
The Linux SCSI programming HOWTO

Table of Contents

The Linux SCSI programming HOWTO...1
Heiko Eißfeldt heiko@colossus.escape.de..1
1.What's New?...1
2.Introduction...1
3.What Is The Generic SCSI Interface?...1
4.What Are The Requirements To Use It?...1
5.Programmers Guide ...1
6.Overview Of Device Programming..1
7.Opening The Device...1
8.The Header Structure..2
9.Inquiry Command Example..2
10.The Sense Buffer...2
11.Example Using Sense Buffer..2
12.Ioctl Functions..2
13.Driver Defaults..2
14.Obtaining The Scsi Specifications..2
15.Related Information Sources...2
16.Other useful stuff..2
17.Other SCSI Access Interfaces...3
18.Final Comments..3
19.Acknowledgments...3
Appendix..3
20.Appendix...3
21.Error handling...3
22.Additional sense codes and additional sense code qualifiers..3
23.A SCSI command code quick reference...3
24.Example programs..3
1. What's New?..4
10. The Sense Buffer..4
11. Example Using Sense Buffer...5
12. Ioctl Functions...7
13. Driver Defaults...7
13.1 Transfer Lengths..7
13.2 Timeout And Retry Values..7
14. Obtaining The Scsi Specifications...8
15. Related Information Sources..9
15.1 HOWTOs and FAQs..9
15.2 Mailing list...9
15.3 Example code...9
16. Other useful stuff...10
16.1 Device driver writer helpers...10
16.2 Utilities...10
17. Other SCSI Access Interfaces..11
18. Final Comments...11
19. Acknowledgments..12
2. Introduction..12
20. Appendix..12

The Linux SCSI programming HOWTO

i

Table of Contents

21. Error handling..12
21.1 Error status decoding...13
21.2 Status codes..14
21.3 SCSI Sense Keys...15
21.4 Host codes..17
21.5 Driver codes...18
22. Additional sense codes and additional sense code qualifiers...18
22.1 ASC and ASCQ in lexical order..19
22.2 ASC and ASCQ in numerical order...23
23. A SCSI command code quick reference..29
24. Example programs...33
3. What Is The Generic SCSI Interface?..36
4. What Are The Requirements To Use It?..37
4.1 Kernel Configuration...37
4.2 Device Files...37
4.3 Device Mapping...38

Dynamically insert and remove SCSI devices..38
5. Programmers Guide ..39
6. Overview Of Device Programming...40
7. Opening The Device..41
8. The Header Structure...41
9. Inquiry Command Example...44

The Linux SCSI programming HOWTO

ii

The Linux SCSI programming HOWTO

Heiko Eißfeldt heiko@colossus.escape.de

v1.5, 7 May 1996

This document deals with programming the Linux generic SCSI interface.

1.What's New?

2.Introduction

3.What Is The Generic SCSI Interface?

4.What Are The Requirements To Use It?

• 4.1 Kernel Configuration
• 4.2 Device Files
• 4.3 Device Mapping

5.Programmers Guide

6.Overview Of Device Programming

7.Opening The Device

The Linux SCSI programming HOWTO 1

SCSI-Programming-HOWTO-1.html
SCSI-Programming-HOWTO-1.html
SCSI-Programming-HOWTO-2.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-5.html
SCSI-Programming-HOWTO-5.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-7.html
SCSI-Programming-HOWTO-7.html
SCSI-Programming-HOWTO-7.html

8.The Header Structure

9.Inquiry Command Example

10.The Sense Buffer

11.Example Using Sense Buffer

12.Ioctl Functions

13.Driver Defaults

• 13.1 Transfer Lengths
• 13.2 Timeout And Retry Values

14.Obtaining The Scsi Specifications

15.Related Information Sources

• 15.1 HOWTOs and FAQs
• 15.2 Mailing list
• 15.3 Example code

16.Other useful stuff

• 16.1 Device driver writer helpers
• 16.2 Utilities

The Linux SCSI programming HOWTO

8.The Header Structure 2

SCSI-Programming-HOWTO-8.html
SCSI-Programming-HOWTO-8.html
SCSI-Programming-HOWTO-8.html
SCSI-Programming-HOWTO-9.html
SCSI-Programming-HOWTO-9.html
SCSI-Programming-HOWTO-9.html
SCSI-Programming-HOWTO-10.html
SCSI-Programming-HOWTO-10.html
SCSI-Programming-HOWTO-10.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-12.html
SCSI-Programming-HOWTO-12.html
SCSI-Programming-HOWTO-13.html
SCSI-Programming-HOWTO-13.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-15.html
SCSI-Programming-HOWTO-15.html
SCSI-Programming-HOWTO-15.html
SCSI-Programming-HOWTO-16.html
SCSI-Programming-HOWTO-16.html
SCSI-Programming-HOWTO-16.html

17.Other SCSI Access Interfaces

18.Final Comments

19.Acknowledgments

Appendix

20.Appendix

21.Error handling

• 21.1 Error status decoding
• 21.2 Status codes
• 21.3 SCSI Sense Keys
• 21.4 Host codes
• 21.5 Driver codes

22.Additional sense codes and additional sense code
qualifiers

• 22.1 ASC and ASCQ in lexical order
• 22.2 ASC and ASCQ in numerical order

23.A SCSI command code quick reference

24.Example programs

Next Previous Contents Next Previous Contents

The Linux SCSI programming HOWTO

17.Other SCSI Access Interfaces 3

SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-18.html
SCSI-Programming-HOWTO-18.html
SCSI-Programming-HOWTO-19.html
SCSI-Programming-HOWTO-20.html
SCSI-Programming-HOWTO-21.html
SCSI-Programming-HOWTO-21.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-24.html
SCSI-Programming-HOWTO-24.html
SCSI-Programming-HOWTO-1.html
SCSI-Programming-HOWTO-2.html

1. What's New?

Newer kernels have changed the interface a bit. This affects a section formerly entitled 'rescanning the
devices'. Now it is possible to add/remove SCSI devices on the fly.

Since kernel 1.3.98 some important header files have been moved/split (sg.h and scsi.h).

Some stupid bugs have been replaced by newer ones.

Next Previous ContentsNextPreviousContents

10. The Sense Buffer

 Commands with no output data can give status information via the sense buffer (which is part of the header
structure). Sense data is available when the previous command has terminated with a CHECK CONDITION
status. In this case the kernel automatically retrieves the sense data via a REQUEST SENSE command. Its
structure is:

+=====−========−========−========−========−========−========−========−========+
| Bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|Byte | | | | | | | | |
|=====+========+==|
| 0 | Valid | Error Code (70h or 71h) |
|−−−−−+−−−|
| 1 | Segment Number |
|−−−−−+−−−|
| 2 |Filemark| EOM | ILI |Reserved| Sense Key |
|−−−−−+−−−|
| 3 | (MSB) |
|− − −+−−− Information −−−|
| 6 | (LSB) |
|−−−−−+−−−|
| 7 | Additional Sense Length (n−7) |
|−−−−−+−−−|
| 8 | (MSB) |
|− − −+−−− Command−Specific Information −−−|
| 11 | (LSB) |
|−−−−−+−−−|
| 12 | Additional Sense Code |
|−−−−−+−−−|
| 13 | Additional Sense Code Qualifier |
|−−−−−+−−−|
| 14 | Field Replaceable Unit Code |
|−−−−−+−−−|
| 15 | SKSV | |
|− − −+−−−−−−−−−−−− Sense−Key Specific −−−|
| 17 | |
|−−−−−+−−−|
| 18 | |

The Linux SCSI programming HOWTO

1. What's New? 4

SCSI-Programming-HOWTO-2.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-9.html

|− − −+−−− Additional Sense Bytes −−−|
| n | |
+===+

Note: The most useful fields are Sense Key (see section sec−sensekeys), Additional Sense Code and
Additional Sense Code Qualifier (see section sec−sensecodes). The latter two are used combined as a pair.

NextPreviousContentsNextPreviousContents

11. Example Using Sense Buffer

Here we will use the TEST UNIT READY command to check whether media is loaded into our device. The
header declarations and function handle_SCSI_cmd from the inquiry example will be needed as well.

 Table 73: TEST UNIT READY Command
+=====−========−========−========−========−========−========−========−========+
| Bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|Byte | | | | | | | | |
|=====+===|
| 0 | Operation Code (00h) |
|−−−−−+−−−|
| 1 | Logical Unit Number | Reserved |
|−−−−−+−−−|
| 2 | Reserved |
|−−−−−+−−−|
| 3 | Reserved |
|−−−−−+−−−|
| 4 | Reserved |
|−−−−−+−−−|
| 5 | Control |
+===+

Here is the function which implements it:

#define TESTUNITREADY_CMD 0
#define TESTUNITREADY_CMDLEN 6

#define ADD_SENSECODE 12
#define ADD_SC_QUALIFIER 13

The Linux SCSI programming HOWTO

11. Example Using Sense Buffer 5

SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-9.html
SCSI-Programming-HOWTO-12.html
SCSI-Programming-HOWTO-10.html

#define NO_MEDIA_SC 0x3a
#define NO_MEDIA_SCQ 0x00

int TestForMedium (void)
{
 /* request READY status */
 static unsigned char cmdblk [TESTUNITREADY_CMDLEN] = {
 TESTUNITREADY_CMD, /* command */
 0, /* lun/reserved */
 0, /* reserved */
 0, /* reserved */
 0, /* reserved */
 0};/* control */

 memcpy(cmd + SCSI_OFF, cmdblk, sizeof(cmdblk));

 /*
 * +−−−−−−−−−−−−−−−−−−+
 * | struct sg_header | <− cmd
 * +−−−−−−−−−−−−−−−−−−+
 * | copy of cmdblk | <− cmd + SCSI_OFF
 * +−−−−−−−−−−−−−−−−−−+
 */

 if (handle_SCSI_cmd(sizeof(cmdblk), 0, cmd,
 0, NULL)) {
 fprintf (stderr, "Test unit ready failed\n");
 exit(2);
 }

 return
 (((struct sg_header)cmd)−>sense_buffer +ADD_SENSECODE) !=
 NO_MEDIA_SC ||
 (((struct sg_header)cmd)−>sense_buffer +ADD_SC_QUALIFIER) !=
 NO_MEDIA_SCQ;
}

Combined with this main function we can do the check.

void main(void)
{
 fd = open(DEVICE, O_RDWR);
 if (fd < 0) {
 fprintf(stderr, "Need read/write permissions for "DEVICE".\n");
 exit(1);
 }

 /* look if medium is loaded */

 if (!TestForMedium()) {
 printf("device is unloaded\n");
 } else {
 printf("device is loaded\n");
 }
}

The Linux SCSI programming HOWTO

11. Example Using Sense Buffer 6

The file generic_demo.c from the appendix contains both examples.

NextPreviousContentsNextPreviousContents

12. Ioctl Functions

 There are two ioctl functions available:

• ioctl(fd, SG_SET_TIMEOUT, &Timeout); sets the timeout value to Timeout * 10
milliseconds. Timeout has to be declared as int.

• ioctl(fd, SG_GET_TIMEOUT, &Timeout); gets the current timeout value. Timeout has
to be declared as int.

NextPreviousContentsNextPreviousContents

13. Driver Defaults

13.1 Transfer Lengths

 Currently (at least up to kernel version 1.1.68) input and output sizes have to be less than or equal than 4096
bytes unless the kernel has been compiled with SG_BIG_BUFF defined, if which case it is limited to
SG_BIG_BUFF (e.g. 32768) bytes. These sizes include the generic header as well as the command block on
input. SG_BIG_BUFF can be safely increased upto (131072 − 512). To take advantage of this, a new kernel
has to be compiled and booted, of course.

13.2 Timeout And Retry Values

The default timeout value is set to one minute (Timeout = 6000). It can be changed through an ioctl call
(see section sec−ioctl). The default number of retries is one.

NextPreviousContentsNextPreviousContents

The Linux SCSI programming HOWTO

12. Ioctl Functions 7

SCSI-Programming-HOWTO-12.html
SCSI-Programming-HOWTO-10.html
SCSI-Programming-HOWTO-13.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-13.html
SCSI-Programming-HOWTO-11.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-12.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-12.html
SCSI-Programming-HOWTO-15.html
SCSI-Programming-HOWTO-13.html

14. Obtaining The Scsi Specifications

There are standards entitled SCSI−1 and SCSI−2 (and possibly soon SCSI−3). The standards are mostly
upward compatible.

The SCSI−1 standard is (in the author's opinion) mostly obsolete, and SCSI−2 is the most widely used.
SCSI−3 is very new and very expensive. These standardized command sets specify mandatory and optional
commands for SCSI manufacturers and should be preferred over the vendor specific command extensions
which are not standardized and for which programming information is seldom available. Of course
sometimes there is no alternative to these extensions.

Electronic copies of the latest drafts are available via anonymous ftp from:

• ftp.cs.tulane.edu:pub/scsi
• ftp.symbios.com:/pub/standards
• ftp.cs.uni−sb.de:/pub/misc/doc/scsi

(I got my SCSI specification from the Yggdrasil Linux CD−ROM in the directory /usr/doc/scsi−2 and
/usr/doc/scsi−1).

