Erlang 4.4 Extensions

EDE Team

1997-05-21

Typeset in IATEX from SGML source using the DOCBUILDER 3.0 Document System.

Contents

1 Erlang 4.4 Extensions

11

1.2

13

1.4

1
Records 2
DefiningaRecord e 2
Including a Record Definition 3
Creatinga Record e 3
SEleCtors 4
Updatinga Record e 4
Type Testing o o e 5
Pattern Matching e 5
Nested ReCOrds 6
Internal Representation of Records 6
Example 7
Programming with Funs L 9
Higher Order Functions 9
Advantages of Higher Order Functions 11
The Syntax of FUNS 11
Variable Bindings withinaFun 12
Funsand the Module lists 13
Funswhich Return Funs 18
List Comprehensions e 21
Examples of List Comprehensions 21
Variable Bindings in List Comprehensions oL 23
MaCros e 25
Macrosand Tokens 25
Pre-Defined Macros e e 26
Flow Control in Macros e e 26
A Macro Expansion Utility 27

Erlang 4.4 Externsions i

Erlang 4.4 Externsions

Chapter 1

Erlang 4.4 Extensions

This chapter describes the Erlang 4.4 extension. The chapter contains the following sections:

e Records

e Functional Objects (Funs)
e List Comprehensions

e Macros.

Erlang 4.4 Externsions

1.1 Records

A record is a data structure intended for storing a fixed number of related data items. It is similar to a
struct in C, or a record in Pascal.

The main advantage of using records instead of tuples is that fields in a record are accessed by name,
whereas fields in a tuple are accessed by position. To illustrate these differences, suppose that we want
to represent a person with the tuple {Name, Address, Phone}.

We must remember that the Name field is the first element of the tuple, the Address field is the second
element, and so on, in order to write functions which manipulate this data. For example, to extract data
from a variable P which contains such a tuple we might write the following code and then use pattern
matching to extract the relevant fields.

Name = element(1, P),
Address = element(2, P),

Code like this is difficult to read and understand and errors occur if we get the numbering of the
elements in the tuple wrong. If we change the data representation by re-ordering the fields, or by
adding or removing a field, then all references to the person tuple, wherever they occur, must be
checked and possibly modified.

Records allow us to refer to the fields by name and not position. We use a record instead of a tuple to
store the data . If we write a record definition of the type shown below, we can then refer to the fields
of the record by name.

-record(person, {name, phone, address}).

For example, if P is now a variable whose value is a person record, we can code as follows in order to
access the name and address fields of the records.

Name = P#person.name,
Address = P#person.address,

In the following sections we describe the different operations which can be performed on records:

Defining a Record
A record is defined with the following syntax:

-record(RecordName, {Fieldl [= DefaultValuel],
Field2 [= DefaultValue2],

FieldN [= DefaultValueN]}).

2 Erlang 4.4 Externsions

1.1: Records

The record name and field names must be atoms. The optional default values, which are terms, are
used if no value is supplied for a field when a new instance of the record is created. If the default value
is not supplied, then the atom undefined is assumed.

For example, in the following record definition, the address field is undef ined.
-record(person, {name = "", phone = [], address}).

This definition of a person will be used in many of the examples which follow.

Including a Record Definition

If the record is used in several modules, its definition should be placed in a .hrl header file. Each
module which uses the record definition should have a -include (FileName) . statement. For example:

-include("my_data_structures.hrl").

Note:
The definition of the record must come before it is used.

Creating a Record
A new record is created with the following syntax:
#RecordName{Field1=Exprl,

FieldN-ExprM}.

If any of the fields is omitted, then the default value supplied in the record definition is used. For
example:

> #person{phone = [0,8,2,3,4,3,1,2], name = "Robert"}.
{person, "Robert", [0,8,2,3,4,3,1,2], undefined}.

Erlang 4.4 Externsions 3

Chapter 1: Erlang 4.4 Extensions

Selectors

The following syntax is used to select an individual field from a record:

Variable#RecordName.Field

Note:
The values contained in record names and fields must be constants, not variables.

