
Modular toolkit for Data Processing

Tutorial
Release 3.2

Authors: MDP Developers

October 24, 2011

CONTENTS

1 Quick Start 3

2 Introduction 5

3 Nodes 7
3.1 Node Instantiation . 7
3.2 Node Training . 8
3.3 Node Execution . 9
3.4 Node Inversion . 10
3.5 Writing your own nodes: subclassing Node . 10

4 Flows 17
4.1 Flow instantiation, training and execution . 17
4.2 Flow inversion . 19
4.3 Flows are container type objects . 19
4.4 Crash recovery . 19

5 Iterables 21
5.1 Block-mode training . 22
5.2 One-shot training using one single set of data for both nodes . 22

6 Checkpoints 25

7 Node Extensions 27
7.1 Using Extensions . 27
7.2 Writing Extension Nodes . 28
7.3 Creating Extensions . 29

8 Hierarchical Networks 31
8.1 Building blocks . 31
8.2 HTML representation . 32
8.3 Example application (2-D image data) . 32

9 Parallelization 37
9.1 Basic Examples . 37
9.2 Scheduler . 38
9.3 Parallel Nodes . 38

10 Caching execution results 41
10.1 Introduction . 41
10.2 Activating the caching extension . 41

11 Classifier nodes 43

12 Interfacing with other libraries 45

i

13 BiMDP 47
13.1 Targets, id’s and Messages . 48
13.2 BiFlow . 48
13.3 BiNode . 49
13.4 Inspection . 50
13.5 Extending BiNode and Message Handling . 51
13.6 HiNet in BiMDP . 52
13.7 Parallel in BiMDP . 52
13.8 Coroutine Decorator . 52
13.9 Classifiers in BiMDP . 53

14 Node List 55

15 Additional utilities 105
15.1 HTML Slideshows . 106
15.2 Graph module . 106

16 License 109

Index 111

ii

Modular toolkit for Data Processing

Tutorial, Release 3.2

Authors MDP Developers

Copyright This document has been placed in the public domain.

Homepage http://mdp-toolkit.sourceforge.net

Contact mdp-toolkit-users@lists.sourceforge.net

Version 3.2

This document is also available online.

This is a guide to basic and some more advanced features of the MDP library. Besides the present tutorial, you can
learn more about MDP by using the standard Python tools. All MDP nodes have doc-strings, the public attributes
and methods have telling names: All information about a node can be obtained using the help and dir functions
within the Python interpreter. In addition to that, an automatically generated API documentation is available.

Note: Code snippets throughout the script will be denoted by:

>>> print "Hello world!"
Hello world!

To run the following code examples don’t forget to import mdp and numpy in your Python session with:

>>> import mdp
>>> import numpy as np

You’ll find all the code of this tutorial online.

CONTENTS 1

http://mdp-toolkit.sourceforge.net/tutorial/tutorial.html
http://mdp-toolkit.sourceforge.net/api/index.html
http://mdp-toolkit.sourceforge.net/code/code_snippets.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

2 CONTENTS

CHAPTER

ONE

QUICK START

Using MDP is as easy as:

>>> import mdp

>>> # perform PCA on some data x
>>> y = mdp.pca(x)

>>> # perform ICA on some data x using single precision
>>> y = mdp.fastica(x, dtype=’float32’)

MDP requires the numerical Python extensions NumPy or SciPy. At import time MDP will select scipy if avail-
able, otherwise numpy will be loaded. You can force the use of a numerical extension by setting the environment
variable MDPNUMX=numpy or MDPNUMX=scipy.

An important remark

Input array data is typically assumed to be two-dimensional and ordered such that observations of the same variable
are stored on rows and different variables are stored on columns.

3

http://numpy.scipy.org/
http://www.scipy.org/

Modular toolkit for Data Processing

Tutorial, Release 3.2

4 Chapter 1. Quick Start

CHAPTER

TWO

INTRODUCTION

The use of the Python programming language in computational neuroscience has been growing steadily over the
past few years. The maturation of two important open source projects, the scientific libraries NumPy and SciPy,
gives access to a large collection of scientific functions which rival in size and speed those from well known
commercial alternatives such as Matlab® from The MathWorks™.

Furthermore, the flexible and dynamic nature of Python offers scientific programmers the opportunity to quickly
develop efficient and structured software while maximizing prototyping and reusability capabilities.

The Modular toolkit for Data Processing (MDP) package is a library of widely used data processing algorithms,
and the possibility to combine them together to form pipelines for building more complex data processing software.

MDP has been designed to be used as-is and as a framework for scientific data processing development.

From the user’s perspective, MDP consists of a collection of units, which process data. For example, these
include algorithms for supervised and unsupervised learning, principal and independent components analysis and
classification.

These units can be chained into data processing flows, to create pipelines as well as more complex feed-forward
network architectures. Given a set of input data, MDP takes care of training and executing all nodes in the
network in the correct order and passing intermediate data between the nodes. This allows the user to specify
complex algorithms as a series of simpler data processing steps.

The number of available algorithms is steadily increasing and includes signal processing methods (Principal Com-
ponent Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hes-
sian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-
processing methods, and many others.

Particular care has been taken to make computations efficient in terms of speed and memory. To reduce the
memory footprint, it is possible to perform learning using batches of data. For large data-sets, it is also possible
to specify that MDP should use single precision floating point numbers rather than double precision ones. Finally,
calculations can be parallelised using the parallel subpackage, which offers a parallel implementation of the
basic nodes and flows.