The SCSI FAQ also lists the following sources of printed information:

The SCSI specification: Available from:

 Global Engineering Documents
 15 Inverness Way East
 Englewood Co 80112−5704
 (800) 854−7179
 SCSI−1: X3.131−1986
 SCSI−2: X3.131−199x
 SCSI−3 X3T9.2/91−010R4 Working Draft

(Global Engineering Documentation in Irvine, CA (714)261−1455??)

SCSI−1: Doc \# X3.131−1986 from ANSI, 1430 Broadway, NY, NY 10018

IN−DEPTH EXPLORATION OF SCSI can be obtained from
Solution Technology, Attn: SCSI Publications, POB 104, Boulder Creek,
CA 95006, (408)338−4285, FAX (408)338−4374

THE SCSI ENCYLOPEDIA and the SCSI BENCH REFERENCE can be obtained from
ENDL Publishing, 14426 Black Walnut Ct., Saratoga, CA 95090,
(408)867−6642, FAX (408)867−2115

SCSI: UNDERSTANDING THE SMALL COMPUTER SYSTEM INTERFACE was published
by Prentice−Hall, ISBN 0−13−796855−8

NextPreviousContentsNextPreviousContents

The Linux SCSI programming HOWTO

14. Obtaining The Scsi Specifications 8

SCSI-Programming-HOWTO-15.html
SCSI-Programming-HOWTO-13.html
SCSI-Programming-HOWTO-16.html
SCSI-Programming-HOWTO-14.html

15. Related Information Sources

15.1 HOWTOs and FAQs

The Linux SCSI−HOWTO by Drew Eckhardt covers all supported SCSI controllers as well as device
specific questions. A lot of troubleshooting hints are given. It is available from sunsite.unc.edu in
/pub/Linux/docs/LDP and its mirror sites.

General questions about SCSI are answered in the SCSI−FAQ from the newsgroup Comp.Periphs.Scsi
(available on tsx−11 in pub/linux/ALPHA/scsi and mirror sites).

15.2 Mailing list

There is a mailing list for bug reports and questions regarding SCSI development under Linux. To join, send
email to majordomo@vger.rutgers.edu with the line subscribe linux−scsi in the body of the
message. Messages should be posted to linux−scsi@vger.rutgers.edu. Help text can be requested
by sending the message line "help" to majordomo@vger.rutgers.edu.

15.3 Example code

sunsite.unc.edu: apps/graphics/hpscanpbm−0.3a.tar.gz

This package handles a HP scanjet scanner through the generic interface.

tsx−11.mit.edu: BETA/cdrom/private/mkisofs/cdwrite−1.3.tar.gz

The cdwrite package uses the generic interface to write a cd image to a cd writer.

sunsite.unc.edu: apps/sound/cds/cdda2wav*.src.tar.gz

A shameless plug for my own application, which copies audio cd tracks into wav files.

NextPreviousContentsNextPreviousContents

The Linux SCSI programming HOWTO

15. Related Information Sources 9

SCSI-Programming-HOWTO-16.html
SCSI-Programming-HOWTO-14.html
SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-15.html

16. Other useful stuff

Things that may come in handy. I don't have no idea if there are newer or better versions around. Feedback is
welcome.

16.1 Device driver writer helpers

These documents can be found at the sunsite.unc.edu ftp server and its mirrors.

/pub/Linux/docs/kernel/kernel−hackers−guide

The LDP kernel hackers guide. May be a bit outdated, but covers the most fundamental
things.

/pub/Linux/docs/kernel/drivers.doc.z

This document covers writing character drivers.

/pub/Linux/docs/kernel/tutorial.doc.z

Tutorial on writing a character device driver with code.

/pub/Linux/docs/kernel/scsi.paper.tar.gz

A Latex document describing howto write a SCSI driver.

/pub/Linux/docs/hardware/DEVICES

A list of device majors and minors used by Linux.

16.2 Utilities

tsx−11.mit.edu: ALPHA/scsi/scsiinfo*.tar.gz

Program to query a scsi device for operating parameters, defect lists, etc. An X−based
interface is available which requires you have Tk/Tcl/wish installed. With the X−based
interface you can easily alter the settings on the drive.

tsx−11.mit.edu: ALPHA/kdebug

A gdb extension for kernel debugging.

The Linux SCSI programming HOWTO

16. Other useful stuff 10

NextPreviousContentsNextPreviousContents

17. Other SCSI Access Interfaces

In Linux there is also another SCSI access method via SCSI_IOCTL_SEND_COMMAND ioctl calls, which
is deprecated. Special tools like 'scsiinfo' utilize it.

There are some other similar interfaces in use in the un*x world, but not available for Linux:

1. CAM (Common Access Method) developed by Future Domain and other SCSI vendors. Linux has
little support for a SCSI CAM system yet (mainly for booting from hard disk). CAM even supports
target mode, so one could disguise ones computer as a peripheral hardware device (e.g. for a small
SCSI net).

2. ASPI (Advanced SCSI Programming Interface) developed by Adaptec. This is the de facto standard
for MS−DOS machines.

There are other application interfaces from SCO(TM), NeXT(TM), Silicon Graphics(TM) and SUN(TM) as
well.

NextPreviousContentsNextPreviousContents

18. Final Comments

The generic SCSI interface bridges the gap between user applications and specific devices. But rather than
bloating a lot of programs with similar sets of low−level functions, it would be more desirable to have a
shared library with a generalized set of low−level functions for a particular purpose. The main goal should be
to have independent layers of interfaces. A good design would separate an application into low−level and
hardware independent routines. The low−level routines could be put into a shared library and made available
for all applications. Here, standardized interfaces should be followed as much as possible before making new
ones.

By now you should know more than I do about the Linux generic SCSI interface. So you can start developing
powerful applications for the benefit of the global Linux community now...

NextPreviousContentsNextPreviousContents

The Linux SCSI programming HOWTO

17. Other SCSI Access Interfaces 11

SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-15.html
SCSI-Programming-HOWTO-18.html
SCSI-Programming-HOWTO-16.html
SCSI-Programming-HOWTO-18.html
SCSI-Programming-HOWTO-16.html
SCSI-Programming-HOWTO-19.html
SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-19.html
SCSI-Programming-HOWTO-17.html
SCSI-Programming-HOWTO-20.html
SCSI-Programming-HOWTO-18.html

19. Acknowledgments

Special thanks go to Jeff Tranter for proofreading and enhancing the text considerably as well as to Carlos
Puchol for useful comments. Drew Eckhardt's and Eric Youngdale's help on my first (dumb) questions about
the use of this interface has been appreciated.

NextPreviousContentsNextPreviousContents

2. Introduction

This document is a guide to the installation and programming of the Linux generic SCSI interface.

It covers kernel prerequisites, device mappings, and basic interaction with devices. Some simple C
programming examples are included. General knowledge of the SCSI command set is required; for more
information on the SCSI standard and related information, see the appendix to this document.

Note the plain text version of this document lacks cross references (they show up as ``'').

NextPreviousContentsNextPreviousContents

20. Appendix

NextPreviousContentsNextPreviousContents

21. Error handling

 The functions open, ioctl, write and read can report errors. In this case their return value is −1 and the
global variable errno is set to the error number. The errno values are defined in
/usr/include/errno.h. Possible values are:

Function | Error | Description
=========|==============|===
open | ENXIO | not a valid device
 | EACCES | access mode is not read/write (O_RDWR)
 | EBUSY | device was requested for nonblocking access,
 | | but is busy now.

The Linux SCSI programming HOWTO

19. Acknowledgments 12

SCSI-Programming-HOWTO-20.html
SCSI-Programming-HOWTO-18.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-1.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-1.html
SCSI-Programming-HOWTO-21.html
SCSI-Programming-HOWTO-19.html
SCSI-Programming-HOWTO-21.html
SCSI-Programming-HOWTO-19.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-20.html

 | ERESTARTSYS | this indicates an internal error. Try to
 | | make it reproducible and inform the SCSI
 | | channel (for details on bug reporting
 | | see Drew Eckhardts SCSI−HOWTO).
ioctl | ENXIO | not a valid device
read | EAGAIN | the device would block. Try again later.
 | ERESTARTSYS | this indicates an internal error. Try to
 | | make it reproducible and inform the SCSI
 | | channel (for details on bug reporting
 | | see Drew Eckhardts SCSI−HOWTO).
write | EIO | the length is too small (smaller than the
 | | generic header struct). Caution: Currently
 | | there is no overlength checking.
 | EAGAIN | the device would block. Try again later.
 | ENOMEM | memory required for this request could not be
 | | allocated. Try later again unless you
 | | exceeded the maximum transfer size (see above)
select | | none
close | | none

For read/write positive return values indicate as usual the amount of bytes that have been successfully
transferred. This should equal the amount you requested.

21.1 Error status decoding

 Furthermore a detailed reporting is done via the kernels hd_status and the devices sense_buffer (see
section sec−sensebuff) both from the generic header structure.

The meaning of hd_status can be found in drivers/scsi/scsi.h: This unsigned int is
composed out of different parts:

 lsb | ... | ... | msb
=======|===========|===========|============
status | sense key | host code | driver byte

These macros from drivers/scsi/scsi.h are available, but unfortunately cannot be easily used due to
weird header file interdependencies. This has to be cleaned.

 Macro | Description
=======================|===
status_byte(hd_status) | The SCSI device status. See section Status codes
msg_byte(hd_status) | From the device. See section SCSI sense keys
host_byte(hd_status) | From the kernel. See section Hostcodes
driver_byte(hd_status) | From the kernel. See section midlevel codes

The Linux SCSI programming HOWTO

21.1 Error status decoding 13

21.2 Status codes

The following status codes from the SCSI device (defined in scsi/scsi.h) are available.

Value | Symbol
======|=====================
0x00 | GOOD
0x01 | CHECK_CONDITION
0x02 | CONDITION_GOOD
0x04 | BUSY
0x08 | INTERMEDIATE_GOOD
0x0a | INTERMEDIATE_C_GOOD
0x0c | RESERVATION_CONFLICT

Note that these symbol values have been shifted right once. When the status is CHECK_CONDITION, the
sense data in the sense buffer is valid (check especially the additional sense code and additional sense code
qualifier).

These values carry the meaning from the SCSI−2 specification:

 Table 27: Status Byte Code
+=================================−==============================+
| Bits of Status Byte | Status |
| 7 6 5 4 3 2 1 0 | |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
R R 0 0 0 0 0 R	GOOD
R R 0 0 0 0 1 R	CHECK CONDITION
R R 0 0 0 1 0 R	CONDITION MET
R R 0 0 1 0 0 R	BUSY
R R 0 1 0 0 0 R	INTERMEDIATE
R R 0 1 0 1 0 R	INTERMEDIATE−CONDITION MET
R R 0 1 1 0 0 R	RESERVATION CONFLICT
R R 1 0 0 0 1 R	COMMAND TERMINATED
R R 1 0 1 0 0 R	QUEUE FULL
All Other Codes	Reserved
−−	
Key: R = Reserved bit	
+==+

A definition of the status byte codes is given below.

GOOD. This status indicates that the target has successfully completed the
command.

CHECK CONDITION. This status indicates that a contingent allegiance condition
has occurred (see 6.6).

CONDITION MET. This status or INTERMEDIATE−CONDITION MET is returned whenever
the requested operation is satisfied (see the SEARCH DATA and PRE−FETCH
commands).

The Linux SCSI programming HOWTO

21.2 Status codes 14

BUSY. This status indicates that the target is busy. This status shall be
returned whenever a target is unable to accept a command from an otherwise
acceptable initiator (i.e., no reservation conflicts). The recommended
initiator recovery action is to issue the command again at a later time.

INTERMEDIATE. This status or INTERMEDIATE−CONDITION MET shall be returned for
every successfully completed command in a series of linked commands (except
the last command), unless the command is terminated with CHECK CONDITION,
RESERVATION CONFLICT, or COMMAND TERMINATED status. If INTERMEDIATE or
INTERMEDIATE−CONDITION MET status is not returned, the series of linked
commands is terminated and the I/O process is ended.

INTERMEDIATE−CONDITION MET. This status is the combination of the CONDITION
MET and INTERMEDIATE statuses.

RESERVATION CONFLICT. This status shall be returned whenever an initiator
attempts to access a logical unit or an extent within a logical unit that is
reserved with a conflicting reservation type for another SCSI device (see the
RESERVE and RESERVE UNIT commands). The recommended initiator recovery action
is to issue the command again at a later time.

COMMAND TERMINATED. This status shall be returned whenever the target
terminates the current I/O process after receiving a TERMINATE I/O PROCESS
message (see 5.6.22). This status also indicates that a contingent allegiance
condition has occurred (see 6.6).

QUEUE FULL. This status shall be implemented if tagged queuing is
implemented. This status is returned when a SIMPLE QUEUE TAG, ORDERED QUEUE
TAG, or HEAD OF QUEUE TAG message is received and the command queue is full.
The I/O process is not placed in the command queue.