Note:

For the purposes of illustration, we will demonstrate the use of records using an imaginary dialogue
with the Erlang shell. Currently the Erlang evaluator does not support records so you may not be
able to reproduce this dialogue.

> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
{person, "Joe", [0,8,2,3,4,3,1,2], undefined}

> P#person.name.

|IJoe|I

Note:
Selectors for records are allowed in guards.

Updating a Record

The following syntax is used to create a new copy of the record with some of the fields changed. Only
the fields to be changed need to be referred to, all other fields retain their old values.

0ldVariable#RecordName{Fieldl = NewValuel,

FieldM = NewValueM}

For example:

> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
{person, "Joe", [1,2,3], "A street"}

> P2 = Pl#person{name="Robert"}.

{person, "Robert", [1,2,3], "A street"}

4 Erlang 4.4 Externsions

1.1: Records

Type Testing

The following guard test is used to test the type of a record:
record(Variable, RecordName)
The following example shows that the guard succeeds if P is record of type person.

foo(P) when record(P, person) -> a_person;
foo(.) -> not_a person.

Note:
This test checks that P is a tuple of arity N + 1, where N is the number of fields in the record, and the
first element in the tuple is the atom person.

Pattern Matching

Matching can be used in combination with records as shown in the following example:

> P = #person{name="Joe", phone=[0,0,7], address="A street"}.
{person, "Joe", [0,0,7], "A street"}

> #person{name = Name} = P, Name.

"Joe"

The following function takes a list of person records and searches for the phone number of a person
with a particular name:

find_phone ([#person{name=Name, phone=Phone} | _], Name) ->
{found, Phone};

find_phone([_| T], Name) ->
find_phone(T, Name);

find_phone([], Name) ->
not_found.

Note:
The fields referred to in the pattern can be given in any order.

Erlang 4.4 Externsions 5

Chapter 1: Erlang 4.4 Extensions

Nested Records

The value of a field in a record might be an instance of a record. Retrieval of nested data can be done
stepwise, or in a single step, as shown in the following example:

-record(person, {name = #name{}, phone}).
-record(name, {first = "Robert", last = "Ericsson"}).

demo() ->
P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
First = (P#person.name)#name.first.

Note:
In this example, demo () evaluates to "Robert".

Internal Representation of Records

It is often desirable to write generic functions which will work on any record, not just a record of a
particular type. For this reason, records are represented internally as tuples and the ordering of the
fields in the tuple is strictly defined.

For example, the record -record(person, {name, phone, address}). isrepresented internally by
the tuple {person, X, Y, Z}.

The arity of the tuple is one more than the number of fields in the tuple. The first element of the tuple
is the name of the record, and the elements of the tuple are the fields in the record. The variables X, Y
and Z will store the data contained in the record fields.

The following two functions determine the indices in the tuple which refer to the named fields in the
record:

e record_info(fields, Rec) -> [Names]. This function returns the names of the fields in the
record Rec. For example, record info(fields, person) evaluates to [name, address,
phonel].

e record_info(size, Rec) -> Size. This function returns the size of the record Rec when
represented as a tuple, which is one more than the number of fields. For example,
record_info(size, person) returns 4.

In addition, #Rec.Name returns the index in the tuple representation of Name of the record Rec.

Note:
Name must be an atom.

For example, the following test function test () might return the result shown:

6 Erlang 4.4 Externsions

1.1: Records

test() ->
{record_info(fields, person),
record_info(size, person),
#person.name}.

> Mod:test().
{[name,address,phone] ,4,2}

The order in which records map onto tuples is implementation dependent.

Note:
record_info is a pseudo-function which cannot be exported from the module where it occurs.

Example
%% File: person.hrl

Rttt
%% Data Type: person

%% where:

W name: A string (default is undefined).

YA age: An integer (default is undefined).

% phone: A list of integers (default is []).

hto dict: A dictionary containing various information

hh about the person.

Woth A {Key, Value} list (default is the empty list).
o th= =

-record(person, {name, age, phone = [], dict = [1}).

-module (person) .
-include("person.hrl").
-compile(export_all). % For test purposes only.

