Defaults to the value of LATEX, and if that is unset to a value
determined when R was built. Used by R CMD Rd2dvi.

R_LIBS: Optional. Used for initial setting of . 1ibPaths.
R_LIBS_SITE: Optional. Used for initial setting of . LibPaths.
R_LIBS_USER: Optional. Used for initial setting of . 1ibPaths.

R_MAKEINDEXCMD: The path to makeindex. Defaults at startup to the value of MAKEINDEX,
and if that is unset to a value determined when R was built. Used by R CMD Rd2dvi.

R_PAPERSIZE: Optional. Used to set the default for opt ions ("papersize"),e.g. used by
pdf and postscript.

R_PDFLATEXCMD: The path to pdflatex. Defaults at startup to the value of PDFLATEX, and
if that is unset to a value determined when R was built. Used by R CMD Rd2dvi.

R_PDFVIEWER: The path to the default PDF viewer. Used by R CMD Rd2dvi.
R_PLATFORM: The platform — a string of the form cpu-vendor-os, see R.Version.
R_PROFILE: Optional. The path to the site profile file: see Startup. Consulted at startup.
R_RD4DVI: Options for latex processing of Rd files. Used by R CMD Rd2dvi.
R_RD4PDF: Options for pdflatex processing of Rd files. Used by R CMD Rd2dvi.
R_SHARE_DIR: The location of the R ‘share’ directory. Set by R.

R_TEXI2DVICMD: The path to texi2dvi. Defaults to the value of TEXI2DVI, and if that is
unset to a value determined when R was built. Consulted at startup to set the default for
options ("texi2dvi"), used by texi2dvi in package tools.

R_UNZIPCMD: The path to unzip. Sets the initial value for options ("unzip") on a Unix-
alike when package utils is loaded.

eval 141

R_ZIPCMD: The path to zip. Only used in R itself by R CMD INSTALL --build on Win-
dows.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory for the ses-
sion: see tempdir. TMPDIR is also used by some of the utilities see the help for build.

TZ: Optional. The current timezone. See Sys .timezone for the system-specific formats. Con-
sulted as needed.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download. file: see its help for further details.

Unix-specific
Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by X11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to the default editor: sets the default for options ("editor") when pack-
age utils is loaded.

PAGER: The path to the pager with the default setting of options ("pager"). The default
value is chosen at configuration, usually as the path to less.

R_PRINTCMD: Sets the default for options ("printcmd"), which sets the default print com-
mand to be used by postscript.

See Also

Sys.getenv and Sys.setenv to read and set environmental variables in an R session.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval (expr, envir = parent.frame(),
enclos = if(is.list (envir) || is.pairlist (envir))
parent.frame () else baseenv())
evalqg (expr, envir, enclos)
eval.parent (expr, n = 1)
local (expr, envir = new.env())

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment) or an environment.

n number of parent generations to go back

eval

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent . frame () (the environment
where the call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalqg form is equivalent to eval (quote (expr), ...). eval evaluates its first argu-
ment in the current scope before passing it to the evaluator: evalq avoids this.

eval.parent (expr, n) isashorthand for eval (expr, parent.frame(n)).

If envir is alist (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalq except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited name space feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this is the result of evaluating the last
elements.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in a data frame that has been passed as an argument to a func-
tion, the relevant enclosure is often the caller’s environment, i.e., one needs eval (x, data,
parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval(2 ~ 2 ~ 3)
mEx <- expression(27273); mkEx; 1 + eval (mEx)
eval ({ xx <- pi; xx"2}) ; xx

Il

I
=
Se}

a <- 3 ; aa <- 4 ; evalg(evalqg(atb+aa, list(a=1)), list(b=5)) #
a <- 3 ; aa <- 4 ; evalg(evalg(atbtaa, -1), list (b=5)) #

eval

143

ev <- function() {

el <- parent.frame ()

Evaluate a in el

aa <- eval (expression(a),el)

evaluate the expression bound to a in el

a <—- expression (x+y)

list (aa = aa, eval = eval(a, el))
}
tst.ev <- function(a = 7) { x <= pi; y <= 1; ev() }

tst.ev()#-> aa : 7, eval : 4.14

a <- list (a=3, b=4)
with(a, a <= 5) # alters the copy of a from the list, discarded.

##

Example of evalqg()
##

N <- 3

env <- new.env()

assign ("N", 27, envir=env)

this version changes the visible copy of N only, since the argument
passed to eval is '4'.

eval (N <= 4, env)

N

get ("N", envir=env)

this version does the assignment in env, and changes N only there.
evalg(N <= 5, env)

N

get ("N", envir=env)

#4
Uses of local()
##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local ({
k <-= function(y) f (y)
f <- function(x) if(x) xxk(x-1) else 1
})
gg (10)
sapply (1:5, gg)

Nesting locals. a 1s private storage accessible to k
gg <— local ({
k <= local ({
a <=1
function (y) {print (a <<- a+1l);f(y)}
1)
f <- function(x) 1f(x) x*xk(x-1) else 1
})
sapply (1:5, gg)

144 exists

ls (envir=environment (gg))
ls(envir=environment (get ("k", envir=environment (gg))))

exists Is an Object Defined?

Description

Look for an R object of the given name.

Usage
exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)
Arguments
X a variable name (given as a character string).
where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.
frame a frame in the -calling list. Equivalent to giving where as
sys.frame (frame).
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?
Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

expand.grid 145

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get.

Examples

Define a substitute function if necessary:
if (!exists ("some.fun", mode="function"))

some.fun <- function(x) { cat ("some.fun (x)\n"); x }
search ()
exists("1ls", 2) # true even though 1ls is in pos=3
exists("1ls", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)

Arguments

.. vectors, factors or a list containing these.

KEEP.OUT.ATTRS
a logical indicating the "out .attrs" attribute (see below) should be com-
puted and returned.

stringsAsFactors
logical specifying if character vectors are converted to factors.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out .attrs" is a list which gives the dimension and dimnames for use by predict
methods.

Note

Character vectors have always been converted to factors: this became optional in R 2.9.1. Conver-
sion is done with levels in the order they occur in the character vectors (and not alphabetically, as is
most common when converting to factors).

146 expression

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package ut ils) for the generation of all combinations of n elements, taken m at a time.

Examples

require (utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male", "Female"))

x <= seq(0,10, length.out=100)

y <= seq(-1,1, length.out=20)

dl <- expand.grid(x=x, y=Y)

d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(dl) - object.size(d2)

##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression (x)
as.expression(x, ...)

Arguments
expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.

x an arbitrary R object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, typically as
returned by parse.

As an object of mode "expression" is alist, it can be subsetted by both [and by [[, the latter
extracting individual calls etc.

expressionand is.expression are primitive functions. expression is ‘special’: it does
not evaluate its arguments.

Extract 147

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).
is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here. NULL, calls, symbols (see as.symbol) and pairlists
are returned as the element of a length-one expression vector. Vectors (including lists) are placed
element-by-element into an expression vector. Other types are not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and 1egend for plotting mathematical expressions.

Examples

length (exl <- expression(l+ 0:9))# 1
exl
eval (ex1)# 1:10

length (ex3 <- expression(u,v, 1+ 0:9))# 3
mode (ex3 [3]) # expression

mode (ex3[[3]])# call

rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage
x[1]
x[i, 3, . , drop = TRUE]
x[[1, exact = TRUE]]
x[[i, J, ..., exact = TRUE]]
XxS$name

x[1] <- value
x[i, J, ...] <= value
x$1i <- wvalue

148 Extract

Arguments

be object from which to extract element(s) or in which to replace element(s).

i, 3, ... indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating el-
ements/slices to leave out of the selection.

When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of 1.

An index value of NULL is treated as if it were integer (0).

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

drop For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

value typically an array-like R object of a similar class as x.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [. data.frame and [. factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<-,
[[<— and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects, and is only
discussed in the section below on recursive objects. Its use on non-recursive objects was deprecated
in R 2.5.0 and removed in R 2.7.0.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed to
accept the values. Attributes are preserved (although names, dim and dimnames will be adjusted
suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g. a function).

Extract 149

Atomic vectors

The usual form of indexing is " [". " [[" can be used to select a single element dropping names,
whereas " [" keeps them, e.g.,in c (abc = 123) [1].

The index object 1 can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character (i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument
drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

Indexing via a character matrix with one column per dimensions is also supported if the array has
dimension names. As with numeric matrix indexing, each row of the index matrix selects a single
element of the array. Indices are matched against the appropriate dimension names. N2 is allowed
and will produce an NA in the result. Unmatched indices as well as the empty string (" ") are not
allowed and will result in an error.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow com-
puted indices, whereas [[does. x$name is equivalent to x [["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] isequivalentto alist [[1i1]]...[[ip]] providing all but the final indexing
results in a list.

When either [[or $ is used for replacement, a value of NULL deletes the corresponding item of
the list.

When $<- is applied to a NULL x, it first coerces x to 1ist (). This is what also happens with
[[<— if the replacement value value is of length greater than one: if value has length 1 or 0, x
is first coerced to a zero-length vector of the type of value.

150 Extract

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no
partial matching is done. The semantics of these operations are those of get (i, env=x,
inherits=FALSE). If no match is found then NULL is returned. The replacement versions,
$<-and [[<-, can also be used. Again, only character arguments are allowed. The semantics
in this case are those of assign (i, value, env=x, inherits=FALSE). Such an assign-
ment will either create a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. Som[j=2, i=1] is equivalent tom[2, 1] and
nottom([1,2].

This may not be true for methods defined for them; for example it is not true for the data. frame
methods described in [.data.frame which warn if i or j is named and have undocumented
behaviour in that case.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also implicit S4 generics, but as primitives, S4 methods will be dispatched only
on S4 objects x.

The implicit generics for the $ and $<- operators do not have name in their signature because the
grammar only allows symbols or string constants for the name argument.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker ef al p.
358)), R has never used partial matching when extracting by [, and as from R 2.7.0 partial matching
is not by default used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options (warnPartialMatchAttr = TRUE).

Neither empty (" ") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all " " and so match nothing.

Note

The documented behaviour of S is that an NA replacement index ‘goes nowhere’ but uses up an
element of value (Becker ef al p. 359). However, that has not been true of other implementations.

Extract 151

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmat ch for partial matching.
list,array,matrix
[.data.frame and [. factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing details.

Examples

x <= 1:12
m <- matrix(l:6, nrow=2, dimnames=list (c("a", "b"), LETTERS[1:3]))
1li <= list(pi=pi, e = exp(l))

x[10] # the tenth element of x

X <— x[-1] # delete the 1lst element of x
m[1l,] # the first row of matrix m
m[l, , drop = FALSE] # is a l-row matrix
m[,c(TRUE, FALSE, TRUE)] # logical indexing

m[cbind(c(1,2,1),3:1)]1# matrix numeric index
Ci <_ cbind(c("a", "b", "a"), c("A"’ "C", "B"))

ml[ci] # matrix character index

m <- m[,-1] # delete the first column of m

1i[[1]] # the first element of list 1i

y <-= list(1,2,a=4,5)

yv[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(1 <= 3.999999999) # "4" is printed
(1:5)[1] # 3

named atomic vectors, compare "[" and "[["
nx <- c(Abc = 123, pi = pi)
nx[1l] ; nx["pi"] # keeps names, whereas "[[" does not:

nx[[1]] ; nx[["pi"]]

recursive indexing into lists

z <— list(a=list(b=9, c='hello'), d=1:5)
unlist (z)

z[[c(1l, 2)]1]

z[[c(1l, 2, 1)]] # both "hello"

z[[c("a", "b")]] <= "new"

unlist (z)

check $ and [[for environments
el <- new.env ()

els$a <- 10

el[["a"]]

el[["b"]] <= 20

els$b

Is(el)

152 Extract.data.frame

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame':

x[i, j, drop = 1]

S3 replacement method for class 'data.frame':
x[1i, 3] <-= value

S3 method for class 'data.frame':

x[[..., exact = TRUE]]

S3 replacement method for class 'data.frame':
x[[1, J]] <= value

S3 replacement method for class 'data.frame':
x$name <- value

Arguments

X data frame.

i, 3, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty. Numeric values are coerced to integer as
if by as.integer. For replacement by [, a logical matrix is allowed.

name A literal character string or a name (possibly backtick quoted).