21.3 SCSI Sense Keys

 These kernel symbols (from scsi/scsi.h) are predefined:

Value | Symbol
======|================
0x00 | NO_SENSE
0x01 | RECOVERED_ERROR
0x02 | NOT_READY
0x03 | MEDIUM_ERROR
0x04 | HARDWARE_ERROR
0x05 | ILLEGAL_REQUEST
0x06 | UNIT_ATTENTION
0x07 | DATA_PROTECT
0x08 | BLANK_CHECK
0x0a | COPY_ABORTED
0x0b | ABORTED_COMMAND
0x0d | VOLUME_OVERFLOW
0x0e | MISCOMPARE

The Linux SCSI programming HOWTO

21.3 SCSI Sense Keys 15

A verbatim list from the SCSI−2 doc follows (from section 7.2.14.3):

 Table 69: Sense Key (0h−7h) Descriptions
+========−==+
| Sense | Description |
| Key | |
|−−−−−−−−+−−|
0h	NO SENSE. Indicates that there is no specific sense key
	information to be reported for the designated logical unit. This
	would be the case for a successful command or a command that
	received CHECK CONDITION or COMMAND TERMINATED status because one
	of the filemark, EOM, or ILI bits is set to one.
−−−−−−−−+−−	
1h	RECOVERED ERROR. Indicates that the last command completed
	successfully with some recovery action performed by the target.
	Details may be determinable by examining the additional sense
	bytes and the information field. When multiple recovered errors
	occur during one command, the choice of which error to report
	(first, last, most severe, etc.) is device specific.
−−−−−−−−+−−	
2h	NOT READY. Indicates that the logical unit addressed cannot be
	accessed. Operator intervention may be required to correct this
	condition.
−−−−−−−−+−−	
3h	MEDIUM ERROR. Indicates that the command terminated with a non−
	recovered error condition that was probably caused by a flaw in
	the medium or an error in the recorded data. This sense key may
	also be returned if the target is unable to distinguish between a
	flaw in the medium and a specific hardware failure (sense key 4h).
−−−−−−−−+−−	
4h	HARDWARE ERROR. Indicates that the target detected a non−
	recoverable hardware failure (for example, controller failure,
	device failure, parity error, etc.) while performing the command
	or during a self test.
−−−−−−−−+−−	
5h	ILLEGAL REQUEST. Indicates that there was an illegal parameter in
	the command descriptor block or in the additional parameters
	supplied as data for some commands (FORMAT UNIT, SEARCH DATA,
	etc.). If the target detects an invalid parameter in the command
	descriptor block, then it shall terminate the command without
	altering the medium. If the target detects an invalid parameter
	in the additional parameters supplied as data, then the target may
	have already altered the medium. This sense key may also indicate
	that an invalid IDENTIFY message was received (5.6.7).
−−−−−−−−+−−	
6h	UNIT ATTENTION. Indicates that the removable medium may have been
	changed or the target has been reset. See 6.9 for more detailed
	information about the unit attention condition.
−−−−−−−−+−−	
7h	DATA PROTECT. Indicates that a command that reads or writes the
	medium was attempted on a block that is protected from this
	operation. The read or write operation is not performed.
+===+

 Table 70: Sense Key (8h−Fh) Descriptions
+========−==+
| Sense | Description |
| Key | |
|−−−−−−−−+−−|

The Linux SCSI programming HOWTO

21.3 SCSI Sense Keys 16

8h	BLANK CHECK. Indicates that a write−once device or a sequential−
	access device encountered blank medium or format−defined end−of−
	data indication while reading or a write−once device encountered a
	non−blank medium while writing.
−−−−−−−−+−−	
9h	Vendor Specific. This sense key is available for reporting vendor
	specific conditions.
−−−−−−−−+−−	
Ah	COPY ABORTED. Indicates a COPY, COMPARE, or COPY AND VERIFY
	command was aborted due to an error condition on the source
	device, the destination device, or both. (See 7.2.3.2 for
	additional information about this sense key.)
−−−−−−−−+−−	
Bh	ABORTED COMMAND. Indicates that the target aborted the command.
	The initiator may be able to recover by trying the command again.
−−−−−−−−+−−	
Ch	EQUAL. Indicates a SEARCH DATA command has satisfied an equal
	comparison.
−−−−−−−−+−−	
Dh	VOLUME OVERFLOW. Indicates that a buffered peripheral device has
	reached the end−of−partition and data may remain in the buffer
	that has not been written to the medium. A RECOVER BUFFERED DATA
	command(s) may be issued to read the unwritten data from the
	buffer.
−−−−−−−−+−−	
Eh	MISCOMPARE. Indicates that the source data did not match the data
	read from the medium.
−−−−−−−−+−−	
Fh	RESERVED.
+===+

21.4 Host codes

 The following host codes are defined in drivers/scsi/scsi.h. They are set by the kernel driver.

Value | Symbol | Description
======|================|==
0x00 | DID_OK | No error
0x01 | DID_NO_CONNECT | Couldn't connect before timeout period
0x02 | DID_BUS_BUSY | BUS stayed busy through time out period
0x03 | DID_TIME_OUT | TIMED OUT for other reason
0x04 | DID_BAD_TARGET | BAD target
0x05 | DID_ABORT | Told to abort for some other reason
0x06 | DID_PARITY | Parity error
0x07 | DID_ERROR | internal error
0x08 | DID_RESET | Reset by somebody
0x09 | DID_BAD_INTR | Got an interrupt we weren't expecting

The Linux SCSI programming HOWTO

21.4 Host codes 17

21.5 Driver codes

 The midlevel driver categorizes the returned status from the lowlevel driver based on the sense key from the
device. It suggests some actions to be taken such as retry, abort or remap. The routine scsi_done from scsi.c
does a very differentiated handling based on host_byte(), status_byte(), msg_byte() and the suggestion. It then
sets the driver byte to show what it has done. The driver byte is composed out of two nibbles: the driver
status and the suggestion. Each half is composed from the below values being 'or'ed together (found in
scsi.h).

Value | Symbol | Description of Driver status
======|================|==
0x00 | DRIVER_OK | No error
0x01 | DRIVER_BUSY | not used
0x02 | DRIVER_SOFT | not used
0x03 | DRIVER_MEDIA | not used
0x04 | DRIVER_ERROR | internal driver error
0x05 | DRIVER_INVALID | finished (DID_BAD_TARGET or DID_ABORT)
0x06 | DRIVER_TIMEOUT | finished with timeout
0x07 | DRIVER_HARD | finished with fatal error
0x08 | DRIVER_SENSE | had sense information available

Value | Symbol | Description of suggestion
======|================|==
0x10 | SUGGEST_RETRY | retry the SCSI request
0x20 | SUGGEST_ABORT | abort the request
0x30 | SUGGEST_REMAP | remap the block (not yet implemented)
0x40 | SUGGEST_DIE | let the kernel panic
0x80 | SUGGEST_SENSE | get sense information from the device
0xff | SUGGEST_IS_OK | nothing to be done

NextPreviousContentsNextPreviousContents

22. Additional sense codes and additional sense code
qualifiers

 When the status of the executed SCSI command is CHECK_CONDITION, sense data is available in the
sense buffer. The additional sense code and additional sense code qualifier are contained in that buffer.

From the SCSI−2 specification I include two tables. The first is in lexical, the second in numerical order.

The Linux SCSI programming HOWTO

21.5 Driver codes 18

SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-20.html
SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-21.html

22.1 ASC and ASCQ in lexical order

The following table list gives a list of descriptions and device types they apply to.

+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 13h 00h D W O ADDRESS MARK NOT FOUND FOR DATA FIELD |
| 12h 00h D W O ADDRESS MARK NOT FOUND FOR ID FIELD |
| 00h 11h R AUDIO PLAY OPERATION IN PROGRESS |
| 00h 12h R AUDIO PLAY OPERATION PAUSED |
| 00h 14h R AUDIO PLAY OPERATION STOPPED DUE TO ERROR |
| 00h 13h R AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED |
| 00h 04h T S BEGINNING−OF−PARTITION/MEDIUM DETECTED |
| 14h 04h T BLOCK SEQUENCE ERROR |
| 30h 02h DT WR O CANNOT READ MEDIUM − INCOMPATIBLE FORMAT |
| 30h 01h DT WR O CANNOT READ MEDIUM − UNKNOWN FORMAT |
| 52h 00h T CARTRIDGE FAULT |
| 3Fh 02h DTLPWRSOMC CHANGED OPERATING DEFINITION |
| 11h 06h WR O CIRC UNRECOVERED ERROR |
| 30h 03h DT CLEANING CARTRIDGE INSTALLED |
| 4Ah 00h DTLPWRSOMC COMMAND PHASE ERROR |
| 2Ch 00h DTLPWRSOMC COMMAND SEQUENCE ERROR |
| 2Fh 00h DTLPWRSOMC COMMANDS CLEARED BY ANOTHER INITIATOR |
| 2Bh 00h DTLPWRSO C COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT |
| 41h 00h D DATA PATH FAILURE (SHOULD USE 40 NN) |
| 4Bh 00h DTLPWRSOMC DATA PHASE ERROR |
| 11h 07h W O DATA RESYCHRONIZATION ERROR |
| 16h 00h D W O DATA SYNCHRONIZATION MARK ERROR |
| 19h 00h D O DEFECT LIST ERROR |
| 19h 03h D O DEFECT LIST ERROR IN GROWN LIST |
| 19h 02h D O DEFECT LIST ERROR IN PRIMARY LIST |
| 19h 01h D O DEFECT LIST NOT AVAILABLE |
| 1Ch 00h D O DEFECT LIST NOT FOUND |
| 32h 01h D W O DEFECT LIST UPDATE FAILURE |
| 40h NNh DTLPWRSOMC DIAGNOSTIC FAILURE ON COMPONENT NN (80H−FFH) |
| 63h 00h R END OF USER AREA ENCOUNTERED ON THIS TRACK |
| 00h 05h T S END−OF−DATA DETECTED |
| 14h 03h T END−OF−DATA NOT FOUND |
| 00h 02h T S END−OF−PARTITION/MEDIUM DETECTED |
| 51h 00h T O ERASE FAILURE |
| 0Ah 00h DTLPWRSOMC ERROR LOG OVERFLOW |
| 11h 02h DT W SO ERROR TOO LONG TO CORRECT |
| 03h 02h T EXCESSIVE WRITE ERRORS |
| 3Bh 07h L FAILED TO SENSE BOTTOM−OF−FORM |
| 3Bh 06h L FAILED TO SENSE TOP−OF−FORM |
| 00h 01h T FILEMARK DETECTED |

The Linux SCSI programming HOWTO

22.1 ASC and ASCQ in lexical order 19

| 14h 02h T FILEMARK OR SETMARK NOT FOUND |
| 09h 02h WR O FOCUS SERVO FAILURE |
| 31h 01h D L O FORMAT COMMAND FAILED |
| 58h 00h O GENERATION DOES NOT EXIST |
+===+

Table 71: (continued)
+===+
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 1Ch 02h D O GROWN DEFECT LIST NOT FOUND |
| 00h 06h DTLPWRSOMC I/O PROCESS TERMINATED |
| 10h 00h D W O ID CRC OR ECC ERROR |
| 22h 00h D ILLEGAL FUNCTION (SHOULD USE 20 00, 24 00, OR 26 00) |
| 64h 00h R ILLEGAL MODE FOR THIS TRACK |
| 28h 01h M IMPORT OR EXPORT ELEMENT ACCESSED |
| 30h 00h DT WR OM INCOMPATIBLE MEDIUM INSTALLED |
| 11h 08h T INCOMPLETE BLOCK READ |
| 48h 00h DTLPWRSOMC INITIATOR DETECTED ERROR MESSAGE RECEIVED |
| 3Fh 03h DTLPWRSOMC INQUIRY DATA HAS CHANGED |
| 44h 00h DTLPWRSOMC INTERNAL TARGET FAILURE |
| 3Dh 00h DTLPWRSOMC INVALID BITS IN IDENTIFY MESSAGE |
| 2Ch 02h S INVALID COMBINATION OF WINDOWS SPECIFIED |
| 20h 00h DTLPWRSOMC INVALID COMMAND OPERATION CODE |
| 21h 01h M INVALID ELEMENT ADDRESS |
| 24h 00h DTLPWRSOMC INVALID FIELD IN CDB |
| 26h 00h DTLPWRSOMC INVALID FIELD IN PARAMETER LIST |
| 49h 00h DTLPWRSOMC INVALID MESSAGE ERROR |
| 11h 05h WR O L−EC UNCORRECTABLE ERROR |
| 60h 00h S LAMP FAILURE |
| 5Bh 02h DTLPWRSOM LOG COUNTER AT MAXIMUM |
| 5Bh 00h DTLPWRSOM LOG EXCEPTION |
| 5Bh 03h DTLPWRSOM LOG LIST CODES EXHAUSTED |
| 2Ah 02h DTL WRSOMC LOG PARAMETERS CHANGED |
| 21h 00h DT WR OM LOGICAL BLOCK ADDRESS OUT OF RANGE |
| 08h 00h DTL WRSOMC LOGICAL UNIT COMMUNICATION FAILURE |
| 08h 02h DTL WRSOMC LOGICAL UNIT COMMUNICATION PARITY ERROR |
| 08h 01h DTL WRSOMC LOGICAL UNIT COMMUNICATION TIME−OUT |
| 4Ch 00h DTLPWRSOMC LOGICAL UNIT FAILED SELF−CONFIGURATION |
| 3Eh 00h DTLPWRSOMC LOGICAL UNIT HAS NOT SELF−CONFIGURED YET |
| 04h 01h DTLPWRSOMC LOGICAL UNIT IS IN PROCESS OF BECOMING READY |
| 04h 00h DTLPWRSOMC LOGICAL UNIT NOT READY, CAUSE NOT REPORTABLE |
| 04h 04h DTL O LOGICAL UNIT NOT READY, FORMAT IN PROGRESS |
| 04h 02h DTLPWRSOMC LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED |
| 04h 03h DTLPWRSOMC LOGICAL UNIT NOT READY, MANUAL INTERVENTION REQUIRED |
| 25h 00h DTLPWRSOMC LOGICAL UNIT NOT SUPPORTED |
| 15h 01h DTL WRSOM MECHANICAL POSITIONING ERROR |
| 53h 00h DTL WRSOM MEDIA LOAD OR EJECT FAILED |
| 3Bh 0Dh M MEDIUM DESTINATION ELEMENT FULL |
| 31h 00h DT W O MEDIUM FORMAT CORRUPTED |
| 3Ah 00h DTL WRSOM MEDIUM NOT PRESENT |
| 53h 02h DT WR OM MEDIUM REMOVAL PREVENTED |
| 3Bh 0Eh M MEDIUM SOURCE ELEMENT EMPTY |
| 43h 00h DTLPWRSOMC MESSAGE ERROR |
| 3Fh 01h DTLPWRSOMC MICROCODE HAS BEEN CHANGED |
| 1Dh 00h D W O MISCOMPARE DURING VERIFY OPERATION |
| 11h 0Ah DT O MISCORRECTED ERROR |
| 2Ah 01h DTL WRSOMC MODE PARAMETERS CHANGED |