%% This creates an instance of a person.
%% Note: The phone number is not supplied so the
Dot default value [] will be used.

make_hacker_without_phone(Name, Age) ->
#person{name = Name, age = Age,
dict = [{computer knowledge, excellent},
{drinks, coke}l}.

%% This demonstrates matching in arguments

print (#person{name = Name, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: s, Age: “w, Phone: “w “n"
"Dictionary: “w."n", [Name, Age, Phone, Dict]).

Erlang 4.4 Externsions 7

Chapter 1: Erlang 4.4 Extensions

%% Demonstrates type testing, selector, updating.

birthday(P) when record(P, person) ->
P#person{age = P#person.age + 1}.

register_two_hackers() ->
Hackerl = make_hacker_without_phone("Joe", 29),
OldHacker = birthday(Hackerl),
% The central register_server should have
% an interface function for this.
central register_server ! {register_person, Hackeril},
central register_server ! {register_person,
OldHacker#person{name = "Robert",
phone = [0,8,3,2,4,5,3,1]1}}.

8 Erlang 4.4 Externsions

1.2 Programming with Funs

This section introduces functional objects (Funs), which are a new data type introduced in Erlang 4.4.
Functions which takes Funs as arguments, or which return Funs are called higher order functions.

e Funs can be passed as arguments to other functions, just like lists or tuples
o functions can be written which return Funs, just like any other data object.

Higher Order Functions

Funs encourages us to encapsulate common patterns of design into functional forms called higher order
functions. These functions not only shortens programs, but also produce clearer programs because the
intended meaning of the program is explicitly rather than implicitly stated.

The concepts of higher order functions and procedural abstraction are introduced with two brief
examples.

Example 1 - map
If we want to double every element in a list, we could write a function named double:

double([H|T]) -> [2*H|double(T)];
double([1) -> [

This function obviously doubles the argument entered as input as follows:

> double([1,2,3,4]).
[2,4,6,8]

We now add the function add_one, which adds one to every element in a list:

add_one([HIT]) -> [H+1|add_one(T)];
add_one ([1) -> [1.

These functions, double and add_one, have a very similar structure. We can exploit this fact and write a
function map which expresses this similarity:

map(F, [HIT]) -> [F(H) Imap(F, T)];
map(F, [1) -> [].

We can now express the functions double and add_one in terms of map as follows:

double(L) -> map(fun(X) -> 2#X end, L).
add_one(L) -> map(fun(X) -> 1 + X end, L).

Erlang 4.4 Externsions 9

Chapter 1: Erlang 4.4 Extensions

map (F, List) is a function which takes a function F and a list L as arguments and returns the new list
which is obtained by applying F to each of the elements in L.

The process of abstracting out the common features of a number of different programs is called
procedural abstraction. Procedural abstraction can be used in order to write several different functions
which have a similar structure, but differ only in some minor detail. This is done as follows:

1. write one function which represents the common features of these functions

2. parameterize the difference in terms of functions which are passed as arguments to the common
function.

Example 2 - foreach

This example illustrates procedural abstraction. Initially, we show the following two examples written
as conventional functions:

1. all elements of a list are printed onto a stream
2. amessage is broadcast to a list of processes.

print_list(Stream, [H|T]) ->
io:format(Stream, "“p~n", [H]),
print_list(Stream, T);

print_on_list(Stream, [1) —->

true.

broadcast (Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast (Msg, Pids);
broadcast(_, [1) —>
true.

Both these functions have a very similar structure. They both iterate over a list doing something to each
element in the list. The “something” has to be carried round as an extra argument to the function which
does this.

The function foreach expresses this similarity:
foreach(F, [HIT]) —>
F(H),
foreach(F, T);
foreach(F, [1) —->
ok.
Using foreach, print_on list becomes:
foreach(fun(H) -> io:format(S, "“p™n~,[H]) end, L)
broadcast becomes:
foreach(fun(Pid) -> Pid ! M end, L)
foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) calls Fun(X) for each

element X in L and the processing occurs in the order in which the elements were defined in L. map does
not define the order in which its elements are processed.