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single index (x [1]
or x [[1] 1), they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning.

Note that there is no data . £ rame method for $, so xSname uses the default method which treats
x as a list. There is a replacement method which checks value for the correct number of rows,
and replicates it if necessary.

When [and [[are used with two indices (x [1, Jj] and x[[i, 3J]1) they act like indexing a
matrix: [[can only be used to select one element.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make.unique. Similarly, if columns are selected column names will be
transformed to be unique if necessary (e.g. if columns are selected more than once, or if more than
one column of a given name is selected if the data frame has duplicate column names).

Extract.data.frame 153

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing using [is not recommended, and barely supported. For extraction, x is first coerced
to a matrix. For replacement a logical matrix (only) can be used to select the elements to be replaced
in the same way as for a matrix.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will unless exact=TRUE. If you want to do exact matching on row names
use match as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a *missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

Coercion
The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data.frame and as.data. frame do) but inserted as a single column.

Warning
The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

Arguments other than drop and exact should not be named: there is a warning if they are and
the behaviour differs from the description here.

154 Extract.factor

See Also

subset which is often easier for extraction, data. frame, Extract.

Examples
sw <— swiss[1:5, 1:4] # select a manageable subset
sw[l:3] # select columns
sw[, 1:3] # same
sw[d4:5, 1:3] # select rows and columns
sw[l] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1l]] # the same
sw(l,] # a one-row data frame

sw[l,, drop=TRUE] # a list

sw["C",] # partially matches
sw[match ("C", row.names(sw)),] # no exact match

swiss[c(1, 1:2),] # duplicate row, unique row names are created

swisw <= 6] <- 6 # logical matrix indexing
SwW

adding a column

sw["newl"] <— LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1l:5] # ditto

sw[, "new3"] <—- LETTERS[1:5] # ditto

swSnewd <- 1:5

sapply (sw, class)

swSnewd <- NULL # delete the column
Sw

sw[6:8] <- list (letters[10:14], NULL, aa=1:5)

delete col7, update 6, append

SwW

matrices in a data frame
A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters([1:9],3,3)))
A[l:3, "y"] # a matrix

A[l:3, "z"] # a matrix
Al, "y"] # a matrix
Extract.factor Extract or Replace Parts of a Factor
Description

Extract or replace subsets of factors.

Extremes

Usage

S3 method for class 'factor':

X[.e..,

FALSE]

S3 method for class 'factor':

x[[...]]

S3 replacement method for class 'factor':

x[...]

Arguments

X

drop

value

Details

<- value

a factor
a specification of indices — see Extract.
logical. If true, unused levels are dropped.

character: a set of levels. Factor values are coerced to character.

When unused levels are dropped the ordering of the remaining levels is preserved.

If valueisnotin levels (x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop=TRUE.

See Also

factor, Extract.

Examples

following example (factor)

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))

ff[, drop=TRUE]
factor (letters[7:10]) [2:3, drop = TRUE]

155

Extremes

Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

156 Extremes

Usage

maxXx(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax (..., na.rm FALSE)
pmin(..., na.rm = FALSE)

pmax.int (..., na.rm = FALSE)
pmin.int (..., na.rm = FALSE)
Arguments

numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details

max and min return the maximum or minimum of al/l the values present in their arguments, as
integerifallare logical or integer, as double if all are numeric, and character otherwise.

If na.rmis FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and ~Inf (in this order!) which
ensures transitivity, e.g., min (x1, min(x2)) == min(xl, x2). For numeric x max (x)
== —-Infandmin (x) == +Inf whenever length (x) == 0 (after removing missing values
if requested). However, pmax and pmin return NA if all the parallel elements are NA even for
na.rm = TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘paralle]’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result
is the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs
are recycled if necessary. attributes (such as names or dim) are transferred from the first
argument (if applicable).

pmax.int and pmin. int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordering.)

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments . . . should be unnamed, and
dispatch is on the first argument.

By definition the min/max of a numeric vector containing an NaN is NaN, except that the min/max
of any vector containing an NA is NA even if it also contains an NaN. Note that max (NA, Inf)
== NA even though the maximum would be Inf whatever the missing value actually is.

Character versions are sorted lexicographically, and this depends on the collating sequence of the
locale in use: the help for ‘Comparison’ gives details. The max/min of an empty character vector
is defined to be a character NA. (One could argue that as "" is the smallest character element, the
maximum should be " ", but there is no obvious candidate for the minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors.

factor 157

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or —Inf).

S4 methods
max and min are part of the S4 Summary group generic. Methods for them must use the signature
X, ..., ha.rm

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer (0).

pmax and pmin will also work on classed objects with appropriate methods for comparison,
is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require (stats); require (graphics)
min(5:1, pi) #-> one number
pmin(5:1, pi) #-> 5 numbers

x <= sort (rnorm(100)); cH <- 1.35

pmin (cH, quantile(x)) # no names

pmin (quantile (x), cH) # has names

plot (x, pmin (cH, pmax(-cH, x)), type='b', main= "Huber's function")

factor Factors

Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If ordered is TRUE, the factor levels are assumed to be ordered.
For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

158 factor

Usage
factor (x = character (), levels, labels = levels,
exclude = NA, ordered = is.ordered(x))
ordered(x, ...)

is.factor (x)
is.ordered (x)

as.factor (x)
as.ordered (x)

addNA (x, ifany=FALSE)

Arguments
X a vector of data, usually taking a small number of distinct values.
levels an optional vector of the values that x might have taken. The default is the
unique set of values taken by as . character (x), sorted into increasing order
of x. Note that this set can be smaller than sort (unique (x)).
labels either an optional vector of labels for the levels (in the same order as levels
after removing those in exclude), or a character string of length 1.
exclude a vector of values to be excluded when forming the set of levels. This should be
of the same type as x, and will be coerced if necessary.
ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).
(in ordered (.)): any of the above, apart from ordered itself.
ifany (in addN2): Only add an NA level if it is used, i.e. if any (is.na (x)).
Details

The type of the vector x is not restricted; it only must have an as.character method and be
sortable (by sort.list).

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[1] equals levels[j], then the i-th element of the result is j. If no match is
found for x [i] in levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying 1abels. This should either be a set of
new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor (x, exclude=NULL) applied to a factor is a no-operation unless there are unused lev-
els: in that case, a factor with the reduced level set is returned. If exclude is used it should also
be a factor with the same level set as x or a set of codes for the levels to be excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level) is
to use is.na on the left-hand-side of an assignment (as in is.na (f) [1] <- TRUE; indexing

factor 159

inside is.na does not work). Under those circumstances missing values are currently printed as
<NA>, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Value

factor returns an object of class "factor" which has a set of integer codes the length of x
with a "levels" attribute of mode character and unique (! anyDuplicated(.)) entries.
If orderedis true (or ordered is used) the result has class c ("ordered", "factor").

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [. factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.
as.ordered (x) returns x if this is ordered, and ordered (x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as . numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor £
to approximately its original numeric values, as .numeric (levels (f)) [f] is recommended
and slightly more efficient than as .numeric (as.character (f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops, which provide meth-
ods for the Comparison operators. (The rest of the group and the Math and Summary groups
generate an error as they are not meaningful for factors.)

Only == and != can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors
are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Sorting is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

In earlier versions of R, storing character data as a factor was more space efficient if there is even a
small proportion of repeats. Since R 2.6.0 identical character strings share storage, so the difference
is now small in most cases. (Integer values are stored in 4 bytes whereas each reference to a
character string needs a pointer of 4 or 8 bytes.)

160 file.access

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[. factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer (ff) # the internal codes

factor (ff) # drops the levels that do not occur

ff[, drop=TRUE] # the same, more transparently

factor (letters([1:20], labels="letter")
class (ordered(4:1)) # "ordered", inheriting from "factor"

suppose you want "NA" as a level, and to allow missing wvalues.
(x <= factor(c(l, 2, NA), exclude = NULL))

is.na(x) [2] <- TRUE

x # [1] 1 <NA> <NA>

is.na (x)

[1] FALSE TRUE FALSE

Using addNA ()

Month <- airquality$Month
table (addNA (Month))

table (addNA (Month, ifany=TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage
file.access (names, mode = 0)
Arguments
names character vector containing file names.

mode integer specifying access mode required.

file.choose 161

Details

Tilde-expansion is done on names: see path.expand.

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).
Please note that it is not good to use this function to test before trying to open a file. On a multi-
tasking system, it is possible that the accessibility of a file will change between the time you call
file.access () and the time you try to open the file. It is better to wrap file open attempts in
try.

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info for more details on permissions, Sys.chmod to change permissions, and try for a
‘test it and see’ approach.

file_test for shell-style file tests.

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose (new = FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.

162 file.info

Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

character vectors containing file paths.

Details

The file paths are tilde-expanded: see path.expand.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
integer of class "POSIXct": file modification, ‘last status change’ and last
access times.

uid integer: the user ID of the file’s owner.
gid integer: the group ID of the file’s group.
uname character: uid interpreted as a user name.

grname character: gid interpreted as a group name.

file.path 163

Unknown user and group names will be NA.

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix-alike system.

What is meant by the three file times depends on the OS and file system. On Windows native file
systems ctime is the file creation time. What is meant by ‘file access’ and hence the ‘last access
time’ is system-dependent.

Note

Some systems allow files of more than 2Gb to be created but not accessed by the stat system
call. Such files will show up as non-readable (and very likely not be readable by any of R’s input
functions) — fortunately such file systems are becoming rare.

See Also

Sys.readlink to find out about symbolic links, files, file.access, list.files, and
DateTimeClasses for the date formats.

Sys .chmod to change permissions.

Examples

ncol (finf <- file.info(dir()))# at least six

Not run: finf # the whole list

Those that are more than 100 days old :

finf[difftime (Sys.time (), finf[,"mtime"], units="days") > 100 , 1:4]

file.info ("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage
file.path(..., fsep = .Platform$file.sep)
Arguments
character vectors.
fsep the path separator to use.
Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector.

Note

The components are separated by / (not \) on Windows.

164 file.show

file.show Display One or More Files

Description

Display one or more files.

Usage
file.show(..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption ("pager"),
encoding = "")
Arguments
one or more character vectors containing the names of the files to be displayed.
These will be tilde-expanded: see path.expand.
header character vector (of the same length as the number of files specified in . . .)
giving a header for each file being displayed. Defaults to empty strings.
title an overall title for the display. If a single separate window is used for the display,

title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used: not used on all platforms
encoding character string giving the encoding to be assumed for the file(s).
Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command to run on the set of files. The ‘factory-fresh’ default is to use ‘R_HOME/bin/pager’,
which is a shell script running the command specified by the environment variable PAGER whose
default is set at configuration, usually to 1ess. On a Unix-alike more is used if pager is empty.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such as "internal" and "console" on Windows), or
by letting pager be an R function which will be called with the same first four arguments as
file.show and take care of interfacing to the GUI.

The R . app Mac OS X GUI uses its internal pager irrespective of the setting of pager.

Not all implementations will honour delete.file. In particular, using an external pager on
Windows does not, as there is no way to know when the external application has finished with the
file.

files 165

Author(s)

Ross Thaka, Brian Ripley.

See Also

files,list.files, help.

Examples

file.show(file.path (R.home ("doc"), "COPYRIGHTS"))

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create
file.exists
file.remove)

file.rename (from, to)

file.append(filel, file2)

file.copy (from, to, overwrite = recursive, recursive = FALSE)
file.symlink (from, to)

, showWarnings

o)

TRUE)

(
(
(
(

Arguments

., filel, file2
character vectors, containing file names or paths.

from, to character string, containing a file name or path.
overwrite logical; should the destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical. If to is a directory, should directories in from be copied (and their
contents).
Details
The ... arguments are concatenated to form one character string: you can specify the files sepa-

rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them
if they do. They are created with the maximal permissions allowed by the umask setting.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s st at call: a file will be reported as existing only if you
have the permissions needed by stat. Existence can also be checked by file.access, which
might use different permissions and so obtain a different result. Note that the existence of a file
does not imply that it is readable: for that use file.access.) Note that if the file is a symbolic
link, the result indicates if the link points to an actual file, not just if the link exists.

