abcnon {bootstrap}R Documentation

Nonparametric ABC Confidence Limits

Usage

abcnon(x, tt, epsilon=0.001, 
       alpha=c(0.025, 0.05, 0.1, 0.16, 0.84, 0.9, 0.95, 0.975))

Arguments

x the data. Must be either a vector, or a matrix whose rows are the observations
tt function defining the parameter in the resampling form tt(p,x), where p is the vector of proportions and x is the data
epsilon optional argument specifying step size for finite difference calculations
alpha optional argument specifying confidence levels desired

Value

list with following components
limits The estimated confidence points, from the ABC and standard normal methods
stats list consisting of t0=observed value of tt, sighat=infinitesimal jackknife estimate of standard error of tt, bhat=estimated bias
constants list consisting of a=acceleration constant, z0=bias adjustment, cq=curvature component
tt.inf approximate influence components of tt
pp matrix whose rows are the resampling points in the least favourable family. The abc confidence points are the function tt evaluated at these points

References

Efron, B, and DiCiccio, T. (1992) More accurate confidence intervals in exponential families. Biometrika 79, pages 231-245.

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman and Hall, New York, London.

Examples

# compute abc intervals for the mean
x <- rnorm(10)
theta <- function(p,x) {sum(p*x)/sum(p)}
results <- abcnon(x, theta)  
# compute abc intervals for the correlation
x <- matrix(rnorm(20),ncol=2)
theta <- function(p, x)
{
    x1m <- sum(p * x[, 1])/sum(p)
    x2m <- sum(p * x[, 2])/sum(p)
    num <- sum(p * (x[, 1] - x1m) * (x[, 2] - x2m))
    den <- sqrt(sum(p * (x[, 2] - x1m)^2) *
              sum(p * (x[, 2] - x1m)^2))
    return(num/den)
}
results <- abcnon(x, theta)   


[Package Contents]