10 Erlang 4.4 Externsions

1.2: Programming with Funs

Advantages of Higher Order Functions

Programming with higher order functions, such as map and foreach, has a number of advantages:

e It is much easier to understand the program and the intention of the programmer is clearly
expressed in the code. The statement foreach (fun(X) -> clearly indicates that the intention of
this program is to do something to each element in the list L. We also know that the function
which is passed as the first argument of foreach takes one argument X, which will be successively
bound to each of the elements in L.

e Functions which take Funs as arguments are much easier to re-use than other functions.

The Syntax of Funs

Funs are written with the syntax:

F = fun (Argl, Arg2, ... Argh) ->
L

This creates an anonymous function of N arguments and binds it to the variable F.

If we have already written a function in the same module and wish to pass this function as an argument,
we can use the following syntax:

F = fun FunctionName/Arity

With this form of function reference, the function which is referred to does not need to be exported
from the module.

We can also refer to a function defined in a different module with the following syntax:
F = {Module, FunctionName}

In this case, the function must be exported from the module in question.
The follow program illustrates the different ways of creating Funs:

-module (fun_test) .

-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/2]).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).

t3() -> map({7MODULE, double}, [1,2,3,4,5]).
double(X) -> X * 2.

We can evaluate the fun F with the syntax:

F(Argl, Arg2, ..., Argn)

Erlang 4.4 Externsions 11

Chapter 1: Erlang 4.4 Extensions

Variable Bindings within a Fun

The scope rules for variables which occur in Funs are as follows:

e All variables which occur in the head of a Fun are assumed to be “fresh” variables.

¢ Variables which are defined before the Fun, and which occur in function calls or guard tests
within the Fun, have the values they had outside the Fun.

¢ No variables may be exported from a Fun.

The following examples illustrate these rules:

print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream," p~n",[X]) end, List),
file:close(Stream).

In the above example, the variable X which is defined in the head of the Fun is a new variable. The
value of the variable Stream which is used within within the Fun gets its value from the file: open line.

Since any variable which occurs in the head of a Fun is considered a new variable it would be equally
valid to write:

print_list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->
io:format(Stream," p~n", [Filel)
end, List),
file:close(Stream).

In this example, File is used as the new variable instead of X. This is rather silly since code in the body
of the Fun cannot refer to the variable File which is defined outside the Fun. Compiling this example
will yield the diagnostic:

./FileName.erl:Line: Warning: variable ’File’
shadowed in ’lambda head’

This reminds us that the variable File which is defined inside the Fun collides with the variable File
which is defined outside the Fun.

The rules for importing variables into a Fun has the consequence that certain pattern matching
operations have to be moved into guard expressions and cannot be written in the head of the Fun. For
example, we might write the following code if we intend the first clause of F to be evaluated when the
value of its argument is Y:

£C.0) >
Y= ...
map (fun(X) when X ==Y ->

’

) -

end, ...)

12 Erlang 4.4 Externsions

1.2: Programming with Funs

instead of

£(C...) —>
Y= ...
map (fun(Y) ->

) -

end, ...)

Funs and the Module lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed
are exported from the module 1lists.

map

map(F, [HIT]) -> [F(H) |map(F, T)];
map (F, [1) -> [].

map takes a function of one argument and a list of terms. It returns the list obtained by applying the
function to every argument in the list.

1> Double = fun(X) -> 2 * X end.
#Fun<erl_ eval>

2> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

When a new Fun is defined in the shell, the value of the Fun is printed as Fun#<erl eval>

any

any (Pred, [HITI) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, [1) —>
false.

any takes a predicate P of one argument and a list of terms. A predicate is a function which returns
true or false. any is true if there is a term X in the list such that P(X) is true.

We define a predicate Big(X) which is true if its argument is greater that 10.

3> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl_eval>

4> lists:any(Big, [1,2,3,4]).

false.

5> lists:any(Big, [1,2,3,12,5]).

true.

Erlang 4.4 Externsions 13

Chapter 1: Erlang 4.4 Extensions

all

all(Pred, [HIT]) —>
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, [1) —>
true.

all has the same arguments as any. It is true if the predicate applied to all elements in the list is true.