166 files

file.remove attempts to remove the files named in its argument. On most Unix platforms “file’
includes empty directories, symbolic links, fifos and sockets. On Windows, ‘file’ means a regular
file and not, say, an empty directory.

file.rename attempts to rename a single file. Where file permissions allow this will first remove
an existing file to. This is subject to the limitations of the OS’s corresponding system call: in
particular in the interpretation of ‘file’: also most platforms will not rename files across file systems.

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to £ile . append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The
to argument can specify a single existing directory.

file.symlink makes symbolic links on those Unix-like platforms which support them. The to
argument can specify a single existing directory.

Value

file.rename and file.symlink returns a logical value, true for success.

The remaining functions return a logical vector indicating which operation succeeded for each of
the files attempted. Using a missing value for a file or path name will always be regarded as a
failure.

If showWarnings = TRUE, file.create will give a warning for an unexpected failure.

Author(s)

Ross Thaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

dir.create.
Sys.glob to expand wildcards in file specifications.

file_test, Sys.readlink.

Examples

cat ("file A\n", file="A")

cat ("file B\n", file="B")
file.append ("A", "B")
file.create ("A")

file.append ("A", rep("B", 10))
if (interactive()) file.show("A")
file.copy ("A", "C")

dir.create ("tmp")
file.copy(c("A", "B"), "tmp")
list.files ("tmp")

setwd ("tmp")

file.remove ("B")

file.symlink (file.path("..", c("a", "B")), ".")
setwd("..")

unlink ("tmp", recursive=TRUE)
file.remove ("A", "B", "C")

files2 167

files2 Manipulaton of Directories and file Permissions

Description

These functions provide a low-level interface to the computer’s file system.

Usage
dir.create(path, showWarnings = TRUE, recursive = FALSE, mode = "0777")
Sys.chmod (paths, mode = "0777")
Sys.umask (mode = "0000")
Arguments
path a character vector containing a single path name.
paths character vectors containing file or directory paths.

showWarnings logical; should the warnings on failure be shown?

recursive logical. Should elements of the path other than the last be created? If true, like
Unix’s mkdir -p.
mode the file mode to be used on Unix-alikes: it will be coerced by as.octmode.
Details

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path
separators are removed. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir (and not that on the command-line utility of that name).

Sys.chmod sets the file permissions of one or more files. It may not be supported (when a warn-
ing is issued). See the comments for dir.create for how modes are interpreted. Changing
mode on a symbolic link is unlikely to work (nor be necessary). For more details see your OS’s
documentation on the system call chmod (and not that on the command-line utility of that name).

Sys.umask sets the umask. It may not be supported (when a warning is issued and "0000"
returned). For more details see your OS’s documentation on the system call umask.

Value

dir.create and Sys.chmod return invisibly a logical vector indicating if the operation suc-
ceeded for each of the files attempted. Using a missing value for a path name will always
be regarded as a failure. dir.create indicates failure if the directory already exists. If
showWarnings = TRUE, dir.create will give a warning for an unexpected failure (e.g.
not for a missing value nor for an already existing component for recursive = TRUE).

Sys.umask returns the previous value of the umask, invisibly, as a length-one object of class
"octmode".

Author(s)

Ross Thaka, Brian Ripley

168 findInterval

See Also

file.info, file.exists, file.path, 1list.files, unlink, basename,
path.expand.

findInterval Find Interval Numbers or Indices

Description

Find the indices of x in vec, where vec must be sorted (non-decreasingly); i.e., if i <-—
findInterval (x,v), we have vi; < < V41 where vy := —00, Un41 = +00, and N
<—- length (vec). At the two boundaries, the returned index may differ by 1, depending on the
optional arguments rightmost.closedand all.inside.

Usage

findInterval (x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments
X numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.
rightmost.closed
logical; if true, the rightmost interval, vec [N-1] .. wvec[N] is treated as
closed, see below.
all.inside logical; if true, the returned indices are coerced into 1, ...,N-1, ie., O is
mapped to 1 and N to N-1.
Details

The function findInterval finds the index of one vector x in another, vec, where the lat-
ter must be non-decreasing. Where this is trivial, equivalent to apply (outer (x, vec,
">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensuring
O(nlog N) complexity where n <- length(x) (and N <- length (vec)). For (almost)
sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval (t, sort (X)) isidentical to nF,(t; X1,...,X,) where F), is the empirical
distribution function of X7, ..., X,,.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= maxwvec), isN —
1 as for all other values in the last interval.
Value

vector of length 1ength (x) with values in 0 : N (and NA) where N <- length (vec), or val-
ues coercedto 1: (N-1) ifandonlyifall.inside = TRUE (equivalently coercing all x values
inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

force 169

See Also

approx (x, method = "constant") which is a generalization of findInterval (),
ecdf for computing the empirical distribution function which is (up to a factor of n) also basi-
cally the same as findInterval(.).

Examples

N <- 100

X <- sort (round(stats::rt (N, df=2), 2))

tt <- ¢ (=100, seqg(-2,2, len=201), +100)

it <- findInterval (tt, X)

tt[it < 1 | it >= N] # only first and last are outside range (X)

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force (x)

Arguments

X a formal argument of the enclosing function.

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() vy

1f <= vector("list", 5)

for (i in seqg_along(lf)) 1f[[1i]] <- £(1)
1£f[[111() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)

for (i in seq_along(lg)) 1lgl[[i]] <- g(i)
1g[[1]]1() # returns 1

170 Foreign

This is identical to
g <- function(y) { y; function() vy }

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage
.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.External (name, ..., PACKAGE)
.Call (name, ..., PACKAGE)
Arguments

name a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo", "RegisteredNativeSymbol"
or "NativeSymbol" referring to such a name.
arguments to be passed to the foreign function.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

DUP if TRUE then arguments are duplicated before their address is passed to C or
Fortran.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, *.s0’, “.sl’, “.dI’, ...). This is intended to add
safety for packages, which can ensure by using this argument that no other pack-
age can override their external symbols. Use PACKAGE="base" for symbols
linked in to R.

ENCODING optional name for an encoding to be assumed for character vectors. See ‘De-
tails’.

Details

The functions .C and .Fortran can be used to make calls to compiled C and Fortran code.

.Call can be used to call compiled code which makes use of internal R objects, passing the
arguments to the C code as a sequence of R objects.

.External can be used to call compiled code that uses R objects in the same way as internal R
functions: this allows for a variable number of arguments.

Specifying ENCODING overrides any declared encodings (see Encoding) which are otherwise
used to translate to the current locale before passing the strings to the compiled code.

These functions are all primitive, and name is always matched to the first argument supplied (which
if named must partially match name). The other named arguments follow . .. and so cannot be
abbreviated.

For details about how to write code to use with .Call and .External, see the chapter on “Sys-
tem and foreign language interfaces” in the “Writing R Extensions” manual.

Foreign 171

Value

The functions .C and .Fortran return a list similar to the . . . list of arguments passed in, but
reflecting any changes made by the C or Fortran code.

.External and .Call return an (arbitrary) R object.

These calls are typically made in conjunction with dyn . load which links DLLs to R.

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

R C Fortran

integer int * integer

numeric double * double precision
—or— float * real

complex Rcomplex * double complex
logical int * integer
character char ** [see below]

raw unsigned char * not allowed

list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double »* to C (and as double precision to
Fortran) unless (i) .C or .Fortran is used, (i) DUP is true and (iii) the argument has attribute
Csingle set to TRUE (use as.single or single). This mechanism is only intended to be
used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double 1ij;}. Fortran type double complex is an extension to the Fortran standard, and the
availability of a mapping of complex to Fortran may be compiler dependent.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK = TRUE), and the compiled code should return one of these three values.

Note: The C types corresponding to integer and logical are int, not long as in S. This
difference matters on most 64-bit platforms, where int is 32-bit and long is 64-bit (but not on
64-bit Windows).

The first character string of a character vector is passed as a C character array to Fortran: that
string may be usable as character=255 if its true length is passed separately. Only up to 255
characters of the string are passed back. (How well this works, or even if it works at all, depends on
the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to . C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use . Call.

Functions, expressions, environments and other language elements are passed as the internal R
pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared as
generic pointers, void =. Lists are passed as C arrays of SEXP and can be declared as void «
or SEXP «. Note that you cannot assign values to the elements of the list within the C routine.
Assigning values to elements of the array corresponding to the list bypasses R’s memory manage-
ment/garbage collection and will cause problems. Essentially, the array corresponding to the list is
read-only. If you need to return S objects created within the C routine, use the . Call interface.

R functions can be invoked using call_S or call_R and can be passed lists or the simple types
as arguments.

172 Foreign

Warning

DUP=FALSE is dangerous.
There are two dangers with using DUP=FALSE.

The first is that if you pass a local variable to .C/.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you pass a local
variable that is a formal parameter of the calling function, you may be able to change not only the
local variable but the variable one level up. This will be very hard to trace.

The second is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of SEXP.
This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements and the lists
cannot be passed to call_S/call_R. New code using R objects should be written using .Call
or .External, so this is now only a minor issue.

In addition, character vectors and lists cannot be used with DUP=FALSE.

It is safe and useful to set DUP=FALSE if you do not change any of the variables that might be
affected, e.g.,

.C("Cfunction", input=x, output=numeric (10)).

In this case the output variable did not exist before the call so it cannot cause trouble. If the input
variable is not changed in the C code of Cfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

Fortran symbol names

All Fortran compilers that can be used to compile R map symbol names to lower case, and so does
.Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers will allow them but may translate them in a different way to names
not containing underscores. Such names will often work with .Fortran (since how they are
translated is detected when R is built and the information used by .Fortran), but portable code
should not use Fortran names containing underscores.

Use . Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuring R, especially if the subroutine name
is not lower-case or includes an underscore. It is also possible to use .C and do any necessary
symbol-name translation yourself.

Header files for external code

Writing code for use with .External and .Call will need to use internal R structures. If
possible use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as other header
files are not installed and are even more likely to be changed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (.C and .Fortran.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load.

formals 173

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage
formals (fun = sys.function(sys.parent()))
formals (fun, envir = environment (fun)) <- wvalue
Arguments
fun a function object, or see ‘Details’.
envir environment in which the function should be defined.
value a list (or pairlist) of R expressions.
Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for from the parent environment. If it is not specified, the function calling formals is
used.

Only closures have formals, not primitive functions.

Value

formals returns the formal argument list of the function specified, as apairlist, or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

args for a human-readable version, alist, body, function.

Examples

require (stats); require (graphics)
length (formals (1m)) # the number of formal arguments
names (formals (boxplot)) # formal arguments names

f <- function(x) a+b
formals (f) <- alist (a=,b=3) # function (a,b=3)a+b
£f(2) # result =5

174 format
format Encode in a Common Format
Description
Format an R object for pretty printing.
Usage
format (x, 2)
Default S3 method:
format (x, trim = FALSE, digits = NULL, nsmall = 0L,
justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5I,
decimal.mark = ".", zero.print = NULL, dropOtrailing = FALSE,

S3 method
format (x,

S3 method
format (x,

S3 method

for class 'data.frame':

., Justify = "none")

for class 'factor':

-)

for class 'AsIs':

format (x, width = 12, ...)