The Linux SCSI programming HOWTO

22.1 ASC and ASCQ in lexical order 20

| 07h 00h DTL WRSOM MULTIPLE PERIPHERAL DEVICES SELECTED |
| 11h 03h DT W SO MULTIPLE READ ERRORS |
| 00h 00h DTLPWRSOMC NO ADDITIONAL SENSE INFORMATION |
| 00h 15h R NO CURRENT AUDIO STATUS TO RETURN |
| 32h 00h D W O NO DEFECT SPARE LOCATION AVAILABLE |
| 11h 09h T NO GAP FOUND |
| 01h 00h D W O NO INDEX/SECTOR SIGNAL |
| 06h 00h D WR OM NO REFERENCE POSITION FOUND |
+===+

Table 71: (continued)
+===+
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 02h 00h D WR OM NO SEEK COMPLETE |
| 03h 01h T NO WRITE CURRENT |
| 28h 00h DTLPWRSOMC NOT READY TO READY TRANSITION, MEDIUM MAY HAVE CHANGED|
| 5Ah 01h DT WR OM OPERATOR MEDIUM REMOVAL REQUEST |
| 5Ah 00h DTLPWRSOM OPERATOR REQUEST OR STATE CHANGE INPUT (UNSPECIFIED) |
| 5Ah 03h DT W O OPERATOR SELECTED WRITE PERMIT |
| 5Ah 02h DT W O OPERATOR SELECTED WRITE PROTECT |
| 61h 02h S OUT OF FOCUS |
| 4Eh 00h DTLPWRSOMC OVERLAPPED COMMANDS ATTEMPTED |
| 2Dh 00h T OVERWRITE ERROR ON UPDATE IN PLACE |
| 3Bh 05h L PAPER JAM |
| 1Ah 00h DTLPWRSOMC PARAMETER LIST LENGTH ERROR |
| 26h 01h DTLPWRSOMC PARAMETER NOT SUPPORTED |
| 26h 02h DTLPWRSOMC PARAMETER VALUE INVALID |
| 2Ah 00h DTL WRSOMC PARAMETERS CHANGED |
| 03h 00h DTL W SO PERIPHERAL DEVICE WRITE FAULT |
| 50h 02h T POSITION ERROR RELATED TO TIMING |
| 3Bh 0Ch S POSITION PAST BEGINNING OF MEDIUM |
| 3Bh 0Bh S POSITION PAST END OF MEDIUM |
| 15h 02h DT WR O POSITIONING ERROR DETECTED BY READ OF MEDIUM |
| 29h 00h DTLPWRSOMC POWER ON, RESET, OR BUS DEVICE RESET OCCURRED |
| 42h 00h D POWER−ON OR SELF−TEST FAILURE (SHOULD USE 40 NN) |
| 1Ch 01h D O PRIMARY DEFECT LIST NOT FOUND |
| 40h 00h D RAM FAILURE (SHOULD USE 40 NN) |
| 15h 00h DTL WRSOM RANDOM POSITIONING ERROR |
| 3Bh 0Ah S READ PAST BEGINNING OF MEDIUM |
| 3Bh 09h S READ PAST END OF MEDIUM |
| 11h 01h DT W SO READ RETRIES EXHAUSTED |
| 14h 01h DT WR O RECORD NOT FOUND |
| 14h 00h DTL WRSO RECORDED ENTITY NOT FOUND |
| 18h 02h D WR O RECOVERED DATA − DATA AUTO−REALLOCATED |
| 18h 05h D WR O RECOVERED DATA − RECOMMEND REASSIGNMENT |
| 18h 06h D WR O RECOVERED DATA − RECOMMEND REWRITE |
| 17h 05h D WR O RECOVERED DATA USING PREVIOUS SECTOR ID |
| 18h 03h R RECOVERED DATA WITH CIRC |
| 18h 01h D WR O RECOVERED DATA WITH ERROR CORRECTION & RETRIES APPLIED|
| 18h 00h DT WR O RECOVERED DATA WITH ERROR CORRECTION APPLIED |
| 18h 04h R RECOVERED DATA WITH L−EC |
| 17h 03h DT WR O RECOVERED DATA WITH NEGATIVE HEAD OFFSET |
| 17h 00h DT WRSO RECOVERED DATA WITH NO ERROR CORRECTION APPLIED |
| 17h 02h DT WR O RECOVERED DATA WITH POSITIVE HEAD OFFSET |
| 17h 01h DT WRSO RECOVERED DATA WITH RETRIES |
| 17h 04h WR O RECOVERED DATA WITH RETRIES AND/OR CIRC APPLIED |
| 17h 06h D W O RECOVERED DATA WITHOUT ECC − DATA AUTO−REALLOCATED |

The Linux SCSI programming HOWTO

22.1 ASC and ASCQ in lexical order 21

| 17h 07h D W O RECOVERED DATA WITHOUT ECC − RECOMMEND REASSIGNMENT |
| 17h 08h D W O RECOVERED DATA WITHOUT ECC − RECOMMEND REWRITE |
| 1Eh 00h D W O RECOVERED ID WITH ECC CORRECTION |
| 3Bh 08h T REPOSITION ERROR |
| 36h 00h L RIBBON, INK, OR TONER FAILURE |
| 37h 00h DTL WRSOMC ROUNDED PARAMETER |
| 5Ch 00h D O RPL STATUS CHANGE |
| 39h 00h DTL WRSOMC SAVING PARAMETERS NOT SUPPORTED |
| 62h 00h S SCAN HEAD POSITIONING ERROR |
| 47h 00h DTLPWRSOMC SCSI PARITY ERROR |
| 54h 00h P SCSI TO HOST SYSTEM INTERFACE FAILURE |
| 45h 00h DTLPWRSOMC SELECT OR RESELECT FAILURE |
+===+

Table 71: (concluded)
+===+
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 3Bh 00h TL SEQUENTIAL POSITIONING ERROR |
| 00h 03h T SETMARK DETECTED |
| 3Bh 04h L SLEW FAILURE |
| 09h 03h WR O SPINDLE SERVO FAILURE |
| 5Ch 02h D O SPINDLES NOT SYNCHRONIZED |
| 5Ch 01h D O SPINDLES SYNCHRONIZED |
| 1Bh 00h DTLPWRSOMC SYNCHRONOUS DATA TRANSFER ERROR |
| 55h 00h P SYSTEM RESOURCE FAILURE |
| 33h 00h T TAPE LENGTH ERROR |
| 3Bh 03h L TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY |
| 3Bh 01h T TAPE POSITION ERROR AT BEGINNING−OF−MEDIUM |
| 3Bh 02h T TAPE POSITION ERROR AT END−OF−MEDIUM |
| 3Fh 00h DTLPWRSOMC TARGET OPERATING CONDITIONS HAVE CHANGED |
| 5Bh 01h DTLPWRSOM THRESHOLD CONDITION MET |
| 26h 03h DTLPWRSOMC THRESHOLD PARAMETERS NOT SUPPORTED |
| 2Ch 01h S TOO MANY WINDOWS SPECIFIED |
| 09h 00h DT WR O TRACK FOLLOWING ERROR |
| 09h 01h WR O TRACKING SERVO FAILURE |
| 61h 01h S UNABLE TO ACQUIRE VIDEO |
| 57h 00h R UNABLE TO RECOVER TABLE−OF−CONTENTS |
| 53h 01h T UNLOAD TAPE FAILURE |
| 11h 00h DT WRSO UNRECOVERED READ ERROR |
| 11h 04h D W O UNRECOVERED READ ERROR − AUTO REALLOCATE FAILED |
| 11h 0Bh D W O UNRECOVERED READ ERROR − RECOMMEND REASSIGNMENT |
| 11h 0Ch D W O UNRECOVERED READ ERROR − RECOMMEND REWRITE THE DATA |
| 46h 00h DTLPWRSOMC UNSUCCESSFUL SOFT RESET |
| 59h 00h O UPDATED BLOCK READ |
| 61h 00h S VIDEO ACQUISITION ERROR |
| 50h 00h T WRITE APPEND ERROR |
| 50h 01h T WRITE APPEND POSITION ERROR |
| 0Ch 00h T S WRITE ERROR |
| 0Ch 02h D W O WRITE ERROR − AUTO REALLOCATION FAILED |
| 0Ch 01h D W O WRITE ERROR RECOVERED WITH AUTO REALLOCATION |
| 27h 00h DT W O WRITE PROTECTED |
| |
| 80h XXh \ |
| THROUGH > VENDOR SPECIFIC. |
| FFh XX / |
| |
| XXh 80h \ |

The Linux SCSI programming HOWTO

22.1 ASC and ASCQ in lexical order 22

| THROUGH > VENDOR SPECIFIC QUALIFICATION OF STANDARD ASC. |
| XXh FFh / |
| ALL CODES NOT SHOWN ARE RESERVED. |
|−−−|

22.2 ASC and ASCQ in numerical order

 Table 364: ASC and ASCQ Assignments

+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 00 00 DTLPWRSOMC NO ADDITIONAL SENSE INFORMATION |
| 00 01 T FILEMARK DETECTED |
| 00 02 T S END−OF−PARTITION/MEDIUM DETECTED |
| 00 03 T SETMARK DETECTED |
| 00 04 T S BEGINNING−OF−PARTITION/MEDIUM DETECTED |
| 00 05 T S END−OF−DATA DETECTED |
| 00 06 DTLPWRSOMC I/O PROCESS TERMINATED |
| 00 11 R AUDIO PLAY OPERATION IN PROGRESS |
| 00 12 R AUDIO PLAY OPERATION PAUSED |
| 00 13 R AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED |
| 00 14 R AUDIO PLAY OPERATION STOPPED DUE TO ERROR |
| 00 15 R NO CURRENT AUDIO STATUS TO RETURN |
| 01 00 DW O NO INDEX/SECTOR SIGNAL |
| 02 00 DWR OM NO SEEK COMPLETE |
| 03 00 DTL W SO PERIPHERAL DEVICE WRITE FAULT |
| 03 01 T NO WRITE CURRENT |
| 03 02 T EXCESSIVE WRITE ERRORS |
| 04 00 DTLPWRSOMC LOGICAL UNIT NOT READY, CAUSE NOT REPORTABLE |
| 04 01 DTLPWRSOMC LOGICAL UNIT IS IN PROCESS OF BECOMING READY |
| 04 02 DTLPWRSOMC LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED |
| 04 03 DTLPWRSOMC LOGICAL UNIT NOT READY, MANUAL INTERVENTION REQUIRED |
| 04 04 DTL O LOGICAL UNIT NOT READY, FORMAT IN PROGRESS |
| 05 00 DTL WRSOMC LOGICAL UNIT DOES NOT RESPOND TO SELECTION |
| 06 00 DWR OM NO REFERENCE POSITION FOUND |
| 07 00 DTL WRSOM MULTIPLE PERIPHERAL DEVICES SELECTED |
| 08 00 DTL WRSOMC LOGICAL UNIT COMMUNICATION FAILURE |
| 08 01 DTL WRSOMC LOGICAL UNIT COMMUNICATION TIME−OUT |
| 08 02 DTL WRSOMC LOGICAL UNIT COMMUNICATION PARITY ERROR |
| 09 00 DT WR O TRACK FOLLOWING ERROR |
| 09 01 WR O TRA CKING SERVO FAILURE |
| 09 02 WR O FOC US SERVO FAILURE |