6> lists:all(Big, [1,2,3,4,12,6]).
false
7> lists:all(Big, [12,13,14,15]).
true

foreach

foreach(F, [HIT]) ->
F(H),
foreach(F, T);
foreach(F, []1) —>
ok.

foreach takes a function of one argument and a list of terms. The function is applied to each argument
in the list. foreach returns ok. It is used for its side-effect only.

8> lists:foreach(fun(X) -> io:format(""w™n",[X]) end, [1,2,3,4]).

foldl

foldl(F, Accu, [Hd|Taill) ->
foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.

foldl takes a function of two arguments, an accumulator and a list. The function is called with two
arguments. The first argument is the successive elements in the list, the second argument is the
accumulator. The function must return a new accumulator which is used the next time the function is
called.

If we have a list of listsL = ["I","like","Erlang"], then we can sum the lengths of all the strings in
L as follows:

9> L = ["I","like","Erlang"].

[qu , " ike" , "Erlang"]

10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, O, L).
11

14 Erlang 4.4 Externsions

1.2: Programming with Funs

foldl works like a while loop in an imperative language:

L = ["I","like","Erlang"],
Sum = O,
while(L !'= [1){
Sum += length(head(L)),
L = tail(L)
end

mapfoldl

mapfoldl(F, Accu0, [Hd|Taill) ->
{R,Accul} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accul, Tail),
{[RIRs], Accu2};

mapfoldl(F, Accu, [1) -> {[], Accu}.

mapfoldl simultaneously maps and folds over a list. The following example shows how to change all

letters in L to upper case and count them.
First upcase:

11> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;

&) -> X
end.
#Fun<erl_eval>
12> Upcase_word =
fun(X) ->
lists:map(Upcase, X)
end.

#Fun<erl_eval>

13> Upcase_word("Erlang").
"ERLANG"

14> lists:map(Upcaseword, L).
["I","LIKE","ERLANG"]

Now we can do the fold and the map at the same time:

14> lists:mapfoldl(fun(Word, Sum) ->

14> {Upcase_word(Word), Sum + length(Word)}
14> end, 0, L).
{["I","LIKE","ERLANG"], 11}

Erlang 4.4 Externsions

15

Chapter 1: Erlang 4.4 Extensions

filter

filter(F, [HIT]) ->
case F(H) of
true -> [H|filter(F, T)]1;
false -> filter(F, T)
end;
filter(F, [1) -> [I.

filter takes a predicate of one argument and a list and returns all element in the list which satisfy the
predicate.

16> lists:filter(Big, [500,12,2,45,6,7]).
[500,12,45]

When we combine maps and filters we can write very succinct and obviously correct code. For
example, suppose we want to define a set difference function. We want to define diff (L1, L2) to be
the difference between the lists L1 and L2. This is the list of all elements in L1 which are not contained
in L2. This code can be written as follows:

diff(L1, L2) ->
filter (fun(X) -> not member (X, L2) end, L1).

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

takewhile

takewhile(Pred, [HI|T]) —>
case Pred(H) of
true -> [Hltakewhile(Pred, T)];
false -> []
end;
takewhile(Pred, []) —>
J.

takewhile (P, L) takes elements X from a list L as long as the predicate P(X) is true.

16> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

16 Erlang 4.4 Externsions

1.2: Programming with Funs

dropwhile

dropwhile(Pred, [HIT]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H|T]
end;
dropwhile(Pred, []) ->
.

dropwhile is the complement of takewhile.

17> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
(5,3,45,6]

splitlist

splitlist(Pred, L) ->
splitlist(Pred, L, []).

splitlist(Pred, [H|T], L) ->
case Pred(H) of
true -> splitlist(Pred, T, [HILI);
false -> {reverse(L), [H|T]}
end;
splitlist(Pred, [], L) ->
{reverse(L), [1}.

splitlist (P, L) splits the list L into the two sub-lists {L1, L2}, where L = takewhile(P, L) and L2

= dropwhile(P, L).