Arguments

X

trim

digits

nsmall

Justify

width

na.encode

any R object (conceptually); typically numeric.

logical; if FALSE, logical, numeric and complex values are right-justified to a
common width: if TRUE the leading blanks for justification are suppressed.

how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption (digits). This is a suggestion: enough
decimal places will be used so that the smallest (in magnitude) number has this
many significant digits, and also to satisfy nsmall. (For the interpretation for
complex numbers see signif.)

the minimum number of digits to the right of the decimal point in format-

ting real/complex numbers in non-scientific formats. Allowed values are 0 <=
nsmall <= 20.

should a character vector be left-justified (the default), right-justified, centred
or left alone.

default method: the minimum field width or NULL or 0 for no restriction.
AsIs method: the maximum field width for non-character objects. NULL cor-
responds to the default 12.

logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical or logical NAs, which are always encoded as
n NA n .

format 175

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options ("scipen™)). Missing values correspond to the current default
penalty.

further arguments passed to or from other methods.

big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, dr
used for prettying (longish) decimal sequences, passed to prettyNum: that
help page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (see format .Date), date-times (see format .POSIXct)) and for other classes such as
format.octmode and format .dist.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column. Methods for columns are often similar to as.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class "AsIs".

format . factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format .AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects are passed to the default method (and so width does not apply). Other-
wise it calls toString to convert the object to character (if a vector or list, element by element)
and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods) is
done on display width (see nchar), taking double-width characters and the rendering of special
characters (as escape sequences, including escaping backslash: see print .default) into ac-
count. Character strings are padded with blanks to the display width of the widest. (If na.encode
= FALSE missing character strings are not included in the width computations and are not en-
coded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digit significant digits. However, if all the elements then have trailing
zeroes, the number of decimal places is reduced until at least one element has a non-zero final digit;
see also the argument documentation for big. », small. etc, above.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format .default (x, ...)
to each element of the list (after unlisting elements which are themselves lists), and then col-
lapsing the result for each element with paste (collapse = ", "). The defaults in this case
are trim TRUE, justify = "none" since one does not usually want alignment in the
collapsed strings.

176 format.Date

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format .info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString,
encodeString.

Examples

format (1:10)
format (1:10, trim = TRUE)

zz <- data.frame (" (row names)"= c("aaaaa", "b"), check.names=FALSE)
format (zz)
format (zz, justify = "left")

use of nsmall

format (13.7)

format (13.7, nsmall = 3)

format (c (6.0, 13.1), digits = 2)
format (c (6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format (2731-1)
format (2731-1, scientific = TRUE)

a list

z <- list (a=letters[1l:3], b=(-pi+0i)~((-2:2)/2), c=c(1,10,100,1000),
d=c("a", "longer", "character", "string"))

format (z, digits = 2)

format (z, digits = 2, justify = "left", trim = FALSE)
format .Date Date Conversion Functions to and from Character
Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.
Usage

as.Date(x, ...)
S3 method for class 'character':

as.Date(x, format = "", ...)
S3 method for class 'numeric':
as.Date(x, origin, ...)

S3 method for class 'Date':

format.Date 177

format (x, ...)

S3 method for class 'Date':
as.character(x, ...)

Arguments
X An object to be converted.
format A character string. If not specified, it will try "$Y-%m-%d" then
"%$Y/%m/%d" on the first non-NA element, and give an error if neither works.
origin a Date object, or something which can be coerced by as.Date (origin,
.) to such an object.
Further arguments to be passed from or to other methods, including format
for as.character and as.Date methods.
Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIX1t" and "POSIXct". (The last is converted to days by ignoring the time after mid-
night in the representation of the time in UTC.) Also objects of class "date" (from package date)
and "dates" (from package chron). Character strings are processed as far as necessary for the
format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is
supplied.

The format and as.character methods ignore any fractional part of the date.

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_character_.

The as .Date methods return an object of class "Date".

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

178 format.info

References

International Organization for Standardization (2004, 1988, 1997, ...) ISO 8601. Data elements
and interchange formats — Information interchange — Representation of dates and times. For
links to versions available on-line see (at the time of writing) http://www.gsl.net/glsmd/
isopdf.htm; for information on the current official version, see http://www.iso.org/
iso/en/prods—-services/popstds/datesandtime.html.

See Also

Date for details of the date class; 1ocales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.
Windows users will find no help page for st rpt ime: code based on ‘glibc’ is used (with cor-
rections), so all the format specifiers described here are supported, but with no alternative number
representation nor era available in any locale.

Examples

locale-specific version of the date
format (Sys.Date (), "%a %b %d")

read in date info in format 'ddmmmyyyy'

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <= c("1janl960", "2janl960", "31lmarl960", "30jull960")

z <- as.Date(x, "%d%bs%Y")

Sys.setlocale("LC_TIME", lct)

Z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date (dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date (32768, origin="1900-01-01")

Excel is said to use 1900-01-01 as day 1 (Windows default) or

1904-01-01 as day 0 (Mac default), but this is complicated by Excel
thinking 1900 was a leap year.

So for recent dates from Windows Excel

as.Date (35981, origin="1899-12-30") # 1998-07-05

and Mac Excel

as.Date (34519, origin="1904-01-01") # 1998-07-05

format.info format(.) Information

Description

Information is returned on how format (x, digits, nsmall) would be formatted.

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

format.info 179

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments
x an atomic vector; a potential argument of format (x, ...).
digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption (digits).
nsmall (see format (..., nsmall)).
Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format ifwidth = NULL.

For numeric vectors:

r(l] width (in characters) used by format (x)

r(2] number of digits after decimal point.

r[3] in 0:2; if >1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format, formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following

format.info (123) # 300
format.info (pi) # 860
format.info (1le8) # 5 0 1 - exponential "le+08"
format.info (1e222) # 6 0 2 - exponential "le+222"

x <- pix10~c(-10,-2,0:2,8,20)

names (x) <- formatC(x, width=1, digits=3, format="g")
cbind (sapply (x, format))

t (sapply (x, format.info))

using at least 8 digits right of "."
t (sapply (x, format.info, nsmall = 8))

Reset old options:
options (dd)

180 formatC

format.pval Format P Values

Description

format .pval is intended for formatting p-values.

Usage

format.pval (pv, digits = max(l, getOption("digits") - 2),

eps = .Machine$double.eps, na.form = "NA")

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NAs.
Details

format.pval is mainly an auxiliary function for print . summary . lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps]" (where ‘[eps] stands for format (eps, digits)).

Value

A character vector.

Examples

format.pval (c(stats::runif (5), pi~-100, NA))
format.pval(c (0.1, 0.0001, 1le-27))

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.

formatC 181
Usage
formatC (x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".", preserve.width = "individual",
zero.print = NULL, dropOtrailing = FALSE)
prettyNum(x, big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".",
preserve.width = c("common", "individual", "none"),

zero.print = NULL, dropOtrailing = FALSE, is.cmplx = NA,

Arguments

X

digits

width

format

flag

mode

big.mark

big.interval

small.mark

an atomic numerical or character object, possibly complex only for
prettyNum (), typically a vector of real numbers.

the desired number of digits after the decimal point (format = "£") or sig-
nificant digits (format = "g",= "e"or= "fg").

Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning unless
format = "£" where it is limited to typically 324. (Not more than 15-21
digits need be accurate, depending on the OS and compiler used. This limit is
just a precaution against segfaults in the underlying C runtime.)

the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = 0 will use width =
digits,width < 0 means left justify the number in this field (equivalent to
flag ="-"). If necessary, the result will have more characters than width.
For character data this is interpreted in characters (not bytes nor display width).
equal to "d" (for integers), "f", "e", "E", "g", "G", "f£g" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.

"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x [1] into
scientific format only if it saves space to do so.

"f£g" uses fixed format as "£", but digits as the minimum number of signif-
icant digits. This can lead to quite long result strings, see examples below. Note
that unlike signif this prints large numbers with more significant digits than
digits. Trailing zeros are dropped in this format, unless £ 1ag contains "#".

For formatC, a character string giving a format modifier as in Kernighan and

Ritchie (1988, page 243). "0" pads leading zeros; "~" does left adjustment,
others are "+", " ", and "#". There can be more than one of these, in any
order.

"double" (or "real"), "integer" or "character". Default: Deter-
mined from the storage mode of x.

character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

see big.mark above; defaults to 3.

character; if not empty used as mark between every small.interval deci-
mals after (hence small) the decimal point.

182 formatC

small.interval
see small.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.

preserve.width
string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the
default, corresponds to format-like behavior whereas "individual™" is the
default in formatC ().

zero.print logical, character string or NULL specifying if and how zeros should be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

dropOtrailing
logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats.

is.cmplx optional logical, to be used when x is "character" to indicate if it stems
from complex vector or not. By default (NA), x is checked to ‘look like’
complex.

arguments passed to format.

Details

If you set format it overrides the setting of mode, so formatC (123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC (c(6.11,
13.1), digits=2, format="fg") givesc("6.1", " 13").If you want common for-
matting for several numbers, use format.

prettyNum is the utility function for prettifying x. x can be complex (or
format (<complex>), here. If x is not a character, format (x[1], ...) is applied
to each element, and then it is left unchanged if all the other arguments are at their defaults. Note
that prettyNum (x) may behave unexpectedly if x is a character vector not resulting from
something like format (<number>): in particular it assumes that a period is a decimal mark.

Value

A character object of same size and attributes as x, in the current locale’s encoding. Unlike
format, each number is formatted individually. Looping over each element of x, the C function
sprintf (...) iscalled for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap, later much improved by Martin Maechler. It was
first adapted for R by Friedrich Leisch.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

formatC 183

See Also

format.

sprintf for more general C like formatting.

Examples

xx <— pi x 10" (-5:4)

cbind (format (xx, digits=4) formatC (xx))

(’
cbind (formatC(xx, width = 9, flag = "-"))
cbind (formatC (xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind (format (xx, digits=4), formatC(xx, digits = 4, format = "fg"))
formatC (c("a", "Abc", "no way"), width = -7) # <=> flag = "-"

formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

xx <= c(le-12,-3.98765e-10,1.45645e-69,1e-70,pix1le37,3.44e4)

1 2 3 4 5 6
formatC (xx)

formatC (xx, format="fg") # special "fixed" format.
formatC(xx[1:4], format="f", digits=75) #>> even longer strings

formatC(c(3.24, 2.3e-6), format="f", digits=11, dropOtrailing=TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark
Some Europeans:
prettyNum(r, big.mark = "'", decimal.mark = ",")

ll’ll)

(dd <- sapply(1:10, function(i)paste((9:0)[1l:1],collapse="")))
prettyNum(dd, big.mark="'")

examples of 'small.mark'

PN <- stats::pnorm(l:7, lower.tail = FALSE)

cbind (format (pN, small.mark = " ", digits = 15))

cbind (formatC (pN, small.mark = " ", digits = 17, format = "f"))

cbind(ff <- format (1.2345 + 107(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 107(0:8), format="fg", width=11, big.mark = "'")
cbind (fc)

complex numbers:
r <- 10.0000001; rv <= (r/10)"(1:10)
(zv <= (rv + li*rv))
op <- options(digits=7) ## (system default)
(pnv <—- prettyNum(zv))
stopifnot (pnv == "1+1i", pnv == format (zv),
pnv == prettyNum(zv, dropOtrailing=TRUE))
more digits change the picture:
options (digits=8)
head (fv <- format (zv), 3)
prettyNum (£fv)
prettyNum(fv, dropOtrailing=TRUE) # a bit nicer

184 formatDL

options (op)

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL (x, y, style = c("table", "list"),
width = 0.9 % getOption("width"), indent = NULL)

Arguments
X a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.
y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.
style a character string specifying the rendering style of the description information.
If "table", a two-column table with items and descriptions as columns is
produced (similar to Texinfo’s @table environment. If "1ist", a LaTeX-style
tagged description list is obtained.
width a positive integer giving the target column for wrapping lines in the output.
indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/ 9 for list style.
Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Not run:

Use R to create the 'INDEX' for package 'splines' from its 'CONTENTS'

x <- read.dcf(file = system.file ("CONTENTS", package = "splines"),
fields = c("Entry", "Description"))

x <— as.data.frame (x)

writeLines (formatDL (x$Entry, x$Description))

or equivalently: writelLines (formatDL (x))

Same information in tagged description list style:

writeLines (formatDL (x$Entry, x$Description, style = "list"))

or equivalently: writelLines (formatDL(x, style = "list"))

End (Not run)

function 185

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return (value)

Arguments
arglist Empty or one or more name or name=expression terms.
value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned. (The expression is evaluated as soon as return is called, in the evaluation
frame of the function and before any on . exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

Warning

Prior to R 1.8.0, value could be a series of non-empty expressions separated by commas. In that
case the value returned is a list of the evaluated expressions, with names set to the expressions where
these are the names of R objects. That is, a=foo () names the list component a and gives it the
value which results from evaluating foo ().