The Linux SCSI programming HOWTO

22.2 ASC and ASCQ in numerical order 23

| 09 03 WR O SPI NDLE SERVO FAILURE |
+===+

Table 364: (continued)
+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 0A 00 DTLPWRSOMC ERROR LOG OVERFLOW |
| 0B 00 |
| 0C 00 T S WRITE ERROR |
| 0C 01 D W O WRITE ERROR RECOVERED WITH AUTO REALLOCATION |
| 0C 02 D W O WRITE ERROR − AUTO REALLOCATION FAILED |
| 0D 00 |
| 0E 00 |
| 0F 00 |
| 10 00 D W O ID CRC OR ECC ERROR |
| 11 00 DT WRSO UNRECOVERED READ ERROR |
| 11 01 DT W SO READ RETRIES EXHAUSTED |
| 11 02 DT W SO ERROR TOO LONG TO CORRECT |
| 11 03 DT W SO MULTIPLE READ ERRORS |
| 11 04 D W O UNRECOVERED READ ERROR − AUTO REALLOCATE FAILED |
| 11 05 WR O L−EC UNCORRECTABLE ERROR |
| 11 06 WR O CIRC UNRECOVERED ERROR |
| 11 07 W O DATA RESYCHRONIZATION ERROR |
| 11 08 T INCOMPLETE BLOCK READ |
| 11 09 T NO GAP FOUND |
| 11 0A DT O MISCORRECTED ERROR |
| 11 0B D W O UNRECOVERED READ ERROR − RECOMMEND REASSIGNMENT |
| 11 0C D W O UNRECOVERED READ ERROR − RECOMMEND REWRITE THE DATA |
| 12 00 D W O ADDRESS MARK NOT FOUND FOR ID FIELD |
| 13 00 D W O ADDRESS MARK NOT FOUND FOR DATA FIELD |
| 14 00 DTL WRSO RECORDED ENTITY NOT FOUND |
| 14 01 DT WR O RECORD NOT FOUND |
| 14 02 T FILEMARK OR SETMARK NOT FOUND |
| 14 03 T END−OF−DATA NOT FOUND |
| 14 04 T BLOCK SEQUENCE ERROR |
| 15 00 DTL WRSOM RANDOM POSITIONING ERROR |
| 15 01 DTL WRSOM MECHANICAL POSITIONING ERROR |
| 15 02 DT WR O POSITIONING ERROR DETECTED BY READ OF MEDIUM |
| 16 00 DW O DATA SYNCHRONIZATION MARK ERROR |
| 17 00 DT WRSO RECOVERED DATA WITH NO ERROR CORRECTION APPLIED |
| 17 01 DT WRSO RECOVERED DATA WITH RETRIES |
| 17 02 DT WR O RECOVERED DATA WITH POSITIVE HEAD OFFSET |
| 17 03 DT WR O RECOVERED DATA WITH NEGATIVE HEAD OFFSET |
| 17 04 WR O RECOVERED DATA WITH RETRIES AND/OR CIRC APPLIED |
| 17 05 D WR O RECOVERED DATA USING PREVIOUS SECTOR ID |
| 17 06 D W O RECOVERED DATA WITHOUT ECC − DATA AUTO−REALLOCATED |

The Linux SCSI programming HOWTO

22.2 ASC and ASCQ in numerical order 24

| 17 07 D W O RECOVERED DATA WITHOUT ECC − RECOMMEND REASSIGNMENT |
| 17 08 D W O RECOVERED DATA WITHOUT ECC − RECOMMEND REWRITE |
| 18 00 DT WR O RECOVERED DATA WITH ERROR CORRECTION APPLIED |
| 18 01 D WR O RECOVERED DATA WITH ERROR CORRECTION & RETRIES APPLIED|
| 18 02 D WR O RECOVERED DATA − DATA AUTO−REALLOCATED |
| 18 03 R RECOVERED DATA WITH CIRC |
| 18 04 R RECOVERED DATA WITH LEC |
| 18 05 D WR O RECOVERED DATA − RECOMMEND REASSIGNMENT |
| 18 06 D WR O RECOVERED DATA − RECOMMEND REWRITE |
+===+

Table 364: (continued)
+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 19 00 D O DEFECT LIST ERROR |
| 19 01 D O DEFECT LIST NOT AVAILABLE |
| 19 02 D O DEFECT LIST ERROR IN PRIMARY LIST |
| 19 03 D O DEFECT LIST ERROR IN GROWN LIST |
| 1A 00 DTLPWRSOMC PARAMETER LIST LENGTH ERROR |
| 1B 00 DTLPWRSOMC SYNCHRONOUS DATA TRANSFER ERROR |
| 1C 00 D O DEFECT LIST NOT FOUND |
| 1C 01 D O PRIMARY DEFECT LIST NOT FOUND |
| 1C 02 D O GROWN DEFECT LIST NOT FOUND |
| 1D 00 D W O MISCOMPARE DURING VERIFY OPERATION |
| 1E 00 D W O RECOVERED ID WITH ECC |
| 1F 00 |
| 20 00 DTLPWRSOMC INVALID COMMAND OPERATION CODE |
| 21 00 DT WR OM LOGICAL BLOCK ADDRESS OUT OF RANGE |
| 21 01 M INVALID ELEMENT ADDRESS |
| 22 00 D ILLEGAL FUNCTION (SHOULD USE 20 00, 24 00, OR 26 00) |
| 23 00 |
| 24 00 DTLPWRSOMC INVALID FIELD IN CDB |
| 25 00 DTLPWRSOMC LOGICAL UNIT NOT SUPPORTED |
| 26 00 DTLPWRSOMC INVALID FIELD IN PARAMETER LIST |
| 26 01 DTLPWRSOMC PARAMETER NOT SUPPORTED |
| 26 02 DTLPWRSOMC PARAMETER VALUE INVALID |
| 26 03 DTLPWRSOMC THRESHOLD PARAMETERS NOT SUPPORTED |
| 27 00 DT W O WRITE PROTECTED |
| 28 00 DTLPWRSOMC NOT READY TO READY TRANSITION(MEDIUM MAY HAVE CHANGED)|
| 28 01 M IMPORT OR EXPORT ELEMENT ACCESSED |
| 29 00 DTLPWRSOMC POWER ON, RESET, OR BUS DEVICE RESET OCCURRED |
| 2A 00 DTL WRSOMC PARAMETERS CHANGED |
| 2A 01 DTL WRSOMC MODE PARAMETERS CHANGED |
| 2A 02 DTL WRSOMC LOG PARAMETERS CHANGED |
| 2B 00 DTLPWRSO C COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT |
| 2C 00 DTLPWRSOMC COMMAND SEQUENCE ERROR |

The Linux SCSI programming HOWTO

22.2 ASC and ASCQ in numerical order 25

| 2C 01 S TOO MANY WINDOWS SPECIFIED |
| 2C 02 S INVALID COMBINATION OF WINDOWS SPECIFIED |
| 2D 00 T OVERWRITE ERROR ON UPDATE IN PLACE |
| 2E 00 |
| 2F 00 DTLPWRSOMC COMMANDS CLEARED BY ANOTHER INITIATOR |
| 30 00 DT WR OM INCOMPATIBLE MEDIUM INSTALLED |
| 30 01 DT WR O CANNOT READ MEDIUM − UNKNOWN FORMAT |
| 30 02 DT WR O CANNOT READ MEDIUM − INCOMPATIBLE FORMAT |
| 30 03 DT CLEANING CARTRIDGE INSTALLED |
| 31 00 DT W O MEDIUM FORMAT CORRUPTED |
| 31 01 D L O FORMAT COMMAND FAILED |
| 32 00 D W O NO DEFECT SPARE LOCATION AVAILABLE |
| 32 01 D W O DEFECT LIST UPDATE FAILURE |
| 33 00 T TAPE LENGTH ERROR |
| 34 00 |
| 35 00 |
| 36 00 L RIBBON, INK, OR TONER FAILURE |
+===+

Table 364: (continued)
+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 37 00 DTL WRSOMC ROUNDED PARAMETER |
| 38 00 |
| 39 00 DTL WRSOMC SAVING PARAMETERS NOT SUPPORTED |
| 3A 00 DTL WRSOM MEDIUM NOT PRESENT |
| 3B 00 TL SEQUENTIAL POSITIONING ERROR |
| 3B 01 T TAPE POSITION ERROR AT BEGINNING−OF−MEDIUM |
| 3B 02 T TAPE POSITION ERROR AT END−OF−MEDIUM |
| 3B 03 L TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY |
| 3B 04 L SLEW FAILURE |
| 3B 05 L PAPER JAM |
| 3B 06 L FAILED TO SENSE TOP−OF−FORM |
| 3B 07 L FAILED TO SENSE BOTTOM−OF−FORM |
| 3B 08 T REPOSITION ERROR |
| 3B 09 S READ PAST END OF MEDIUM |
| 3B 0A S READ PAST BEGINNING OF MEDIUM |
| 3B 0B S POSITION PAST END OF MEDIUM |
| 3B 0C S POSITION PAST BEGINNING OF MEDIUM |
| 3B 0D M MEDIUM DESTINATION ELEMENT FULL |
| 3B 0E M MEDIUM SOURCE ELEMENT EMPTY |
| 3C 00 |
| 3D 00 DTLPWRSOMC INVALID BITS IN IDENTIFY MESSAGE |
| 3E 00 DTLPWRSOMC LOGICAL UNIT HAS NOT SELF−CONFIGURED YET |
| 3F 00 DTLPWRSOMC TARGET OPERATING CONDITIONS HAVE CHANGED |
| 3F 01 DTLPWRSOMC MICROCODE HAS BEEN CHANGED |

The Linux SCSI programming HOWTO

22.2 ASC and ASCQ in numerical order 26

| 3F 02 DTLPWRSOMC CHANGED OPERATING DEFINITION |
| 3F 03 DTLPWRSOMC INQUIRY DATA HAS CHANGED |
| 40 00 D RAM FAILURE (SHOULD USE 40 NN) |
| 40 NN DTLPWRSOMC DIAGNOSTIC FAILURE ON COMPONENT NN (80H−FFH) |
| 41 00 D DATA PATH FAILURE (SHOULD USE 40 NN) |
| 42 00 D POWER−ON OR SELF−TEST FAILURE (SHOULD USE 40 NN) |
| 43 00 DTLPWRSOMC MESSAGE ERROR |
| 44 00 DTLPWRSOMC INTERNAL TARGET FAILURE |
| 45 00 DTLPWRSOMC SELECT OR RESELECT FAILURE |
| 46 00 DTLPWRSOMC UNSUCCESSFUL SOFT RESET |
| 47 00 DTLPWRSOMC SCSI PARITY ERROR |
| 48 00 DTLPWRSOMC INITIATOR DETECTED ERROR MESSAGE RECEIVED |
| 49 00 DTLPWRSOMC INVALID MESSAGE ERROR |
| 4A 00 DTLPWRSOMC COMMAND PHASE ERROR |
| 4B 00 DTLPWRSOMC DATA PHASE ERROR |
| 4C 00 DTLPWRSOMC LOGICAL UNIT FAILED SELF−CONFIGURATION |
| 4D 00 |
| 4E 00 DTLPWRSOMC OVERLAPPED COMMANDS ATTEMPTED |
| 4F 00 |
| 50 00 T WRITE APPEND ERROR |
| 50 01 T WRITE APPEND POSITION ERROR |
| 50 02 T POSITION ERROR RELATED TO TIMING |
| 51 00 T O ERASE FAILURE |
| 52 00 T CARTRIDGE FAULT |
+===+

Table 364: (continued)
+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 53 00 DTL WRSOM MEDIA LOAD OR EJECT FAILED |
| 53 01 T UNLOAD TAPE FAILURE |
| 53 02 DT WR OM MEDIUM REMOVAL PREVENTED |
| 54 00 P SCSI TO HOST SYSTEM INTERFACE FAILURE |
| 55 00 P SYSTEM RESOURCE FAILURE |
| 56 00 |
| 57 00 R UNABLE TO RECOVER TABLE−OF−CONTENTS |
| 58 00 O GENERATION DOES NOT EXIST |
| 59 00 O UPDATED BLOCK READ |
| 5A 00 DTLPWRSOM OPERATOR REQUEST OR STATE CHANGE INPUT (UNSPECIFIED) |
| 5A 01 DT WR OM OPERATOR MEDIUM REMOVAL REQUEST |
| 5A 02 DT W O OPERATOR SELECTED WRITE PROTECT |
| 5A 03 DT W O OPERATOR SELECTED WRITE PERMIT |
| 5B 00 DTLPWRSOM LOG EXCEPTION |
| 5B 01 DTLPWRSOM THRESHOLD CONDITION MET |
| 5B 02 DTLPWRSOM LOG COUNTER AT MAXIMUM |
| 5B 03 DTLPWRSOM LOG LIST CODES EXHAUSTED |

The Linux SCSI programming HOWTO

22.2 ASC and ASCQ in numerical order 27

| 5C 00 D O RPL STATUS CHANGE |
| 5C 01 D O SPINDLES SYNCHRONIZED |
| 5C 02 D O SPINDLES NOT SYNCHRONIZED |
| 5D 00 |
| 5E 00 |
| 5F 00 |
| 60 00 S LAMP FAILURE |
| 61 00 S VIDEO ACQUISITION ERROR |
| 61 01 S UNABLE TO ACQUIRE VIDEO |
| 61 02 S OUT OF FOCUS |
| 62 00 S SCAN HEAD POSITIONING ERROR |
| 63 00 R END OF USER AREA ENCOUNTERED ON THIS TRACK |
| 64 00 R ILLEGAL MODE FOR THIS TRACK |
| 65 00 |
| 66 00 |
| 67 00 |
| 68 00 |
| 69 00 |
| 6A 00 |
| 6B 00 |
| 6C 00 |
| 6D 00 |
| 6E 00 |
| 6F 00 |
+===+

Table 364: (concluded)
+===+
| D − DIRECT ACCESS DEVICE |
| .T − SEQUENTIAL ACCESS DEVICE |
| . L − PRINTER DEVICE |
| . P − PROCESSOR DEVICE |
| . .W − WRITE ONCE READ MULTIPLE DEVICE |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| ASC ASCQ DTLPWRSOMC DESCRIPTION |
| −−− −−−− −−− |
| 70 00 |
| 71 00 |
| 72 00 |
| 73 00 |
| 74 00 |
| 75 00 |
| 76 00 |
| 77 00 |
| 78 00 |
| 79 00 |
| 7A 00 |
| 7B 00 |
| 7C 00 |
| 7D 00 |
| 7E 00 |
| 7F 00 |
| |

The Linux SCSI programming HOWTO

22.2 ASC and ASCQ in numerical order 28

| 80 xxh \ |
| THROUGH > VENDOR SPECIFIC. |
| FF xxh / |
| |
| xxh 80 \ |
| THROUGH > VENDOR SPECIFIC QUALIFICATION OF STANDARD ASC. |
| xxh FF / |
| ALL CODES NOT SHOWN OR BLANK ARE RESERVED. |
+===+

NextPreviousContentsNextPreviousContents

23. A SCSI command code quick reference

Table 365 is a numerical order listing of the command operation codes.