18> lists:splitlist(Big, [200,500,45,5,3,45,6]).
{[200,500,45], [5,3,45,6]

first

first(Pred, [HIT]) —>
case Pred(H) of
true ->
{true, H};
false —>
first(Pred, T)
end;
first(Pred, [1) —>
false.

first returns {true, R}, where R is the first element in a list satisfying a predicate or false:

19> lists:first(Big, [1,2,45,6,123]).
{true,45}

20> lists:first(Big, [1,2,4,5]).
false

Erlang 4.4 Externsions

17

Chapter 1: Erlang 4.4 Extensions

Funs which Return Funs

So far, this section has only described functions which take Funs as arguments. It is also possible to
write more powerful functions which themselves return Funs. The following examples illustrate these
type of functions.

Simple Higher Order Functions

Adder (X) is a function which, given X, returns a new function G such that G(K) returnsK + X.

21> Adder = fun(X) -> fun(Y) -> X + Y end end.
#Fun<erl_eval>

22> Add6 = Adder(6).

#Fun<erl _eval>

23> Add6(10).

16

Infinite Lists

The idea is to write something like:

-module(lazy) .
-export([ints_from/1]).
ints_from(N) ->
fun() ->
[N|ints_from(N+1)]
end.

Then we can proceed as follows:

24> XX = lazy:ints_from(1).
#Fun<lazy>

25> XXQO).

[1|#Fun<lazy>]

26> hd (XX()).

1

27> Y = t1(XX0).
#Fun<lazy>

28> hd(YQ)).

2

etc. - this is an example of “lazy embedding”

18 Erlang 4.4 Externsions

1.2: Programming with Funs

Parsing

The following examples show parsers of the following type:
Parser(Toks) -> {ok, Tree, Toksl} | fail

Toks is the list of tokens to be parsed. A successful parse returns {ok, Tree, Toksl}, where Tree is a
parse tree and Toks1 is a tail of Tree which contains symbols encountered after the structure which was
correctly parsed. Otherwise fail is returned.

The example which follows illustrates a simple, functional parser which parses the grammar:
(al)& (c| d

The following code defines a function pconst (X) in the module funparse, which returns a Fun which
parses a list of tokens.

pconst (X) ->
fun (T) ->
case T of
[XIT1] -> {ok, {const, X}, T1};
- -> fail

end
end.

This function can be used as follows:

29> P1 = funparse:pconst(a).
#Fun<hof>

30> P1([a,b,cl).
{ok,{const,a}, [b,c]}

31> Pi1([x,y,z]).

fail

Next, we define the two higher order functions pand and por which combine primitive parsers to
produce more complex parsers. Firstly pand:

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} —>
case P2(T1) of
{ok, R2, T2} —>
{ok, {’and’, R1, R2}};

fail —>

fail
end;
fail ->
fail

end
end.

Erlang 4.4 Externsions 19

Chapter 1: Erlang 4.4 Extensions

Given a parser P1 for grammar G1, and a parser P2 for grammar G2, pand (P1, P2) returns a parser for
the grammar which consists of sequences of tokens which satisfy G1 followed by sequences of tokens
which satisfy G2.

por (P1, P2) returns a parser for the language described by the grammar G1 or G2.

por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R, T1} ->
{ok, {’0r’,1,R}, T1};
fail —>
case P2(T) of
{ok, R1, T1} —>
{ok, {’0r’,2,R1}, T1};
fail ->
fail
end
end
end.

The original problem was to parse the grammar (a | b) & (c | d). The following code addresses this
problem:

grammar () ->
pand(
por (pconst(a), pconst(b)),
por (pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) —>
(grammar ()) (List).

We can test this parser as follows:

32> funparse:parse([a,c]).
{ok,{’and’,{’or’,1,{const,a}},{’or’,1,{const,c}}}}
33> funparse:parse([a,d]).
{ok,{’and’,{’or’,1,{const,a}},{’or’,2,{const,d}}}}
34> funparse:parse([b,c]).
{ok,{’and’,{’or’,2,{const,b}},{’0r’,1,{const,c}}}}
35> funparse:parse([b,d]).
{ok,{’and’,{’or’,2,{const,b}},{’0r’,2,{const,d}}}}
36> funparse:parse([a,b]).

fail

20 Erlang 4.4 Externsions

1.3 List Comprehensions

List comprehensions are a feature of many modern functional programming languages. Subject to
certain rules, they provide a succinct notation for generating elements in a list.