This has been deprecated (and a warning is given), as it was never documented in S, and whether or
not the list is named differs by S versions. Supply a (named) list value instead.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; using invisible inside return (.) for returning invisibly.

Examples

norm <- function(x) sgrt (x%*%x)
norm(1:4)

An anonymous function:
(function(x,y){ z <= x"2 + y"2; x+y+z }) (0:7, 1)

186 funprog

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value. Filter extracts the elements of a vector for which a predicate (logical)
function gives true. Find and Position give the first or last such element and its position in
the vector, respectively. Map applies a function to the corresponding elements of given vectors.
Negate creates the negation of a given function.

Usage

Reduce (f, x, init, right = FALSE, accumulate = FALSE)
Filter (f, x)

Find(f, x, right = FALSE, nomatch = NULL)

Map (£, ...)

Negate (f)

Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments
f a function of the appropriate arity (binary for Reduce, unary for Filter,
Find and Position, k-ary for Map if this is called with k arguments). An
arbitrary predicate function for Negate.
X a vector.
init an R object of the same kind as the elements of x.
right a logical indicating whether to proceed from left to right (default) or from right

to left.

accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. ILe., a left reduce
computes I = f(v1,v2), la = f(l1,v3), etc., and returns I,,_1 = f(l,—2,vy), and a right reduce
does r,—1 = f(vp—1,Vn), Tne2 = f(vp_2,7,—1) and returns 1 = f(vy,7r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that £ is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

funprog 187

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate function £ to each element of x, coercing to logical if neces-
sary, and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds
to filter in Haskell or remove—if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, re-
spectively. If there is an element for which the predicate function gives true, then the first or last
such element or its position is returned depending on whether right is false (default) or true, re-
spectively. If there is no such element, the value specified by nomatch is returned. The current
implementation is not optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to
Common Lisp’s mapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function £, it creates
a function which returns the logical negation of what f returns.

Examples

A general-purpose adder:

add <- function(x) Reduce("+", x)

add(list (1, 2, 3))

Like sum (), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.

More generally, many generics meant to work on arbitrarily many

arguments can be defined via reduction:

FOO <- function(...) Reduce (FO02, list(...))

FOO2 <- function(x, y) UseMethod ("FOO2")

FOO() methods can then be provided via FOO02 () methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", x, accumulate = TRUE)
cadd (seqg_len (7))

A simple function to compute continued fractions:

cfrac <- function(x) Reduce (function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:

cfrac(c(3, 7, 15, 1, 292))

Continued fraction approximation for Euler's number (e):

cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log (exp (acos(cos(0))
Reduce (Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)
function (x) Reduce (Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate (function(x) 1 + 1 / x, 30) (1)
which is the same as
cfrac(rep.int (1, 31))
Computing square root approximations for x as fixed points of the

188 g¢

function t |-> (t + x / t) / 2, as a function of the initial value:
asqgrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)

asqgrt (2, 30) (10) # Starting from a positive value => +sqgrt (2)

asqrt (2, 30) (-1) # Starting from a negative value => —-sqgrt (2)

A list of all functions in the base environment:

funs <- Filter (is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names (Filter (function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a '...' argument:
length(Filter (function (£f)

any (names (formals (args (f))) %in% "..."),

funs))

Find all objects in the base environment which are *notx functions:

Filter (Negate (is.function), sapply (ls (baseenv()), get, baseenv()))
gc Garbage Collection
Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic collec-
tion is either silent (verbose=FALSE) or prints memory usage statistics (verbose=TRUE).

Usage

gc (verbose = getOption ("verbose"), reset=FALSE)
gcinfo (verbose)

Arguments
verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.
reset logical; if TRUE the values for maximum space used are reset to the current
values.
Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as this may prompt R to
return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells™", a relict of an
earlier allocator (that used a vector heap).

When gcinfo (TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0)
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

gc.time 189

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc (reset=TRUE) (or
since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.
Memory on R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now

gcinfo (TRUE) #-- in the future, show when R does it
x <— integer (100000); for(i in 1:18) x <- c(x,1)
gcinfo (verbose = FALSE) #-- don't show it anymore

gc (TRUE)

gc (reset=TRUE)

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time (on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

190 gctorture

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Times of child processes are not available on Windows and will always be given as NA.

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

It is a primitive.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time ()

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture (on = TRUE)

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

get 191

get Return the Value of a Named Object

Description

Search for an R object with a given name and return it.

Usage
get (x, pos = -1, envir = as.environment (pos), mode = "any",
inherits = TRUE)
mget (x, envir, mode = "any",
ifnotfound = list (function (x)
stop (paste ("value for '"", x, "' not found", sep =""),
call. = FALSE)),
inherits = FALSE)
Arguments
x a variable name (given as a character string).
pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.
envir an alternative way to specify an environment to look in; see the ‘Details’ section.
mode the mode or type of object sought: see the ‘Details’ section.
inherits should the enclosing frames of the environment be searched?

ifnotfound A 11ist of values to be used if the item is not found: it will be coerced to list if
necessary.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys. frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.

Using a NULL environment is equivalent to using the current environment.

For mget multiple values are returned in a named 1ist. This is true even if only one value is
requested. The value in mode and i fnot found can be either the same length as the number of
requested items or of length 1. The argument i fnot found must be a list containing either the

192 getDLLRegisteredRoutines

value to use if the requested item is not found or a function of one argument which will be called
if the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSE, in contrast to the default behavior for get.

mode here is a mixture of the meanings of typeof and mode: "function" covers primitive
functions and operators, "numeric", "integer", "real" and "double" all refer to any
numeric type, "symbol" and "name" are equivalent but " 1language" must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse of a <— get (nam) is assign (nam, a).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

exists,assign.

Examples
get ("%o%")

##test mget
el <- new.env ()
mget (letters, el, ifnotfound = as.list (LETTERS))

getDLLRegisteredRoutines
Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortran and .External.

Usage

getDLLRegisteredRoutines (dll, addNames = TRUE)

getDLLRegisteredRoutines 193

Arguments

dll

addNames

Details

a character string or DLLInfo object. The character string specifies the file
name of the DLL of interest, and is given without the file name extension
(e.g., the “.dIl’ or “.s0’) and with no directory/path information. So a file
‘MyPackage/libs/MyPackage.so’ would be specified as ‘MyPackage’.

The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by
DLL file name).

The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

This takes the registration information after it has been registered and processed by the R internals.

In other words, it u

Value

ses the extended information

A list with four elements corresponding to the routines registered for the .C, .Call, .Fortran and
.External interfaces. Each element is a list with as many elements as there were routines registered

for that interface. E
An object of this cl

name

address

dll

ach element identifies a routine and is an object of class Nat iveSymbolInfo.
ass has the following fields:
the registered name of the routine (not necessarily the name in the C code).

the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters

Author(s)

the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

"Writing R Extensions Manual" for symbol registration. R News, Volume 1/3, September 2001. "In

search of C/C++ &

See Also

getLoadedDLLs

Fortran Symbols"

194 getLoadedDLLs

Examples

dlls <- getLoadedDLLs ()
getDLLRegisteredRoutines (dlls[["base"]])

getDLLRegisteredRoutines ("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description
This function provides a way to get a list of all the DLLs (see dyn . 1oad) that are currently loaded
in the R session.

Usage

getLoadedDLLs ()

Details

This queries the internal table that manages the DLLs.

Value

An object of class "DLLInfoList" which is a list with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has
the following entries.

name the abbreviated name.
path the fully qualified name of the loaded DLL.
dynamicLookup

a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has an overloaded method for $ which can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[[,e.g. x[["name"]] orx[["handle"]].

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in

R.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

getNativeSymbollnfo 195

Examples

getLoadedDLLs ()

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns as comprehensive a description of one or more dynamically loaded or ‘ex-
ported’ built-in native symbols. For each name, it returns information about the name of the symbol,
the library in which it is located and, if available, the number of arguments it expects and by which
interface it should be called (i.e .Call, .C, .Fortran,or .External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke. Specifically,
this provides a way to explicitly share symbols between different dynamically loaded package li-
braries. Also, it provides a way to query where symbols were resolved, and aids diagnosing strange
behavior associated with dynamic resolution.

This is vectorized in the name argument so can process multiple symbols in a single call. The result
is a list that can be indexed by the given symbol names.

Usage

getNativeSymbolInfo (name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments
name the name(s) of the native symbol(s) as used in a call to 1s. loaded, etc. Note
that Fortran symbols should be supplied as-is, not wrapped in symbol.For.
PACKAGE an optional argument that specifies to which DLL we restrict the search for this
symbol. If this is "base", we search in the R executable itself.
unlist a logical value which controls how the result is returned if the function is called

with the name of a single symbol. If unlist is TRUE and the number of sym-
bol names in name is one, then the NativeSymbolInfo object is returned.
If it is FALSE, then a list of NativeSymbolInfo objects is returned. This
is ignored if the number of symbols passed in name is more than one. To be
compatible with earlier versions of this function, this defaults to TRUE.
withRegistrationInfo

a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

196 getNativeSymbollnfo

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the ele-
ments of name in the call. Each NativeSymbolInfo object is a list containing the following
elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
class NativeSymbol. If withRegistrationInfo is TRUE and regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
usedincallsto .Call, .C, .Fortranand .External.

package a list containing 3 elements:
name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.
path the fully qualified name of the DLL.
dynamicLookup a logical value indicating whether dynamic resolution is used

when looking for symbols in this library, or only registered routines can be
located.

If the routine was explicitly registered by the dynamically loaded library, the list contains a fourth
field
numParameters

the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is immediately raised.

If name contains only one symbol name and unlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., n1s). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache. In the future, one may be able to treat
NativeSymbol objects directly as callback objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R-News, volume 1, number 3, 2001, p20-23 (http://CRAN.R-project.org/doc/
Rnews/).

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

gettext 197

See Also
getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call,
dyn.load.

Examples

library(stats) # normally loaded
getNativeSymbolInfo ("dansari")

getNativeSymbolInfo ("hcass2") # a Fortran symbol
gettext Translate Text Messages
Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage

gettext (..., domain = NULL)

ngettext (n, msgl, msg2, domain = NULL)

bindtextdomain (domain, dirname NULL)

Arguments
One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msgl the message to be used in English forn = 1.

msg2 the message to be used in English forn = 0, 2, 3,....

dirname The directory in which to find translated message catalogs for the domain.
Details

If domain is NULL or "", a domain is searched for based on the name space which contains the

function calling gettext or ngettext. If a suitable domain can be found, each character string
is offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext, leading and trailing whitespace is ignored when looking for the translation.
ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string

will often contain a single instance of %d to be used in sprintf. If English is used, msgl is
returned if n == 1 and msg2 in all other cases.

198 getwd

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it
failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples

bindtextdomain ("R") # non-null if and only if NLS is enabled
for(n in 0:3)
print (sprintf (ngettext (n, "%d variable has missing wvalues",

"$d variables have missing values"),

n))

Not run: ## for translation, those strings should appear in R-pkg.pot as

msgid "$d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ""

msgstr[1] ""

End (Not run)

miss <- c("one", "or", "another")
cat (ngettext (length(miss), "variable", "variables"),
paste (sQuote (miss), collapse=", "),
ngettext (length (miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat (sprintf (ngettext (length (miss),
"variable %s contains missing values\n",
"variables %s contain missing values\n"),
paste (sQuote (miss), collapse=", ")))

getwd Get or Set Working Directory

Description
getwd returns an absolute filename representing the current working directory of the R process;
setwd (dir) is used to set the working directory to dir.

Usage

getwd ()
setwd (dir)

gl 199

Arguments

dir A character string.

Value

getwd returns a character vector, or NULL if the working directory is not available. On Windows
the path returned will use / as the path separator. The path will not have a trailing / unless it is the
root directory (of a drive or share on Windows).

setwd returns the current directory before the change, invisibly. It will give an error if it does not
succeed.

Note

These functions are not implemented on all platforms.

See Also

list.files for the contents of a directory.