 Table 365: SCSI−2 Operation Codes

+===+
| D − DIRECT ACCESS DEVICE Device Column Key |
| .T − SEQUENTIAL ACCESS DEVICE M = Mandatory |
| . L − PRINTER DEVICE O = Optional |
| . P − PROCESSOR DEVICE V = Vendor Specific|
| . .W − WRITE ONCE READ MULTIPLE DEVICE R = Reserved |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| OP DTLPWRSOMC Description |
|−−−−−−−−−−+−−−−−−−−−−+−−−|
| 00 MMMMMMMMMM TEST UNIT READY |
| 01 M REWIND |
| 01 O V OO OO REZERO UNIT |
| 02 VVVVVV V |
| 03 MMMMMMMMMM REQUEST SENSE |
| 04 O FORMAT |
| 04 M O FORMAT UNIT |
| 05 VMVVVV V READ BLOCK LIMITS |
| 06 VVVVVV V |
| 07 O INITIALIZE ELEMENT STATUS |
| 07 OVV O OV REASSIGN BLOCKS |
| 08 M GET MESSAGE(06) |
| 08 OMV OO OV READ(06) |
| 08 O RECEIVE |
| 09 VVVVVV V |
| 0A M PRINT |
| 0A M SEND MESSAGE(06) |
| 0A M SEND(06) |
| 0A OM O OV WRITE(06) |
| 0B O OO OV SEEK(06) |

The Linux SCSI programming HOWTO

23. A SCSI command code quick reference 29

SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-21.html
SCSI-Programming-HOWTO-24.html
SCSI-Programming-HOWTO-22.html

| 0B O SLEW AND PRINT |
| 0C VVVVVV V |
| 0D VVVVVV V |
| 0E VVVVVV V |
| 0F VOVVVV V READ REVERSE |
| 10 O O SYNCHRONIZE BUFFER |
| 10 VM VVV WRITE FILEMARKS |
| 11 VMVVVV SPACE |
| 12 MMMMMMMMMM INQUIRY |
| 13 VOVVVV VERIFY(06) |
| 14 VOOVVV RECOVER BUFFERED DATA |
| 15 OMO OOOOOO MODE SELECT(06) |
| 16 M MM MO RESERVE |
| 16 MM M RESERVE UNIT |
| 17 M MM MO RELEASE |
| 17 MM M RELEASE UNIT |
| 18 OOOOOOOO COPY |
| 19 VMVVVV ERASE |
| 1A OMO OOOOOO MODE SENSE(06) |
| 1B O LOAD UNLOAD |
| 1B O SCAN |
| 1B O STOP PRINT |
| 1B O OO O STOP START UNIT |
+===+

Table 365: (continued)
+===+
| D − DIRECT ACCESS DEVICE Device Column Key |
| .T − SEQUENTIAL ACCESS DEVICE M = Mandatory |
| . L − PRINTER DEVICE O = Optional |
| . P − PROCESSOR DEVICE V = Vendor Specific|
| . .W − WRITE ONCE READ MULTIPLE DEVICE R = Reserved |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| OP DTLPWRSOMC Description |
|−−−−−−−−−−+−−−−−−−−−−+−−−|
| 1C OOOOOOOOOO RECEIVE DIAGNOSTIC RESULTS |
| 1D MMMMMMMMMM SEND DIAGNOSTIC |
| 1E OO OO OO PREVENT ALLOW MEDIUM REMOVAL |
| 1F |
| 20 V VV V |
| 21 V VV V |
| 22 V VV V |
| 23 V VV V |
| 24 V VVM SET WINDOW |
| 25 O GET WINDOW |
| 25 M M M READ CAPACITY |
| 25 M READ CD−ROM CAPACITY |
| 26 V VV |
| 27 V VV |
| 28 O GET MESSAGE(10) |
| 28 M MMMM READ(10) |
| 29 V VV O READ GENERATION |
| 2A O SEND MESSAGE(10) |

The Linux SCSI programming HOWTO

23. A SCSI command code quick reference 30

| 2A O SEND(10) |
| 2A M M M WRITE(10) |
| 2B O LOCATE |
| 2B O POSITION TO ELEMENT |
| 2B O OO O SEEK(10) |
| 2C V O ERASE(10) |
| 2D V O O READ UPDATED BLOCK |
| 2E O O O WRITE AND VERIFY(10) |
| 2F O OO O VERIFY(10) |
| 30 O OO O SEARCH DATA HIGH(10) |
| 31 O OBJECT POSITION |
| 31 O OO O SEARCH DATA EQUAL(10) |
| 32 O OO O SEARCH DATA LOW(10) |
| 33 O OO O SET LIMITS(10) |
| 34 O GET DATA BUFFER STATUS |
| 34 O OO O PRE−FETCH |
| 34 O READ POSITION |
| 35 O OO O SYNCHRONIZE CACHE |
| 36 O OO O LOCK UNLOCK CACHE |
| 37 O O READ DEFECT DATA(10) |
| 38 O O MEDIUM SCAN |
| 39 OOOOOOOO COMPARE |
| 3A OOOOOOOO COPY AND VERIFY |
| 3B OOOOOOOOOO WRITE BUFFER |
| 3C OOOOOOOOOO READ BUFFER |
| 3D O O UPDATE BLOCK |
| 3E O OO O READ LONG |
| 3F O O O WRITE LONG |
+===+

Table 365: (continued)
+===+
| D − DIRECT ACCESS DEVICE Device Column Key |
| .T − SEQUENTIAL ACCESS DEVICE M = Mandatory |
| . L − PRINTER DEVICE O = Optional |
| . P − PROCESSOR DEVICE V = Vendor Specific|
| . .W − WRITE ONCE READ MULTIPLE DEVICE R = Reserved |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| OP DTLPWRSOMC Description |
|−−−−−−−−−−+−−−−−−−−−−+−−−|
| 40 OOOOOOOOOO CHANGE DEFINITION |
| 41 O WRITE SAME |
| 42 O READ SUB−CHANNEL |
| 43 O READ TOC |
| 44 O READ HEADER |
| 45 O PLAY AUDIO(10) |
| 46 |
| 47 O PLAY AUDIO MSF |
| 48 O PLAY AUDIO TRACK INDEX |
| 49 O PLAY TRACK RELATIVE(10) |
| 4A |
| 4B O PAUSE RESUME |
| 4C OOOOOOOOOO LOG SELECT |

The Linux SCSI programming HOWTO

23. A SCSI command code quick reference 31

| 4D OOOOOOOOOO LOG SENSE |
| 4E |
| 4F |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 55 OOO OOOOOO MODE SELECT(10) |
| 56 |
| 57 |
| 58 |
| 59 |
| 5A OOO OOOOOO MODE SENSE(10) |
| 5B |
| 5C |
| 5D |
| 5E |
| 5F |
+===+

Table 365: (concluded)
+===+
| D − DIRECT ACCESS DEVICE Device Column Key |
| .T − SEQUENTIAL ACCESS DEVICE M = Mandatory |
| . L − PRINTER DEVICE O = Optional |
| . P − PROCESSOR DEVICE V = Vendor Specific|
| . .W − WRITE ONCE READ MULTIPLE DEVICE R = Reserved |
| . . R − READ ONLY (CD−ROM) DEVICE |
| . . S − SCANNER DEVICE |
| . . .O − OPTICAL MEMORY DEVICE |
| . . . M − MEDIA CHANGER DEVICE |
| . . . C − COMMUNICATION DEVICE |
| |
| OP DTLPWRSOMC Description |
|−−−−−−−−−−+−−−−−−−−−−+−−−|
| A0 |
| A1 |
| A2 |
| A3 |
| A4 |
| A5 M MOVE MEDIUM |
| A5 O PLAY AUDIO(12) |
| A6 O EXCHANGE MEDIUM |
| A7 |
| A8 O GET MESSAGE(12) |
| A8 OO O READ(12) |
| A9 O PLAY TRACK RELATIVE(12) |
| AA O SEND MESSAGE(12) |
| AA O O WRITE(12) |
| AB |
| AC O ERASE(12) |
| AD |
| AE O O WRITE AND VERIFY(12) |
| AF OO O VERIFY(12) |
| B0 OO O SEARCH DATA HIGH(12) |
| B1 OO O SEARCH DATA EQUAL(12) |
| B2 OO O SEARCH DATA LOW(12) |

The Linux SCSI programming HOWTO

23. A SCSI command code quick reference 32

| B3 OO O SET LIMITS(12) |
| B4 |
| B5 |
| B5 O REQUEST VOLUME ELEMENT ADDRESS |
| B6 |
| B6 O SEND VOLUME TAG |
| B7 O READ DEFECT DATA(12) |
| B8 |
| B8 O READ ELEMENT STATUS |
| B9 |
| BA |
| BB |
| BC |
| BD |
| BE |
| BF |
+===+

NextPreviousContents Next PreviousContents

24. Example programs

Here is the C example program, which requests manufacturer/model and reports if a medium is loaded in the
device.

#define DEVICE "/dev/sgc"
/* Example program to demonstrate the generic SCSI interface */
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <scsi/sg.h>

#define SCSI_OFF sizeof(struct sg_header)
static unsigned char cmd[SCSI_OFF + 18]; /* SCSI command buffer */
int fd; /* SCSI device/file descriptor */

/* process a complete scsi cmd. Use the generic scsi interface. */
static int handle_scsi_cmd(unsigned cmd_len, /* command length */
 unsigned in_size, /* input data size */
 unsigned char *i_buff, /* input buffer */
 unsigned out_size, /* output data size */
 unsigned char *o_buff /* output buffer */
)
{
 int status = 0;
 struct sg_header *sg_hd;

 /* safety checks */
 if (!cmd_len) return −1; /* need a cmd_len != 0 */
 if (!i_buff) return −1; /* need an input buffer != NULL */
#ifdef SG_BIG_BUFF

The Linux SCSI programming HOWTO

24. Example programs 33

SCSI-Programming-HOWTO-24.html
SCSI-Programming-HOWTO-22.html
SCSI-Programming-HOWTO-23.html

 if (SCSI_OFF + cmd_len + in_size > SG_BIG_BUFF) return −1;
 if (SCSI_OFF + out_size > SG_BIG_BUFF) return −1;
#else
 if (SCSI_OFF + cmd_len + in_size > 4096) return −1;
 if (SCSI_OFF + out_size > 4096) return −1;
#endif

 if (!o_buff) out_size = 0;

 /* generic scsi device header construction */
 sg_hd = (struct sg_header *) i_buff;
 sg_hd−>reply_len = SCSI_OFF + out_size;
 sg_hd−>twelve_byte = cmd_len == 12;
 sg_hd−>result = 0;
#if 0
 sg_hd−>pack_len = SCSI_OFF + cmd_len + in_size; /* not necessary */
 sg_hd−>pack_id; /* not used */
 sg_hd−>other_flags; /* not used */
#endif

 /* send command */
 status = write(fd, i_buff, SCSI_OFF + cmd_len + in_size);
 if (status < 0 || status != SCSI_OFF + cmd_len + in_size ||
 sg_hd−>result) {
 /* some error happened */
 fprintf(stderr, "write(generic) result = 0x%x cmd = 0x%x\n",
 sg_hd−>result, i_buff[SCSI_OFF]);
 perror("");
 return status;
 }

 if (!o_buff) o_buff = i_buff; /* buffer pointer check */

 /* retrieve result */
 status = read(fd, o_buff, SCSI_OFF + out_size);
 if (status < 0 || status != SCSI_OFF + out_size || sg_hd−>result) {
 /* some error happened */
 fprintf(stderr, "read(generic) result = 0x%x cmd = 0x%x\n",
 sg_hd−>result, o_buff[SCSI_OFF]);
 fprintf(stderr, "read(generic) sense "
 "%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
 sg_hd−>sense_buffer[0], sg_hd−>sense_buffer[1],
 sg_hd−>sense_buffer[2], sg_hd−>sense_buffer[3],
 sg_hd−>sense_buffer[4], sg_hd−>sense_buffer[5],
 sg_hd−>sense_buffer[6], sg_hd−>sense_buffer[7],
 sg_hd−>sense_buffer[8], sg_hd−>sense_buffer[9],
 sg_hd−>sense_buffer[10], sg_hd−>sense_buffer[11],
 sg_hd−>sense_buffer[12], sg_hd−>sense_buffer[13],
 sg_hd−>sense_buffer[14], sg_hd−>sense_buffer[15]);
 if (status < 0)
 perror("");
 }
 /* Look if we got what we expected to get */
 if (status == SCSI_OFF + out_size) status = 0; /* got them all */

 return status; /* 0 means no error */
}

#define INQUIRY_CMD 0x12
#define INQUIRY_CMDLEN 6
#define INQUIRY_REPLY_LEN 96
#define INQUIRY_VENDOR 8 /* Offset in reply data to vendor name */