List comprehensions are analogous to set comprehensions in Zermelo-Frankel set theory and are called
ZF expressions in Miranda and SASL. They are analogous to the setof and findall predicates in
Prolog.

List comprehensions are written with the following syntax:
[Expression || Qualifierl, Qualifier2, ...]

Expression is an arbitrary expression, and each Qualifier is either a generator or a filter.

e A generator written as Pattern <- ListExpr. ListExpr must be an expression which evaluates
to a list of terms.

o A filter is either a predicate or a boolean expression. A predicate is a function which returns true
or false.

Examples of List Comprehensions

We start with a simple example:

> [X |l X < [1,2,a,3,4,b,5,6], X > 3].
[a)4)b)5)6]

This should be read as follows:
The list of X such that X is taken from the list [1,2,a,...] and X is greater than 3.

The notation X <- [1,2,a,...] isa generator and the expression X > 3 is a filter.
An additional filter can be added in order to restrict the result to integers:

> [X Il X <= [1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X: Y} II X <- [1,2,3], Y <- [a’b]]-
[{1,a},{l,b},{2,a},{2’b},{3’a}’{3,b}]

Erlang 4.4 Externsions 21

Chapter 1: Erlang 4.4 Extensions

Quick Sort

The well known quick sort routine can be written as follows:

sort ([Pivot|T]) ->
sort([X || X <= T, X < Pivot]) ++
[Pivot] ++
sort([X || X <= T, X >= Pivot]);
sort([1) -> [1.

The expression [X || X <- T, X < Pivot] is the list of all elements in T, which are less than Pivot.
[X Il X <= T, X >= Pivot] is the list of all elements in T, which are greater or equal to Pivot.

To sort a list, we isolate the first element in the list and split the list into two sub-lists. The first sub-list
contains all elements which are smaller than the first element in the list, the second contains all
elements which are greater than or equal to the first element in the list. We then sort the sub-lists and
combine the results.

Permutations

The following example generates all permutations of the elements in a list:

perms([1) -> [[11;
perms(L) -> [[HIT] || H <- L, T <- perms(L--[H])].

We take take H from L in all possible ways. The result is the set of all lists [H| T], where T is the set of all
possible permutations of L with H removed.

> perms([b,u,gl).
[[b,u,gl,[b,g,ul,[u,b,gl, [u,g,bl,[g,b,ul, [g,u,bl]

Pythagorean Triplets

Pythagorean triplets are sets of integers {A,B,C} such that Ax*2 + B**2 = C¥x*2,

The function pyth (N) generates a list of all integers {A,B,C} such that Ax*2 + B**2 = C**2 and where
the sum of the sides is less than N.

pyth(N) ->
[{A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*xB == Cx*C

22 Erlang 4.4 Externsions

1.3: List Comprehensions

> pyth(3).

(1.

> pyth(11).

(1.

> pyth(12).

[{3,4,5},{4,3,5}]

> pyth(50).
({3,4,5},{4,3,5},{5,12,13},{6,8,10},{8,6,10},{8,15,17},
{9,12,15},{12,5,13},{12,9,15},{12,16,20},{15,8,17},
{16,12,20}]

The following code reduces the search space and is more efficient:

pyth1i(N) ->
[{A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N-A+1),
C <- lists:seq(1,N-A-B+2),
A+B+C =< N,
A*A+B*B == Cx*C].

Simplifications with List Comprehensions

As an example, list comprehensions can be used to simplify some of the functions in 1ists.erl:

append(L) -> [X || L1 <- L, X <= L1].
map (Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

Variable Bindings in List Comprehensions

The scope rules for variables which occur in list comprehensions are as follows:

¢ all variables which occur in a generator pattern are assumed to be “fresh” variables

e any variables which are defined before the list comprehension and which are used in filters have
the values they had before the list comprehension

e no variables may be exported from a list comprehension.
As an example of these rules, suppose we want to write the function select, which selects certain

elements from a list of tuples. We might write select(X, L) -> [Y || {X, Y} <- L]. withthe
intention of extracting all tuples from L where the first item is X.