Examples

(WD <- getwd())
if (!is.null (WD)) setwd (WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = nxk, labels = 1l:n, ordered = FALSE)

Arguments
n an integer giving the number of levels.
k an integer giving the number of replications.
length an integer giving the length of the result.
labels an optional vector of labels for the resulting factor levels.
ordered a logical indicating whether the result should be ordered or not.
Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total
length of 1ength.

gl is modelled on the GLIM function of the same name.

200 &rep

See Also

The underlying factor ().

Examples

First control, then treatment:

gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep, grepl, regexpr and gregexpr search for matches to argument pattern within a
character vector: they differ in the format of and amount of detail in the results.

sub and gsub perform replacement of the first and all matches respectively.

Usage

grep (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes FALSE, invert = FALSE)

grepl (pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE,
useBytes = FALSE)

sub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub (pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gregexpr (pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments
pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to acharacter string if possible. If a character vector of length
2 or more is supplied, the first element is used with a warning. Missing values
are allowed except for regexpr and gregexpr
X, text a character vector where matches are sought, or an object which can be coerced

by as.character to a character vector.

grep 201

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

perl logical. Should perl-compatible regexps be used? Has priority over extended.

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching ele-
ments themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

invert logical. If TRUE return indices or values for elements that do not match.

replacement a replacement for matched pattern in sub and gsub. Coerced to character
if possible. For fixed = FALSE this can include backreferences "\1" to
"\ 9" to parenthesized subexpressions of pattern. Forperl = TRUE only,
it can also contain "\U" or "\L" to convert the rest of the replacement to upper
or lower case and "\E" to end case conversion. If a character vector of length 2
or more is supplied, the first element is used with a warning. If NA, all elements
in the result corresponding to matches will be set to NA.

Details
Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

Each of these functions operates in one of three modes:

1. fixed = TRUE: use exact matching.
2. perl = TRUE: use Perl-style regular expressions.
3. fixed = FALSE, perl = FALSE: use POSIX 1003.2 extended regular expressions.

See the help pages on regular expression for details of the different types of regular expressions.

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences.

For regexpr and gregexpr itis an error for pattern to be NA, otherwise NA is permitted and
gives an NA match.

The main effect of useBytes is to avoid errors/warnings about invalid inputs and spurious matches
in multibyte locales, but for regexpr it changes the interpretation of the output. As from R 2.10.0
it inhibits the conversion of inputs with marked encodings.

Caseless matching does not make much sense for bytes in a multibyte locale, and you should expect
it only to work for ASCII characters if useBytes = TRUE.

Value
grep (value = FALSE) returns an integer vector of the indices of the elements of x that yielded
a match (or not, for invert = TRUE.

grep (value = TRUE) returns a character vector containing the selected elements of x (after
coercion, preserving names but no other attributes).

grepl returns a logical vector (match or not for each element of x).

For sub and gsub return a character vector of the same length and with the same attributes as x
(after possible coercion to character). Elements of character vectors x which are not substituted will

202 grep

be returned unchanged (including any declared encoding). If useBytes = FALSE a non-ASCII
substituted result will often be in UTF-8 with a marked encoding (e.g. if there is a UTF-8 input,
and in a multibyte locale unless fixed = TRUE).

regexpr returns an integer vector of the same length as text giving the starting position of the
first match or —1 if there is none, with attribute "match.length", an integer vector giving the
length of the matched text (or —1 for no match). The match positions and lengths are in characters
unless useBytes = TRUE is used, when they are in bytes.

gregexpr returns a list of the same length as text each element of which is of the same form as
the return value for regexpr, except that the starting positions of every (disjoint) match are given.

Warning

POSIX 1003.2 mode of gsub and gregexpr does not work correctly with repeated word-
boundaries (e.g. pattern = "\b"). Use perl = TRUE for such matches (but that may not
work as expected with non-ASCII inputs, as the meaning of ‘word’ is system-dependent).

Performance considerations

If you are doing a lot of regular expression matching, including on very long strings, you will want to
consider the options used. Generally PCRE will be faster than the default regular expression engine,
and fixed = TRUE faster still (especially when each pattern is matched only a few times).

If you are working in a single-byte locale and have marked UTF-8 strings that are representable
in that locale, convert them first as just one UTF-8 string will force all the matching to be done in
Unicode, which attracts a penalty of around 3 x for the default POSIX 1003.2 mode.

If you can make use of useBytes = TRUE, the strings will not be checked before matching, and
the actual matching will be faster. Often byte-based matching suffices in a UTF-8 locale since byte
patterns of one character never match part of another.

Note

Prior to R 2.11.0 there was an argument extended which could be used to select ‘basic’ regular
expressions: this was often used when fixed = TRUE would be preferable. In the actual imple-
mentation (as distinct from the POSIX standard) the only difference was that ‘2, “+’, “{’, “|’, * (’,
and ‘)’ were not interpreted as metacharacters.

Source

The C code for POSIX-style regular expression matching has changed over the years. As from
R 2.10.0 the TRE library of Ville Laurikari (http://laurikari.net/tre/) is used. From
2005 to R 2.9.2, code based on glibc was used (and before that, code from GNU grep). The
POSIX standard does give some room for interpretation, especially in the handling of invalid regular
expressions and the collation of character ranges, so the results will have changed slightly.

For Perl-style matching PCRE (http://www.pcre.orq) is used.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

http://laurikari.net/tre/
http://www.pcre.org

&rep

See Also

regular expression (aka regexp) for the details of the pattern specification.
glob2rx to turn wildcard matches into regular expressions.
agrep for approximate matching.

enc2native to re-encode the result of sub.

203

tolower, toupper and chartr for character translations. charmatch, pmatch, match.

apropos uses regexps and has more examples.

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if (length (i <- grep("foo",txt)))

cat ("'foo' appears at least once in\n\t",txt,"\n")
i # 2 and 4
txt[1]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub (" ([ab])", "\\1_\\1_", "abc and ABC")

txt <- c¢("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"toll’ "Share", llandll, "Change", llit'll,

", "By", "contrast,", "the", "GNU", "General", "Public", "License",

"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")
(i <= grep("[gul", txt)) # indices
stopifnot (txt[i] == grep("[gul]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the

collation order is aAbBcCdEe

(ot <= sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt [gsub ("g","#", txt) !=
gsub ("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr ("en", txt)
gregexpr ("e", txt)

trim trailing white space

str <- 'Now is the time !
sub (' +$', '', str) ## spaces only
sub ('[[:space:]]+$', '', str) ## white space, POSIX-style

sub ('"\\s+$', '', str, perl = TRUE) ## Perl-style white space

capitalizing

txt <- "a test of capitalizing"

gsub (" (\\w) (\\w=) ", "\\U\\I\\L\\2", txt, perl=TRUE)
gsub ("\\b (\\w) ", "\\UNN\L", txt, perl=TRUE)

204 groupGeneric

txt2 <- "useRs may fly into JFK or laGuardia"

gsub (" (\\w) (\\w*) (\\w) ", "\NUNNINAEN\2\\U\\3", txt2, perl=TRUE)
sub (" (\\w) (\\wx) (\\w) ", "\\UN\I\\E\\2\\U\\3", txt2, perl=TRUE)
groupGeneric S3 Group Generic Functions
Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the
methods package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)

Ops (el, e2)

Complex (z)

Summary (..., na.rm = FALSE)

Arguments

x, z, el, e2 objects.

further arguments passed to methods.

na.rm logical: should missing values be removed?
Details
There are four groups for which S3 methods can be written, namely the "Math", "Ops",

"Summary" and "Complex" groups. These are not R objects, but methods can be supplied
for them and base R contains factor, data.frame and di f £t ime methods for the first three
groups. (There is also a ordered method for Ops, POSIXt and Date methods for Math and
Ops, package_version methods for Ops and Summary, as well as a t s method for Ops in
package stats.)

1. Group "Math":

* abs, sign, sqgrt,
floor,ceiling, trunc,
round, signif

* exp, 1log, expml, loglp,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

¢ lgamma, gamma, digamma, trigamma

groupGeneric 205

* cumsum, cumprod, cummax, cummain

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and t runc accepts one or more.

2. Group "Ops™":
Y "+"’ "_"’ "*"’ "/"’ "/\"’ "%%"’ "%/%"
° "&"’ "l", "!"
° "::","!:H,"<ll,"<:",l|>="’">"

This group contains both binary and unary operators (+, — and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary":
e all, any
* sum, prod
* min, max
* range
Members of this group dispatch on the first argument supplied.
4. Group "Complex":
e Arg, Conij, Im, Mod, Re
Members of this group dispatch on z.
Note that a method will used for either one of these groups or one of its members only if it corre-

sponds to a "class™" attribute, as the internal code dispatches on o1dClass and noton class.
This is for efficiency: having to dispatch on, say, Ops . integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

Technical Details

These functions are all primitive and internal generic.
The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

* For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is " ".)

* Object . Group records the group used for dispatch (if a specific method is used this is "").

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

206 gzcon

See Also

methods for methods of non-internal generic functions.

S4groupGeneric for group generics for S4 methods.

Examples

require (utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))

class(l + d.fr) == "data.frame" ##-—- add to d.f.
methods ("Math")
methods ("Ops")
methods ("Summary")
methods ("Complex") # none in base R
gzcon (De)compress 1/O Through Connections
Description

gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon (con, level = 6, allowNonCompressed = TRUE)
Arguments

con a connection.

level integer between 0 and 9, the compression level when writing.

allowNonCompressed
logical. When reading, should non-compressed input be allowed?

Details
If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

Compressed output will contain embedded NUL bytes, and so con is not permitted to be a
textConnection opened with open="w". Use a writable rawConnection to compress
data into a variable.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection.
Value

An object inheriting from class "connection™. This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

hexmode 207

See Also

gzfile

Examples

Uncompress a data file from a URL

z <— gzcon (url ("http://www.stats.ox.ac.uk/pub/datasets/csb/chl2.dat.gz"))
read.table can only read from a text-mode connection.

raw <— textConnection (readLines (z))

close(z)

dat <- read.table(raw)

close (raw)

dat[1:4, 1]

gzfile and gzcon can inter-work.

Of course here one would used gzfile, but file() can be replaced by
any other connection generator.

zz <- gzfile("ex.gz", "w")

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readLines (zz <- gzcon(file("ex.gz", "rb")))

close(zz)

unlink ("ex.gz")

zz <— gzcon(file("ex2.gz", "wb"))

cat ("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)

readlLines (zz <- gzfile("ex2.gz"))

close(zz)

unlink ("ex2.gz")

hexmode Display Numbers in Hexadecimal

Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage
as.hexmode (x)

S3 method for class 'hexmode':
as.character(x, ...)

S3 method for class 'hexmode':
format (x, width = NULL, upper.case = FALSE, ...)

S3 method for class 'hexmode':
print(x, ...)

208

Arguments

X

width

upper.case

Details

Hyperbolic

An object, for the methods inheriting from class "hexmode".

NULL or a positive integer specifying the minimum field width to be used, with
padding by leading zeroes.

a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

further arguments passed to or from other methods.

Class "hexmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in hex.

If width = NULL (the default), the output is padded with leading zeroes to the smallest width
needed for all the non-missing elements.

as.hexmode can convert integers (of type "integer" or "double") and character vectors
whose elements contain only 0-9, a—f, A—F (or are NA) to class "hexmode".

See Also

octmode, sprintf for other options in converting integers to hex, strtoi to convert hex

strings to integers.

Hyperbolic

Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

Usage

cosh (
sinh (
(

Arguments

X

Details

a numeric or complex vector

These are internal generic primitive functions: methods can be defined for them individually or via
the Math group generic.

Branch cuts are consistent with the inverse trigonometric functions asin () et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86.

iconv 209

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, 1. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh () for numeric x.

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-

ternationalization’.
Usage
iconv(x, from ="", to = "", sub = NA, mark = TRUE)

iconvlist ()

Arguments
X A character vector, or an object to be converted to a character vector by
as.character.
from A character string describing the current encoding.
to A character string describing the target encoding.
sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is "<xx>" with the hex code of the byte.
mark logical, for expert use. Should encodings be marked?
Details

The names of encodings and which ones are available are platform-dependent. All R platforms
support "" (for the encoding of the current locale), "latinl" and "UTF-8". Generally case is
ignored when specifying an encoding.