The Linux SCSI programming HOWTO

24. Example programs 34

/* request vendor brand and model */
static unsigned char *Inquiry (void)
{
 unsigned char Inqbuffer[SCSI_OFF + INQUIRY_REPLY_LEN];
 unsigned char cmdblk [INQUIRY_CMDLEN] =
 { INQUIRY_CMD, /* command */
 0, /* lun/reserved */
 0, /* page code */
 0, /* reserved */
 INQUIRY_REPLY_LEN, /* allocation length */
 0 };/* reserved/flag/link */

 memcpy(cmd + SCSI_OFF, cmdblk, sizeof(cmdblk));

 /*
 * +−−−−−−−−−−−−−−−−−−+
 * | struct sg_header | <− cmd
 * +−−−−−−−−−−−−−−−−−−+
 * | copy of cmdblk | <− cmd + SCSI_OFF
 * +−−−−−−−−−−−−−−−−−−+
 */

 if (handle_scsi_cmd(sizeof(cmdblk), 0, cmd,
 sizeof(Inqbuffer) − SCSI_OFF, Inqbuffer)) {
 fprintf(stderr, "Inquiry failed\n");
 exit(2);
 }
 return (Inqbuffer + SCSI_OFF);
}

#define TESTUNITREADY_CMD 0
#define TESTUNITREADY_CMDLEN 6

#define ADD_SENSECODE 12
#define ADD_SC_QUALIFIER 13
#define NO_MEDIA_SC 0x3a
#define NO_MEDIA_SCQ 0x00
int TestForMedium (void)
{
 /* request READY status */
 static unsigned char cmdblk [TESTUNITREADY_CMDLEN] = {
 TESTUNITREADY_CMD, /* command */
 0, /* lun/reserved */
 0, /* reserved */
 0, /* reserved */
 0, /* reserved */
 0};/* reserved */

 memcpy(cmd + SCSI_OFF, cmdblk, sizeof(cmdblk));

 /*
 * +−−−−−−−−−−−−−−−−−−+
 * | struct sg_header | <− cmd
 * +−−−−−−−−−−−−−−−−−−+
 * | copy of cmdblk | <− cmd + SCSI_OFF
 * +−−−−−−−−−−−−−−−−−−+
 */

 if (handle_scsi_cmd(sizeof(cmdblk), 0, cmd,
 0, NULL)) {
 fprintf (stderr, "Test unit ready failed\n");

The Linux SCSI programming HOWTO

24. Example programs 35

 exit(2);
 }

 return
 (((struct sg_header)cmd)−>sense_buffer +ADD_SENSECODE) !=
 NO_MEDIA_SC ||
 (((struct sg_header)cmd)−>sense_buffer +ADD_SC_QUALIFIER) !=
 NO_MEDIA_SCQ;
}

void main(void)
{
 fd = open(DEVICE, O_RDWR);
 if (fd < 0) {
 fprintf(stderr, "Need read/write permissions for "DEVICE".\n");
 exit(1);
 }

 /* print some fields of the Inquiry result */
 printf("%s\n", Inquiry() + INQUIRY_VENDOR);

 /* look if medium is loaded */
 if (!TestForMedium()) {
 printf("device is unloaded\n");
 } else {
 printf("device is loaded\n");
 }
}

Next PreviousContentsNextPreviousContents

3. What Is The Generic SCSI Interface?

The generic SCSI interface has been implemented to provide general SCSI access to (possibly exotic) pieces
of SCSI hardware. It was developed by Lawrence Foard (entropy@world.std.com) and sponsored by
Killy Corporation (see the comments in scsi/sg.h).

The interface makes special device handling possible from user level applications (i.e. outside the kernel).
Thus, kernel driver development, which is more risky and difficult to debug, is not necessary.

However, if you don't program the driver properly it is possible to hang the SCSI bus, the driver, or the
kernel. Therefore, it is important to properly program the generic driver and to first back up all files to avoid
losing data. Another useful thing to do before running your programs is to issue a sync command to ensure
that any buffers are flushed to disk, minimizing data loss if the system hangs.

Another advantage of the generic driver is that as long as the interface itself does not change, all applications
are independent of new kernel development. In comparison, other low−level kernel drivers have to be
synchronized with other internal kernel changes.

Typically, the generic driver is used to communicate with new SCSI hardware devices that require special
user applications to be written to take advantage of their features (e.g. scanners, printers, CD−ROM

The Linux SCSI programming HOWTO

3. What Is The Generic SCSI Interface? 36

SCSI-Programming-HOWTO-23.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-2.html

jukeboxes). The generic interface allows these to be written quickly.

NextPreviousContentsNextPreviousContents

4. What Are The Requirements To Use It?

4.1 Kernel Configuration

You must have a supported SCSI controller, obviously. Furthermore, your kernel must have controller
support as well as generic support compiled in. Configuring the Linux kernel (via make config under
/usr/src/linux) typically looks like the following:

 ...
*
* SCSI support
*
SCSI support? (CONFIG_SCSI) [n] y
*
* SCSI support type (disk, tape, CDrom)
*
 ...
Scsi generic support (CONFIG_CHR_DEV_SG) [n] y
*
* SCSI low−level drivers
*
 ...

If available, modules can of course be build instead.

4.2 Device Files

The generic SCSI driver uses its own device files, separate from those used by the other SCSI device drivers.
They can be generated using the MAKEDEV script, typically found in the /dev directory. Running
MAKEDEV sg produces these files:

crw−−−−−−− 1 root system 21, 0 Aug 20 20:09 /dev/sga
crw−−−−−−− 1 root system 21, 1 Aug 20 20:09 /dev/sgb
crw−−−−−−− 1 root system 21, 2 Aug 20 20:09 /dev/sgc
crw−−−−−−− 1 root system 21, 3 Aug 20 20:09 /dev/sgd
crw−−−−−−− 1 root system 21, 4 Aug 20 20:09 /dev/sge
crw−−−−−−− 1 root system 21, 5 Aug 20 20:09 /dev/sgf

The Linux SCSI programming HOWTO

4. What Are The Requirements To Use It? 37

SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-2.html
SCSI-Programming-HOWTO-5.html
SCSI-Programming-HOWTO-3.html

crw−−−−−−− 1 root system 21, 6 Aug 20 20:09 /dev/sgg
crw−−−−−−− 1 root system 21, 7 Aug 20 20:09 /dev/sgh
 | |
 major, minor device numbers

Note that these are character devices for raw access. On some systems these devices may be called
/dev/{sg0,sg1,...}, depending on your installation, so adjust the following examples accordingly.

4.3 Device Mapping

These device files are dynamically mapped to SCSI id/LUNs on your SCSI bus (LUN = logical unit). The
mapping allocates devices consecutively for each LUN of each device on each SCSI bus found at time of the
SCSI scan, beginning at the lower LUNs/ids/buses. It starts with the first SCSI controller and continues
without interruption with all following controllers. This is currently done in the initialisation of the SCSI
driver.

For example, assuming you had three SCSI devices hooked up with ids 1, 3, and 5 on the first SCSI bus (each
having one LUN), then the following mapping would be in effect:

/dev/sga −> SCSI id 1
/dev/sgb −> SCSI id 3
/dev/sgc −> SCSI id 5

If you now add a new device with id 4, then the mapping (after the next rescan) will be:

/dev/sga −> SCSI id 1
/dev/sgb −> SCSI id 3
/dev/sgc −> SCSI id 4
/dev/sgd −> SCSI id 5

Notice the change for id 5 −− the corresponding device is no longer mapped to /dev/sgc but is now under
/dev/sgd.

Luckily newer kernels allow for changing this order.

Dynamically insert and remove SCSI devices

If a newer kernel and the /proc file system is running, a non−busy device can be removed and installed 'on
the fly'.

To remove a SCSI device:

The Linux SCSI programming HOWTO

4.3 Device Mapping 38

echo "scsi remove−single−device a b c d" > /proc/scsi/scsi

and similar, to add a SCSI device, do

echo "scsi add−single−device a b c d" > /proc/scsi/scsi

where

 a == hostadapter id (first one being 0)
 b == SCSI channel on hostadapter (first one being 0)
 c == ID
 d == LUN (first one being 0)

So in order to swap the /dev/sgc and /dev/sgd mappings from the previous example, we could do

echo "scsi remove−single−device 0 0 4 0" > /proc/scsi/scsi
echo "scsi remove−single−device 0 0 5 0" > /proc/scsi/scsi
echo "scsi add−single−device 0 0 5 0" > /proc/scsi/scsi
echo "scsi add−single−device 0 0 4 0" > /proc/scsi/scsi

since generic devices are mapped in the order of their insertion.

When adding more devices to the scsi bus keep in mind there are limited spare entries for new devices. The
memory has been allocated at boot time and has room for 2 more devices.

NextPreviousContentsNextPreviousContents

5. Programmers Guide

The following sections are for programmers who want to use the generic SCSI interface in their own
applications. An example will be given showing how to access a SCSI device with the INQUIRY and the
TESTUNITREADY commands.

When using these code examples, note the following:

• the location of the header files sg.h and scsi.h has changed in kernel version 1.3.98. Now these
files are located at /usr/src/linux/include/scsi, which is hopefully linked to
/usr/include/scsi. Previously they were in /usr/src/linux/drivers/scsi. We
assume a newer kernel in the following text.

• the generic SCSI interface was extended in kernel version 1.1.68; the examples require at least this

The Linux SCSI programming HOWTO

5. Programmers Guide 39

SCSI-Programming-HOWTO-5.html
SCSI-Programming-HOWTO-3.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-4.html

version. But please avoid kernel version 1.1.77 up to 1.1.89 and 1.3.52 upto 1.3.56 since they had a
broken generic scsi interface.

• the constant DEVICE in the header section describing the accessed device should be set according to
your available devices (see section sec−header .

NextPreviousContentsNextPreviousContents

6. Overview Of Device Programming

The header file include/scsi/sg.h contains a description of the interface (this is based on kernel
version 1.3.98):

struct sg_header
 {
 int pack_len;
 /* length of incoming packet (including header) */
 int reply_len; /* maximum length of expected reply */
 int pack_id; /* id number of packet */
 int result; /* 0==ok, otherwise refer to errno codes */
 unsigned int twelve_byte:1;
 /* Force 12 byte command length for group 6 & 7 commands */
 unsigned int other_flags:31; /* for future use */
 unsigned char sense_buffer[16]; /* used only by reads */
 /* command follows then data for command */
 };

This structure describes how a SCSI command is to be processed and has room to hold the results of the
execution of the command. The individual structure components will be discussed later in section
sec−header .

The general way of exchanging data with the generic driver is as follows: to send a command to an opened
generic device, write() a block containing these three parts to it:

struct sg_header
SCSI command
data to be sent with the command

To obtain the result of a command, read() a block with this (similar) block structure:

The Linux SCSI programming HOWTO

6. Overview Of Device Programming 40

SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-4.html
SCSI-Programming-HOWTO-7.html
SCSI-Programming-HOWTO-5.html

struct sg_header
data coming from the device

This is a general overview of the process. The following sections describe each of the steps in more detail.

NOTE: Up to recent kernel versions, it is necessary to block the SIGINT signal between the write() and
the corresponding read() call (i.e. via sigprocmask()). A return after the write() part without any
read() to fetch the results will block on subsequent accesses. This signal blocking has not yet been
included in the example code. So better do not issue SIGINT (a la ^C) when running these examples.

NextPreviousContentsNextPreviousContents

7. Opening The Device

A generic device has to be opened for read and write access:

 int fd = open (device_name, O_RDWR);

(This is the case even for a read−only hardware device such as a cdrom drive).

We have to perform a write to send the command and a read to get back any results. In the case of an
error the return code is negative (see section sec−errorhandling for a complete list).

NextPreviousContentsNextPreviousContents

8. The Header Structure

 The header structure struct sg_header serves as a controlling layer between the application and the
kernel driver. We now discuss its components in detail.

int pack_len

defines the size of the block written to the driver. This is defined within the kernel for
internal use.