Compiling this yields the following diagnostic:
./FileName.erl:Line: Warning: variable ’X’ shadowed in generate

This diagnostic warns us that the variable X in the pattern is not the same variable as the variable X
which occurs in the function head.

Evaluating select yields the following result:

Erlang 4.4 Externsions 23

Chapter 1: Erlang 4.4 Extensions

> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[1’2’3’7]

This result is not what we wanted. To achieve the desired effect we must write select as follows:
select (X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into the filter. This now
works as expected:

> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[2,7]

One consequence of the rules for importing variables into a list comprehensions is that certain pattern
matching operations have to be moved into the filters and cannot be written directly in the generators.
To illustrate this, do not write as follows:

£C...) >

Y= ...

[Expression || PatternInvolving ¥ <- Expr, ...]
Instead, write as follows:
£C...0) >

Y= ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]

24 Erlang 4.4 Externsions

1.4 Macros

Macros in Erlang are written with the following syntax:

-define(Const, Replacement).
-define(Fun(Varl, Var2,.., Var), Replacement).

Macros are expanded when the syntax ?MacroName is encountered.
Consider the macro definition:

-define(timeout, 200).

The expression 7timeout, which can occur anywhere in the code which follows the macro definition,
will be replaced by 200.

Macros with arguments are written as follows:
-define(macrol1(X, Y), {a, X, b, Y}).
This type of macro can be used as follows:
bar(X) ->
?macrol(a, b),
?macrol (X, 123)
This expands to:
bar(X) ->

{a,a,b,b},
{a,X,b,123}.

Macros and Tokens

Macro expansion works at a token level. We might define a macro as follows:

-define(macro2(X, Y), {a,X,b,Y).

The replacement value of the macro is not a valid Erlang term because the closing right curly bracket is

missing. macro2 expands into a sequence of tokens {, a, X which are then pasted into the place where
the macro is used.

We might use this macro as follows:

bar() ->
?macro2(x,y)}.

Erlang 4.4 Externsions 25

Chapter 1: Erlang 4.4 Extensions

This will expand into the valid sequence of tokens {a,x,y,b} before being parsed and compiled.

Note:
It is good programming practise to ensure that the replacement text of a macro is a valid Erlang
syntactic form.

Pre-Defined Macros

The following macros are pre-defined:

?MODULE. This macro returns the name of the current module

?FILE. This macro returns the current file name.

?LINE. This macro returns the current line number.

?MACHINE. This macro returns the current machine name, which is one of > JAM’, *BEAM’ or ’VEE’

Flow Control in Macros

The following macro directives are supplied:

-undef(Macro). Causes the macro to behave as if it had never been defined.
-ifdef(Macro). Do the following lines if Macro is defined.

-ifndef(Macro). Do the following lines if Macro is not defined.

-else. “else” macro

-endif. “endif” macro.

The conditional macros must be properly nested. They are usually grouped as follows:

-ifdef (debug)
-define(....)
-else
-define(...)
—endif

The following example illustrates this grouping:

-define(debug, true).

-ifdef (debug) .

-define(trace(Str, X), io:format("Mod:"w line:"w “p “p™n",
[?MODULE, ?LINE, Str, X])).

-else.

-define(trace(X, Y), true).

—endif.

Given these definitions, the expression 7trace("X=", X). in line 10 of the module foo expands to:

26 Erlang 4.4 Externsions

io:format("Mod:"w line:"w “p “p~n", [foo0,100,"X=",[X]]),

If we remove the -define(debug, true). line, then the same expression expands to true.

A Macro Expansion Utility
The following code can be used to expand a macro and display the result:

-module (mexpand) .
-export([file/1]).
-import(lists, [foreach/2]).
file(File) ->
case epp:parse_file(File ++ ".erl", [],[]) of
{ok, L} —>
{ok, Stream} = file:open(File ++ ".out", write),
foreach(fun(X) ->
io:format(Stream,""s™n", [erl_pp:form(X)])
end, L),
file:close(Stream)
end.

Alternatively, we can compile the file with the P’ option. compile:file(File, [’P’]) produces a
list file File.P, in which the result of any macro expansions can be seen.

Erlang 4.4 Externsions 27