On many platforms, including Windows, i conv1ist provides an alphabetical list of the supported
encodings. On others, the information is on the man page for iconv (5) or elsewhere in the man
pages (but beware that the system command i conv may not support the same set of encodings as
the C functions R calls). Unfortunately, the names are rarely common across platforms.

210 iconv

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of iconv will allow transliteration by appending ‘//TRANSLIT’ to the to encod-
ing: see the examples.

Encoding "ASCII" is also accepted, but prior to R 2.10.0 conversion to "ASCII" on Windows
might have involved dropping accents.

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated
as if from from even if declared otherwise.

"UTF 8" will be accepted as meaning the (more correct) "UTF—-8".

Value

A character vector of the same length and the same attributes as x (after conversion).

If mark = TRUE (the default) the elements of the result have a declared encoding if from is
"latinl" or "UTF-8",orif from = "" and the current locale’s encoding is detected as Latin-
1 or UTE-8.

Implementation Details

iconv was optional before R 2.10.0, but its absence was deprecated in R 2.5.0.

There are three main implementations of iconv in use. ‘glibc’ (as used on Linux) contains
one. Several platforms supply GNU ‘1ibiconv’, including Mac OS X and Cygwin. On Windows
we use a version of Yukihiro Nakadaira’s ‘win_iconv’, which is based on Windows’ codepages
(but ‘1ibiconv’ can be used by swapping a DLL). All three have iconvlist, ignore case in
encoding names and support ‘//TRANSLIT’ (but with different results, and for ‘win_iconv’
currently a ‘best fit’ strategy is used except for to = "ASCII").

Most commercial Unixes contain an implemetation of i conv but none we have encountered have
supported the encoding names we need: the “R Installation and Administration Manual” recom-
mends installing ‘1ibiconv’ on Solaris and AIX, for example.

There are other implementations, e.g. NetBSD uses one from the Citrus project (which does not
support °//TRANSLIT’) and there is an older FreeBSD port (‘1ibiconv’ is usually used there):
it has not been reported whether or not these work with R.

See Also

localeToCharset, file.

Examples

not all systems have iconvlist
try(utils::head(iconvlist (), n = 50))

Not run:

convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")

iconv(x, "LATIN2", "UTF-8")

End (Not run)
Both x below are in latinl and will only display correctly in a

locale that can represent and display latinl.
X <— "fa\xE7ile"

icuSetCollate 211

Encoding(x) <- "latinl"
X
charToRaw (xx <—- iconv(x, "latinl", "UTF-8"))

XX

iconv(x, "latinl", "ASCII") # NA
iconv(x, "latinl", "ASCII", "2") # "fazile"
iconv(x, "latinl", "ASCII", "") # "faile"
iconv(x, "latinl", "ASCII", "byte") # "fa<e7>ile"

Extracts from R help files
x <— c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")

Encoding(x) <- "latinl"
X
try(iconv(x, "latinl", "ASCII//TRANSLIT")) # platform-dependent

iconv(x, "latinl", "ASCII", sub="byte")

icuSetCollate Setup Collation by ICU

Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

Arguments

Named arguments, see ‘Details’.

Details

Optionally, R can be built to collate character strings by ICU (http://site.icu-project.
org). For such systems, icuSetCollate can be used to tune the way collation is done. On
other builds calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the country whose collation rules are to be
used. If present, this should be the first argument.

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters
to be sorted first. The default is usually lower-case first, but not in all languages (see the
Danish example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and
symbols). Possible values are "non_ignorable" (primary strength) and "shifted"
(quaternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical".

french_collation: In a French locale the way accents affect collation is from right to left,
whereas in most other locales it is from left to right. Possible values "on", "off" and
"default".

http://site.icu-project.org
http://site.icu-project.org

212 identical

normalization: Should strings be normalized? Possible values "on" and "off" (default).
This affects the collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and
small Japanese Kana characters. Possible values "on" and "of£" (default).

hiragana_quaternary: Possible values "on" (sort Hiragana first at quaternary level) and
n le) f f n .

Only the first three are likely to be of interest except to those with a detailed understanding of

collation and specialized requirements.

Some examples are case_level="on", strength="primary" to ignore accent differ-
ences and alternate_handling="shifted" toignore space and punctuation characters.

Note that these settings have no effect if collation is set to the C locale, unless 1ocale is specified.

Note

As from R 2.9.0, ICU is used by default wherever it is available: this include Mac OS >= 10.4 and
many Linux installations.

See Also

Comparison, sort

The ICU user guide chapter on collation (http://userguide.icu-project.org/
collation).

Examples

these examples depend on having ICU available, and on the locale
x <— c("Aarhus", "aarhus", "safe", "test", "Zoo")

sort (x)

icuSetCollate (case_first="upper"); sort (x)

icuSetCollate (case_first="lower"); sort (x)

icuSetCollate (locale="da_DK", case_first="default"); sort (x)
icuSetCollate (locale="et_EE"); sort (x)

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage

identical (x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE)

http://userguide.icu-project.org/collation
http://userguide.icu-project.org/collation

identical 213

Arguments
X, Y any R objects.
num.eq logical indicating if (double and complex non-NA) numbers should be com-
pared using == (‘equal’), or by bitwise comparison. The latter (non-default)
differentiates between —0 and +0.
single.NA logical indicating if there is conceptually just one numeric NA and one NaN;

single.NA = FALSE differentiates bit patterns.

attrib.as.set
logical indicating if attributes of x and y should be treated as unordered
tagged pairlists (“sets”); this currently also applies to s1ots of S4 objects. It
may well be too strict to set attrib.as.set = FALSE.

Details

A call to identical is the way to test exact equality in i f and while statements, as well as in
logical expressions that use && or | |. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them wasn’t, you will not get
a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case, the
expression if (x == y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

If single.NA is true, as by default, identical sees NaN as different from NA_real_, but all
NaNs are equal (and all NA of the same type are equal).

Character strings are regarded as identical if they are in different marked encodings but would agree
when translated to UTF-8.

If attrib.as.set is true, as by default, comparison of attributes view them as a set (and not a
vector, so order is not tested).

Note that identical (x,y, FALSE,FALSE,FALSE) pickily tests for very exact equality.

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)

John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

214 identity

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons. 1 sTRUE is a simple wrapper based on identical.

Examples
identical (1, NULL) ## FALSE —-- don't try this with ==
identical (1, 1.) ## TRUE in R (both are stored as doubles)

identical (1, as.integer(l)) ## FALSE, stored as different types

x <= 1.0; y <— 0.99999999999

how to test for object equality allowing for numeric fuzz

(B <- all.equal(x,vy))

isTRUE (E) # which is simply defined to just use

identical (TRUE, E)

If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects
identical (.GlobalEnv, environment ())

#HE ——————— Pickyness Flags : —————————————————————————————

the infamous example:

identical (0., -0.) # TRUE, i.e. not differentiated
identical (0., -0., num.eq = FALSE)

similar:

identical (NaN, -NaN) # TRUE

identical (NaN, -NaN, single.NA=FALSE) # differ on bit-level

identity Identity Function

Description

A trivial identity function returning its argument.

Usage

identity (x)

Arguments

x an R object.

ifelse 215

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments
test an object which can be coerced to logical mode.
yes return values for true elements of test.
no return values for false elements of test.
Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including dimensions and "class") as test and data
values from the values of yes or no. The mode of the answer will be coerced from logical to
accommodate first any values taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test (see the examples), and the class attribute
(see o1dClass) of the result is taken from test and may be inappropriate for the values selected
from yes and no.

Sometimes it is better to use a construction such as (tmp <- yes; tmp[!test] <-—
no[!test]; tmp), possibly extended to handle missing values in test.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

if.

216 integer

Examples

x <—= c(6:-4)
sgrt (x) #- gives warning
sqrt (ifelse(x >= 0, x, NA)) # no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqgrt(x), NA)

example of different return modes:

yes <- 1:3

no <- pi”*(0:3)

typeof (ifelse (NA, yes, no)) # logical
typeof (ifelse (TRUE, yes, no)) # integer

typeof (ifelse (FALSE, yes, no)) # double

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer (length = 0)
as.integer (x,)
is.integer (x)

Arguments
length desired length.
x object to be coerced or tested.
further arguments passed to or from other methods.
Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
(small) integer data can be represented exactly and compactly.

Note that current implementations of R use 32-bit integers for integer vectors, so the range of
representable integers is restricted to about +2 x 10%: doubles can hold much larger integers
exactly.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to O.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e., as.integer (x) equals trunc (x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing optional whitespace
followed by either a decimal representation or a hexadecimal representation (starting with 0x or

interaction 217

0X) can be converted, as well as any allowed by the platform for real numbers. Like as.vector
it strips attributes including names. (To ensure that an object x is of integer type without stripping
attributes, use storage .mode (x) <- "integer".)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not, unless it is a factor when it returns FALSE.

Note

is.integer (x) does not test if x contains integer numbers! For that, use round, as in the
function is.wholenumber (x) in the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and f1loor on that help page) to convert to integral values.

Examples

as.integer () truncates:
X <— pi % c(-1:1,10)
as.integer (x)

is.integer(l) # is FALSE !

is.wholenumber <-
function(x, tol = .Machine$double.eps”0.5) abs (x - round(x)) < tol
is.wholenumber (1) # is TRUE
(x <= seqg(l,5, by=0.5))
is.wholenumber (x) #-—> TRUE FALSE TRUE

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage

interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)

218 interactive

Arguments
the factors for which interaction is to be computed, or a single list giving those
factors.
drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.
sep string to construct the new level labels by joining the constituent ones.
lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.
Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when lex.order = FALSE, the levels are ordered so the level of the first factor
varies fastest, then the second and so on. This is the reverse of lexicographic ordering (which you
can get by lex.order = TRUE), and differs from :. (It is done this way for compatibility with
S)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also
factor; : where £:qg is similar to interaction (f, g, sep=":") when f and g are
factors.
Examples
a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)

interaction(a, b, s, sep = ":")
stopifnot (identical(a:s,

interaction(a, s, sep = ":", lex.order = TRUE)),
identical(a:s:b,
interaction(a, s, b, sep = ":", lex.order = TRUE)))
interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive ()

Internal 219

Details

An interactive R session is one in which it is assumed that there is a human operator to interact
with, so for example R can prompt for corrections to incorrect input or ask what to do next or if it
is OK to move to the next plot.

GUI consoles will arrange to start R in an interactive session. When R is run in a termi-
nal (via Rterm.exe on Windows), it assumes that it is interactive if ‘stdin’ is connected to
a (pseudo-)terminal and not if ‘stdin’ is redirected to a file or pipe. Command-line options
‘——interactive’ (Unix) and ‘—-ess’ (Windows, Rterm. exe) override the default assump-
tion. (On a Unix-alike, whether the readline command-line editor is used is not overridden by
‘——interactive’.)

Embedded uses of R can set a session to be interactive or not.
Internally, whether a session is interactive determines
e how some errors are handled and reported, e.g. see stop and
options ("showWarnCalls").

 whether one of ‘--save’, ‘~—no-save’ or ‘-—vanilla’ is required, and if R ever asks
whether to save the workspace.

» the choice of default graphics device launched when needed and by dev.new: see
options ("device")

» whether graphics devices ever ask for confirmation of a new page.

In addition, R’s own R code makes use of interactive () : for example help, debugger and
install.packages do.

Note

This is a primitive function.

See Also

source, .First

Examples
.First <- function() if (interactive()) =x11()
Internal Call an Internal Function
Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal (call)

220 InternalMethods

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:
LGS, [<— [[< 8<-,

length, length<-, dimnames, dimnames<-, dim, dim<-, names, names<-,
levels<—,

c,unlist, cbind, rbind,

as.character, as.complex, as.double, as.integer, as.logical, as.raw,
as.vector, is.array, is.matrix, is.na, is.nan, is.numeric, rep, seq.int
(which dispatches methods for "seg") and xt frm

In addition, is.name is a synonym for is.symbol and dispatches methods for the latter.

Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.

.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and not group generic. Currently as.vector, cbind, rbind and unlist are the internal
non-primitive functions which are internally generic.

