# WICHMANN-HILL RANDOM NUMBER GENERATOR # # Wichmann, B. A. & Hill, I. D. (1982) # Algorithm AS 183: # An efficient and portable pseudo-random number generator # Applied Statistics 31 (1982) 188-190 # # see also: # Correction to Algorithm AS 183 # Applied Statistics 33 (1984) 123 # # McLeod, A. I. (1985) # A remark on Algorithm AS 183 # Applied Statistics 34 (1985),198-200 # # # USE: # whrandom.random() yields double precision random numbers # uniformly distributed between 0 and 1. # # whrandom.seed(x, y, z) must be called before whrandom.random() # to seed the generator # # There is also an interface to create multiple independent # random generators, and to choose from other ranges. # Translated by Guido van Rossum from C source provided by # Adrian Baddeley. # Multi-threading note: the random number generator used here is not # thread-safe; it is possible that nearly simultaneous calls in # different theads return the same random value. To avoid this, you # have to use a lock around all calls. (I didn't want to slow this # down in the serial case by using a lock here.) class whrandom: # # Initialize an instance. # Without arguments, initialize from current time. # With arguments (x, y, z), initialize from them. # def __init__(self, x = 0, y = 0, z = 0): self.seed(x, y, z) # # Set the seed from (x, y, z). # These must be integers in the range [0, 256). # def seed(self, x = 0, y = 0, z = 0): if not type(x) == type(y) == type(z) == type(0): raise TypeError, 'seeds must be integers' if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): raise ValueError, 'seeds must be in range(0, 256)' if 0 == x == y == z: # Initialize from current time import time t = long(time.time() * 256) t = int((t&0xffffff) ^ (t>>24)) t, x = divmod(t, 256) t, y = divmod(t, 256) t, z = divmod(t, 256) # Zero is a poor seed, so substitute 1 self._seed = (x or 1, y or 1, z or 1) # # Get the next random number in the range [0.0, 1.0). # def random(self): # This part is thread-unsafe: # BEGIN CRITICAL SECTION x, y, z = self._seed # x = (171 * x) % 30269 y = (172 * y) % 30307 z = (170 * z) % 30323 # self._seed = x, y, z # END CRITICAL SECTION # return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 # # Get a random number in the range [a, b). # def uniform(self, a, b): return a + (b-a) * self.random() # # Get a random integer in the range [a, b] including both end points. # (Deprecated; use randrange below.) # def randint(self, a, b): return self.randrange(a, b+1) # # Choose a random element from a non-empty sequence. # def choice(self, seq): return seq[int(self.random() * len(seq))] # # Choose a random item from range([start,] step[, stop]). # This fixes the problem with randint() which includes the # endpoint; in Python this is usually not what you want. # def randrange(self, start, stop=None, step=1, # Do not supply the following arguments int=int, default=None): # This code is a bit messy to make it fast for the # common case while still doing adequate error checking istart = int(start) if istart != start: raise ValueError, "non-integer arg 1 for randrange()" if stop is default: if istart > 0: return int(self.random() * istart) raise ValueError, "empty range for randrange()" istop = int(stop) if istop != stop: raise ValueError, "non-integer stop for randrange()" if step == 1: if istart < istop: return istart + int(self.random() * (istop - istart)) raise ValueError, "empty range for randrange()" istep = int(step) if istep != step: raise ValueError, "non-integer step for randrange()" if istep > 0: n = (istop - istart + istep - 1) / istep elif istep < 0: n = (istop - istart + istep + 1) / istep else: raise ValueError, "zero step for randrange()" if n <= 0: raise ValueError, "empty range for randrange()" return istart + istep*int(self.random() * n) # Initialize from the current time # _inst = whrandom() seed = _inst.seed random = _inst.random uniform = _inst.uniform randint = _inst.randint choice = _inst.choice randrange = _inst.randrange