The Linux SCSI programming HOWTO

7. Opening The Device 41

SCSI-Programming-HOWTO-7.html
SCSI-Programming-HOWTO-5.html
SCSI-Programming-HOWTO-8.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-8.html
SCSI-Programming-HOWTO-6.html
SCSI-Programming-HOWTO-9.html
SCSI-Programming-HOWTO-7.html

int reply_len

defines the size of the block to be accepted at reply. This is defined from the application side.

int pack_id

This field helps to assign replies to requests. The application can supply a unique id for each
request. Suppose you have written several commands (say 4) to one device. They may work
in parallel, one being the fastest. When getting replies via 4 reads, the replies do not have to
have the order of the requests. To identify the correct reply for a given request one can use
the pack_id field. Typically its value is incremented after each request (and wraps
eventually). The maximum amount of outstanding requests is limited by the kernel to
SG_MAX_QUEUE (eg 4).

int result

the result code of a read or write call. This is (sometimes) defined from the generic driver
(kernel) side. It is safe to set it to null before the write call. These codes are defined in
errno.h (0 meaning no error).

unsigned int twelve_byte:1

This field is necessary only when using non−standard vendor specific commands (in the
range 0xc0 − 0xff). When these commands have a command length of 12 bytes instead of 10,
this field has to be set to one before the write call. Other command lengths are not supported.
This is defined from the application side.

unsigned char sense_buffer[16]

This buffer is set after a command is completed (after a read() call) and contains the SCSI
sense code. Some command results have to be read from here (e.g. for TESTUNITREADY).
Usually it contains just zero bytes. The value in this field is set by the generic driver (kernel)
side.

The following example function interfaces directly with the generic kernel driver. It defines the header
structure, sends the command via write, gets the result via read and does some (limited) error checking.
The sense buffer data is available in the output buffer (unless a NULL pointer has been given, in which case
it's in the input buffer). We will use it in the examples which follow.

Note: Set the value of DEVICE to your device descriptor.

#define DEVICE "/dev/sgc"

/* Example program to demonstrate the generic SCSI interface */
#include <stdio.h>
#include <unistd.h>
#include <string.h>

The Linux SCSI programming HOWTO

7. Opening The Device 42

#include <fcntl.h>
#include <errno.h>
#include <scsi/sg.h>

#define SCSI_OFF sizeof(struct sg_header)
static unsigned char cmd[SCSI_OFF + 18]; /* SCSI command buffer */
int fd; /* SCSI device/file descriptor */

/* process a complete SCSI cmd. Use the generic SCSI interface. */
static int handle_SCSI_cmd(unsigned cmd_len, /* command length */
 unsigned in_size, /* input data size */
 unsigned char *i_buff, /* input buffer */
 unsigned out_size, /* output data size */
 unsigned char *o_buff /* output buffer */
)
{
 int status = 0;
 struct sg_header *sg_hd;

 /* safety checks */
 if (!cmd_len) return −1; /* need a cmd_len != 0 */
 if (!i_buff) return −1; /* need an input buffer != NULL */
#ifdef SG_BIG_BUFF
 if (SCSI_OFF + cmd_len + in_size > SG_BIG_BUFF) return −1;
 if (SCSI_OFF + out_size > SG_BIG_BUFF) return −1;
#else
 if (SCSI_OFF + cmd_len + in_size > 4096) return −1;
 if (SCSI_OFF + out_size > 4096) return −1;
#endif

 if (!o_buff) out_size = 0; /* no output buffer, no output size */

 /* generic SCSI device header construction */
 sg_hd = (struct sg_header *) i_buff;
 sg_hd−>reply_len = SCSI_OFF + out_size;
 sg_hd−>twelve_byte = cmd_len == 12;
 sg_hd−>result = 0;
#if 0
 sg_hd−>pack_len = SCSI_OFF + cmd_len + in_size; /* not necessary */
 sg_hd−>pack_id; /* not used */
 sg_hd−>other_flags; /* not used */
#endif

 /* send command */
 status = write(fd, i_buff, SCSI_OFF + cmd_len + in_size);
 if (status < 0 || status != SCSI_OFF + cmd_len + in_size ||
 sg_hd−>result) {
 /* some error happened */
 fprintf(stderr, "write(generic) result = 0x%x cmd = 0x%x\n",
 sg_hd−>result, i_buff[SCSI_OFF]);
 perror("");
 return status;
 }

 if (!o_buff) o_buff = i_buff; /* buffer pointer check */

 /* retrieve result */
 status = read(fd, o_buff, SCSI_OFF + out_size);
 if (status < 0 || status != SCSI_OFF + out_size || sg_hd−>result) {
 /* some error happened */
 fprintf(stderr, "read(generic) status = 0x%x, result = 0x%x, "

The Linux SCSI programming HOWTO

7. Opening The Device 43

 "cmd = 0x%x\n",
 status, sg_hd−>result, o_buff[SCSI_OFF]);
 fprintf(stderr, "read(generic) sense "
 "%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
 sg_hd−>sense_buffer[0], sg_hd−>sense_buffer[1],
 sg_hd−>sense_buffer[2], sg_hd−>sense_buffer[3],
 sg_hd−>sense_buffer[4], sg_hd−>sense_buffer[5],
 sg_hd−>sense_buffer[6], sg_hd−>sense_buffer[7],
 sg_hd−>sense_buffer[8], sg_hd−>sense_buffer[9],
 sg_hd−>sense_buffer[10], sg_hd−>sense_buffer[11],
 sg_hd−>sense_buffer[12], sg_hd−>sense_buffer[13],
 sg_hd−>sense_buffer[14], sg_hd−>sense_buffer[15]);
 if (status < 0)
 perror("");
 }
 /* Look if we got what we expected to get */
 if (status == SCSI_OFF + out_size) status = 0; /* got them all */

 return status; /* 0 means no error */
}

While this may look somewhat complex at first appearance, most of the code is for error checking and
reporting (which is useful even after the code is working).

Handle_SCSI_cmd has a generalized form for all SCSI commands types, falling into each of these
categories:

 Data Mode | Example Command
===
neither input nor output data | test unit ready
 no input data, output data | inquiry, read
 input data, no output data | mode select, write
 input data, output data | mode sense

NextPreviousContentsNextPreviousContents

9. Inquiry Command Example

One of the most basic SCSI commands is the INQUIRY command, used to identify the type and make of the
device. Here is the definition from the SCSI−2 specification (for details refer to the SCSI−2 standard).

 Table 44: INQUIRY Command
+=====−========−========−========−========−========−========−========−========+
| Bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

The Linux SCSI programming HOWTO

9. Inquiry Command Example 44

SCSI-Programming-HOWTO-9.html
SCSI-Programming-HOWTO-7.html
SCSI-Programming-HOWTO-10.html
SCSI-Programming-HOWTO-8.html

|Byte | | | | | | | | |
|=====+===|
| 0 | Operation Code (12h) |
|−−−−−+−−−|
| 1 | Logical Unit Number | Reserved | EVPD |
|−−−−−+−−−|
| 2 | Page Code |
|−−−−−+−−−|
| 3 | Reserved |
|−−−−−+−−−|
| 4 | Allocation Length |
|−−−−−+−−−|
| 5 | Control |
+===+

The output data are as follows:

 Table 45: Standard INQUIRY Data Format
+=====−========−========−========−========−========−========−========−========+
| Bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|Byte | | | | | | | | |
|=====+==========================+==|
| 0 | Peripheral Qualifier | Peripheral Device Type |
|−−−−−+−−−|
| 1 | RMB | Device−Type Modifier |
|−−−−−+−−−|
| 2 | ISO Version | ECMA Version | ANSI−Approved Version |
|−−−−−+−−−−−−−−−−−−−−−−−+−−−|
| 3 | AENC | TrmIOP | Reserved | Response Data Format |
|−−−−−+−−−|
| 4 | Additional Length (n−4) |
|−−−−−+−−−|
| 5 | Reserved |
|−−−−−+−−−|
| 6 | Reserved |
|−−−−−+−−−|
| 7 | RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe |
|−−−−−+−−−|
| 8 | (MSB) |
|− − −+−−− Vendor Identification −−−|
| 15 | (LSB) |
|−−−−−+−−−|
| 16 | (MSB) |
|− − −+−−− Product Identification −−−|
| 31 | (LSB) |
|−−−−−+−−−|
| 32 | (MSB) |
|− − −+−−− Product Revision Level −−−|
| 35 | (LSB) |
|−−−−−+−−−|
| 36 | |
|− − −+−−− Vendor Specific −−−|
| 55 | |
|−−−−−+−−−|
| 56 | |
|− − −+−−− Reserved −−−|
| 95 | |
|=====+===|
| | Vendor−Specific Parameters |

The Linux SCSI programming HOWTO

9. Inquiry Command Example 45

|=====+===|
| 96 | |
|− − −+−−− Vendor Specific −−−|
| n | |
+===+

The next example uses the low−level function handle_SCSI_cmd to perform the Inquiry SCSI command.

We first append the command block to the generic header, then call handle_SCSI_cmd. Note that the
output buffer size argument for the handle_SCSI_cmd call excludes the generic header size. After
command completion the output buffer contains the requested data, unless an error occurred.

#define INQUIRY_CMD 0x12
#define INQUIRY_CMDLEN 6
#define INQUIRY_REPLY_LEN 96
#define INQUIRY_VENDOR 8 /* Offset in reply data to vendor name */

/* request vendor brand and model */
static unsigned char *Inquiry (void)
{
 unsigned char Inqbuffer[SCSI_OFF + INQUIRY_REPLY_LEN];
 unsigned char cmdblk [INQUIRY_CMDLEN] =
 { INQUIRY_CMD, /* command */
 0, /* lun/reserved */
 0, /* page code */
 0, /* reserved */
 INQUIRY_REPLY_LEN, /* allocation length */
 0 };/* reserved/flag/link */

 memcpy(cmd + SCSI_OFF, cmdblk, sizeof(cmdblk));

 /*
 * +−−−−−−−−−−−−−−−−−−+
 * | struct sg_header | <− cmd
 * +−−−−−−−−−−−−−−−−−−+
 * | copy of cmdblk | <− cmd + SCSI_OFF
 * +−−−−−−−−−−−−−−−−−−+
 */

 if (handle_SCSI_cmd(sizeof(cmdblk), 0, cmd,
 sizeof(Inqbuffer) − SCSI_OFF, Inqbuffer)) {
 fprintf(stderr, "Inquiry failed\n");
 exit(2);
 }
 return (Inqbuffer + SCSI_OFF);
}

The example above follows this structure. The Inquiry function copies its command block behind the generic
header (given by SCSI_OFF). Input data is not present for this command. Handle_SCSI_cmd will define
the header structure. We can now implement the function main to complete this working example program.

The Linux SCSI programming HOWTO

9. Inquiry Command Example 46

void main(void)
{
 fd = open(DEVICE, O_RDWR);
 if (fd < 0) {
 fprintf(stderr, "Need read/write permissions for "DEVICE".\n");
 exit(1);
 }

 /* print some fields of the Inquiry result */
 printf("%s\n", Inquiry() + INQUIRY_VENDOR);
}

We first open the device, check for errors, and then call the higher level subroutine. Then we print the results
in human readable format including the vendor, product, and revision.

Note: There is more information in the Inquiry result than this little program gives. You may want to extend
the program to give device type, ANSI version etc. The device type is of special importance, since it
determines the mandatory and optional command sets for this device. If you don't want to program it
yourself, you may want to use the scsiinfo program from Eric Youngdale, which requests nearly all
information about an SCSI device. Look at tsx−11.mit.edu in pub/Linux/ALPHA/scsi.

NextPreviousContents

The Linux SCSI programming HOWTO

9. Inquiry Command Example 47

SCSI-Programming-HOWTO-10.html
SCSI-Programming-HOWTO-8.html

	Table of Contents
	The Linux SCSI programming HOWTO
	Heiko Eißfeldt heiko@colossus.escape.de
	1.What's New?
	2.Introduction
	3.What Is The Generic SCSI Interface?
	4.What Are The Requirements To Use It?
	5.Programmers Guide
	6.Overview Of Device Programming
	7.Opening The Device
	8.The Header Structure
	9.Inquiry Command Example
	10.The Sense Buffer
	11.Example Using Sense Buffer
	12.Ioctl Functions
	13.Driver Defaults
	14.Obtaining The Scsi Specifications
	15.Related Information Sources
	16.Other useful stuff
	17.Other SCSI Access Interfaces
	18.Final Comments
	19.Acknowledgments
	Appendix
	20.Appendix
	21.Error handling
	22.Additional sense codes and additional sense code qualifiers
	23.A SCSI command code quick reference
	24.Example programs
	1. What's New?
	10. The Sense Buffer
	11. Example Using Sense Buffer
	12. Ioctl Functions
	13. Driver Defaults
	13.1 Transfer Lengths
	13.2 Timeout And Retry Values
	14. Obtaining The Scsi Specifications
	15. Related Information Sources
	15.1 HOWTOs and FAQs
	15.2 Mailing list
	15.3 Example code
	16. Other useful stuff
	16.1 Device driver writer helpers
	16.2 Utilities
	17. Other SCSI Access Interfaces
	18. Final Comments
	19. Acknowledgments
	2. Introduction
	20. Appendix
	21. Error handling
	21.1 Error status decoding
	21.2 Status codes
	21.3 SCSI Sense Keys
	21.4 Host codes
	21.5 Driver codes
	22. Additional sense codes and additional sense code qualifiers
	22.1 ASC and ASCQ in lexical order
	22.2 ASC and ASCQ in numerical order
	23. A SCSI command code quick reference
	24. Example programs
	3. What Is The Generic SCSI Interface?
	4. What Are The Requirements To Use It?
	4.1 Kernel Configuration
	4.2 Device Files
	4.3 Device Mapping
	Dynamically insert and remove SCSI devices

	5. Programmers Guide
	6. Overview Of Device Programming
	7. Opening The Device
	8. The Header Structure
	9. Inquiry Command Example