For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible 221

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible (x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
fl <- function(x) x

f2 <- function(x) invisible (x)

f1(1)# prints

£f2(1)# does not

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which ele-
ments are finite (not infinite and not missing) or infinite.

Inf and —Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) Inf and NaN are reserved words in the R language.

222

is.finite

Usage

is.finite (x)
is.infinite (x)
Inf

NaN

is.nan (x)

Arguments
X R object to be tested: the default methods handle atomic vectors, lists and
pairlists.
Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x [J] is
finite (i.e., it is not one of the values NA, NaN, Inf or —Inf) and FALSE otherwise. All elements
of types other than logical, integer, numeric and complex vectors are false. Complex numbers are
finite if both the real and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x [j]
is infinite (i.e., equal to one of Inf or —Inf) and FALSE otherwise. This will be false unless x is
numeric or complex. Complex numbers are infinite if either the real or the imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. One of these is used for the numeric
missing value NA, and is.nan is false for that value. A complex number is regarded as NaN if
either the real or imaginary part is NaN but not NA. All elements of logical, integer and raw vectors
are considered not to be NaN, and elements of lists and pairlists are also unless the element is a
length-one numeric or complex vector whose single element is NaN.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods. The default methods handle atomic vectors.

Value

A logical vector of the same length as x: dim, dimnames and names attributes are preserved.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).

Postscript version available at http://www.validlab.com/goldberg/paper.ps Ex-
tended PDF version at http://www.validlab.com/goldberg/paper.pdf

http://grouper.ieee.org/groups/ 754/ for accessible information.

The C99 function isfinite isused for is.finite if available.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf
http://grouper.ieee.org/groups/754/

is.function 223

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric.

Examples

pi / O ## = Inf a non-zero number divided by zero creates infinity
0/ 0 ## = NaN

1/0 + 1/0# Inf
1/0 - 1/0# NaN

stopifnot (
1/0 == Inf,
1/Inf == 0
)
sin (Inf)
cos (Inf)
tan (Inf)

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage
is.function (x)
is.primitive (x)

Arguments

x an R object.

Details

is.primitive (x) tests if x is a primitive function (either a "builtin" or "special™" as
described for t ypeof)? It is a primitive function.

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function(l) # FALSE

is.function(is.primitive) # TRUE: it is a function, but
is.primitive (is.primitive) # FALSE:it's not a primitive one, whereas
is.primitive (is.function) # TRUE: that one xisx

224 is.object

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language (x)

Arguments

X object to be tested.

Note

This is a primitive function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

as.name ("Jim"),

11 <= list(a = expression(x”2 - 2xx + 1), b =
= call("sin", pi))

c = as.expression(exp(l)), d
sapply (11, typeof)
sapply (11, mode)
stopifnot (sapply(ll, is.language))

is.object Is an Object “internally classed”?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class
attribute. (S4 objects always should.)

Usage

is.object (x)

Arguments

X object to be tested.

is.R 225

Note

This is a primitive function.

See Also

class, and methods.

isS4.

Examples

is.object (1) # FALSE
is.object (as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order

for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R oruse it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code

} else {

S-version of code

}

Value

is.Rreturns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <—- stats::runif (20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seg(along=small) [small]

226 is.recursive

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is an atomic vector (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic (x)
is.recursive (x)

Arguments
X object to be tested.
Details
is.atomic is true for the atomic vector types ("logical", "integer", "numeric"

"complex", "character" and "raw") and NULL.

Most types of objects are regarded as recursive, except for atomic vector types, NULL and symbols
(as given by as.name).

These are primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo ("is.things™").

Examples

require (stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive (x))

is.a.r(c(a=1,b=3)) # TRUE FALSE

is.a.r(list()) # FALSE TRUE - a list is a list
is.a.r(list (2)) # FALSE TRUE

is.a.r (1lm) # FALSE TRUE

is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1l)) # FALSE TRUE (nowadays)

is.single 227

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single (x)

Arguments

X object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted, without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments
X an R object with a class or a numeric, complex, character or logical vector.
na.rm logical. Should missing values be removed before checking?
strictly logical indicating if the check should be for strictly increasing values.
Value

A length-one logical value. All objects of length 0 or 1 are sorted: the result will be NA for objects
of length 2 or more except for atomic vectors and objects with a class (where the >= or > method is
used).

See Also

sort, order.

228 isS4

ISOdatetime Date-time Conversion Functions from Numeric Representations

Description

Convenience wrappers to cread Date-times from numeric representations.

Usage

ISOdatetime (year, month, day, hour, min, sec, tz = "")

ISOdate (year, month, day, hour = 12, min = 0, sec = 0, tz = "GMTI")
Arguments

year, month, day
numerical values to specify a day.
hour, min, sec
numerical values for a time within a day. Fractional seconds are allowed.

tz A timezone specification to be used for the conversion. "" is the current time
zone and "GMT" is UTC.
Details

ISOdatetime and ISOdate are convenience wrappers for st rpt ime that differ only in their
defaults and that ISOdate sets UTC as the timezone. For dates without times it would normally
be better to use the "Date™" class.

Value

An object of class "POSIXct".

See Also
DateTimeClasses for details of the date-time classes; st rptime for conversions from character
strings.
iss4 Test for an S4 object
Description

Tests whether the object is an instance of an S4 class.

Usage

isS4 (object)

asS4 (object, flag = TRUE, complete = TRUE)

isSymmetric 229

Arguments
object Any R object.
flag A single logical value; not NA, whether to turn the S4 object flag on or off.
complete How to complete the transformation to/from S4. Only currently used when
flag is FALSE. If 1, the object must convert to a valid S3 object, or an er-
ror results. If 2, a non-valid S3 object is left alone, silently. If 0, no conversion
is made other than setting the internal bit (used internally but not recommended,
since it can result in an invalid object).
Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package. (But asS4 does depend on methods.)

When asS4 is called with f1lag == FALSE, the value of complete controls whether an at-
tempt is made to transform ob ject into a valid object of the implied S3 class. If so, then an object
from an S4 class extending an S3 class will be transformed into an S3 object with the corresponding
S3 class (see S3Part). This includes classes extending the pseudo-classes array and matrix:
such objects will have their class attribute set to NULL.

Value

i1sS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 will turn this flag on or off, according to argument £1ag, and in the latter case complete the
conversion as described under argument complete. Note that with f1lag FALSE, an S4 object
will not but turned into an S3 object unless there is a valid conversion; that is, an object of type
other than "S4" for which the S4 object is an extension, unless argument complete is 0.

See Also

is.object for a more general test; Methods for general information on S4.

Examples

isS4 (pi) # FALSE

isS4 (getClass ("MethodDefinition")) # TRUE
isSymmetric Test if a Matrix or other Object is Symmetric
Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented.

Usage

isSymmetric (object, ...)
S3 method for class 'matrix':
isSymmetric(object, tol = 100 x .MachineS$double.eps, ...)

230 jitter

Arguments
object any R object; a mat rix for the matrix method.
tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.
further arguments passed to methods; the matrix method passes these to
all.equal.
Details

The mat rix method is used inside eigen by default to test symmetry of matrices up to rounding
error, using all.equal. It might not be appropriate in all situations.

Note that a matrix is only symmetric if its rownames and colnames are identical.

Value

logical indicating if object is symmetric or not.

See Also

eigen which calls isSymmetric when its symmet ric argument is missing.

Examples

isSymmetric (D3 <- diag(3)) # -> TRUE

D3[2,1] <- l1le-100

D3

isSymmetric (D3) # TRUE

isSymmetric (D3, tol = 0) # FALSE for zero-tolerance

jitter Jitter’ (Add Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter (x, factor=1, amount = NULL)

Arguments
x numeric vector to which jitter should be added.
factor numeric
amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default

is factor * z/50.

Default (NULL): factor = d/5 where d is about the smallest difference be-
tween x values.

kappa 231

Details

The result, say r,is r <- x + runif(n, -a, a) wheren <- length (x) and a is the
amount argument (if specified).

Let z <— max(x) — min (x) (assuming the usual case). The amount a to be added is either
provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0,weseta <- factor =* z/50 (same as S).

If amount is NULL (default), we set a <— factor = d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

Value
jitter (x, ...) returns a numeric of the same length as x, but with an amount of noise added
in order to break ties.

Author(s)
Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

Examples

round (jitter (c(rep (1, 3), rep(l1.2, 4), rep(3,3))), 3)
These two 'fail' with S-plus 3.x:

jitter (rep (0, 7))

jitter (rep(10000,5))

kappa Compute or Estimate the Condition Number of a Matrix

Description

The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa () computes by default (an estimate of) the 2-norm condition number of a matrix or of the
R matrix of a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be
shown to be the ratio of the largest to the smallest non-zero singular value of the matrix.

rcond () computes an approximation of the reciprocal condition number, see the details.

232 kappa

Usage

kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE,
norm = NULL, method = c("gr", "direct"), ...)
S3 method for class 'lm':

kappa(z, ...)
S3 method for class 'gr':
kappa(z, ...)
kappa.tri(z, exact = FALSE, LINPACK = TRUE, norm=NULL, ...)
rcond(x, norm = c("O","I","1"), triangular = FALSE, ...)
Arguments
Z,X A matrix or a the result of gr or a fit from a class inheriting from "1m".
exact logical. Should the result be exact?
norm character string, specifying the matrix norm with respect to which the condition

number is to be computed, see also norm. For rcond, the default is "O",
meaning the One- or 1-norm. The (currently only) other possible value is "I "
for the infinity norm.

method character string, specifying the method to be used; "qgr" is default for back-
compatibility, mainly.

triangular logical. If true, the matrix used is just the lower triangular part of z.

LINPACK logical. If true and z is not complex, the Linpack routine dtrco () is called;
otherwise the relevant Lapack routine is.

further arguments passed to or from other methods; for kappa. * (), notably
LINPACK when normisnot "2".

Details

For kappa (), if exact = FALSE (the default) the 2-norm condition number is estimated by a
cheap approximation. Following S, by default, this uses the LINPACK routine dt rco () . However,
in R (or S) the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond () com-
putes these reciprocal condition numbers, also for complex matrices, using standard Lapack rou-
tines.

kappa and rcond are different interfaces to partly identical functionality.

kappa.tri is an internal function called by kappa . gr.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

kronecker 233

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

norm; svd for the singular value decomposition and gr for the QR one.

Examples

kappa (x1 <— cbind(1,1:10))# 15.71
kappa (x1, exact = TRUE) # 13.68
kappa (x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1l:n; 1 / outer(i - 1, i, "+") }

sv9 <— svd(h9 <- hilbert(9))s d

kappa (h9) # pretty high!

kappa (h9, exact = TRUE) == max(sv9) / min(sv9)

kappa (h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker Products on Arrays

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker (X, Y) returns
an array A with dimensions dim (X) * dim(Y).

Usage
kronecker (X, Y, FUN = "x", make.dimnames = FALSE, ...)
X %x% Y
Arguments
X A vector or array.
Y A vector or array.
FUN a function; it may be a quoted string.

make.dimnames
Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN (x, Y, ...).

%$x% is an alias for kronecker (where FUN is hardwired to " x").

234 110n_info

Author(s)

Jonathan Rougier, <J.C.Rougier@durham.ac.uk>

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and % +% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(l:6, ncol=2))
kronecker (4, M)

Block diagonal matrix:
kronecker (diag(1l, 3), M)

ask for dimnames
fred <- matrix(1:12, 3, 4, dimnames=1ist (LETTERS[1:3], LETTERS[4:7]))
bill <= c("happy" = 100, "sad" = 1000)

kronecker (fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))

kronecker (fred, bill, make.dimnames = TRUE)
110n_info Localization Information
Description

Report on localization information.

Usage

110n_info ()

Value

A list with three logical components:

MBCS If a multi-byte character set in use?
UTF-8 Is this a UTF-8 locale?
Latin-1 Is this a Latin-1 locale?

See Also

Sys.getlocale, localeconv

Examples

110n_info ()

labels 235

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels (object, ...)

Arguments
object Any R object: the function is generic.
further arguments passed to or from other methods.
Value

A ch