From the developer’s perspective, MDP is a framework that makes the implementation of new supervised and
unsupervised learning algorithms easy and straightforward. The basic class, Node, takes care of tedious tasks like
numerical type and dimensionality checking, leaving the developer free to concentrate on the implementation of
the learning and execution phases. Because of the common interface, the node then automatically integrates with
the rest of the library and can be used in a network together with other nodes.

A node can have multiple training phases and even an undetermined number of phases. Multiple training phases
mean that the training data is presented multiple times to the same node. This allows the implementation of
algorithms that need to collect some statistics on the whole input before proceeding with the actual training, and
others that need to iterate over a training phase until a convergence criterion is satisfied. It is possible to train each
phase using chunks of input data if the chunks are given as an iterable. Moreover, crash recovery can be optionally
enabled, which will save the state of the flow in case of a failure for later inspection.

MDP is distributed under the open source BSD license. It has been written in the context of theoretical research
in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms

5

http://numpy.scipy.org
http://www.scipy.org

Modular toolkit for Data Processing

Tutorial, Release 3.2

are used. Its simplicity on the user’s side, the variety of readily available algorithms, and the reusability of the
implemented nodes also make it a useful educational tool.

http://mdp-toolkit.sourceforge.net

With over 20,000 downloads since its first public release in 2004, MDP has become a widely used Python scientific
software. It has minimal dependencies, requiring only the NumPy numerical extension, is completely platform-
independent, and is available in several Linux distribution, and the Python(x,y) scientific Python distribution.

As the number of users and contributors is increasing, MDP appears to be a good candidate for becoming a
community-driven common repository of user-supplied, freely available, Python implemented data processing
algorithms.

6 Chapter 2. Introduction

http://mdp-toolkit.sourceforge.net
http://www.pythonxy.com

CHAPTER

THREE

NODES

CodeSnippet

You can download all the code on this page from the code snippets directory

A node is the basic building block of an MDP application. It represents a data processing element, for example
a learning algorithm, a data filter, or a visualization step (see the Node List section for an exhaustive list and
references).

Each node can have one or more training phases, during which the internal structures are learned from training
data (e.g. the weights of a neural network are adapted or the covariance matrix is estimated) and an execution
phase, where new data can be processed forwards (by processing the data through the node) or backwards (by
applying the inverse of the transformation computed by the node if defined).

Nodes have been designed to be applied to arbitrarily long sets of data; provided the underlying algorithms support
it, the internal structures can be updated incrementally by sending multiple batches of data (this is equivalent to
online learning if the chunks consists of single observations, or to batch learning if the whole data is sent in a
single chunk). This makes it possible to perform computations on large amounts of data that would not fit into
memory and to generate data on-the-fly.

A Node also defines some utility methods, for example copy, which returns an exact copy of a node, and save,
which writes to in a file. Additional methods may also be present, depending on the algorithm.

3.1 Node Instantiation

A node can be obtained by creating an instance of the Node class.

Each node is characterized by an input dimension (i.e., the dimensionality of the input vectors), an output dimen-
sion, and a dtype, which determines the numerical type of the internal structures and of the output signal. By
default, these attributes are inherited from the input data if left unspecified. The constructor of each node class can
require other task-specific arguments. The full documentation is always available in the doc-string of the node’s
class.

3.1.1 Some examples of node instantiation

Create a node that performs Principal Component Analysis (PCA) whose input dimension and dtype are inher-
ited from the input data during training. Output dimensions default to input dimensions.

>>> pcanode1 = mdp.nodes.PCANode()
>>> pcanode1
PCANode(input_dim=None, output_dim=None, dtype=None)

Setting output_dim = 10 means that the node will keep only the first 10 principal components of the input.

7

http://mdp-toolkit.sourceforge.net/code/tutorial/nodes.html
http://mdp-toolkit.sourceforge.net/api/mdp.Node-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.Node-class.html#copy
http://mdp-toolkit.sourceforge.net/api/mdp.Node-class.html#save

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> pcanode2 = mdp.nodes.PCANode(output_dim=10)
>>> pcanode2
PCANode(input_dim=None, output_dim=10, dtype=None)

The output dimensionality can also be specified in terms of the explained variance. If we want to keep the number
of principal components which can account for 80% of the input variance, we set

>>> pcanode3 = mdp.nodes.PCANode(output_dim=0.8)
>>> pcanode3.desired_variance
0.8

If dtype is set to float32 (32-bit float), the input data is cast to single precision when received and the
internal structures are also stored as float32. dtype influences the memory space necessary for a node and
the precision with which the computations are performed.

>>> pcanode4 = mdp.nodes.PCANode(dtype=’float32’)
>>> pcanode4
PCANode(input_dim=None, output_dim=None, dtype=’float32’)

You can obtain a list of the numerical types supported by a node looking at its supported_dtypes property

>>> pcanode4.supported_dtypes
[dtype(’float32’), dtype(’float64’)...]

This attribute is a list of numpy.dtype objects.

A PolynomialExpansionNode expands its input in the space of polynomials of a given degree by computing
all monomials up to the specified degree. Its constructor needs as first argument the degree of the polynomials
space (3 in this case):

>>> expnode = mdp.nodes.PolynomialExpansionNode(3)

3.2 Node Training

Some nodes need to be trained to perform their task. For example, the Principal Component Analysis (PCA)
algorithm requires the computation of the mean and covariance matrix of a set of training data from which the
principal eigenvectors of the data distribution are estimated.

This can be done during a training phases by calling the train method. MDP supports both supervised and
unsupervised training, and algorithms with multiple training phases.

Some examples of node training:

Create some random data to train the node

>>> x = np.random.random((100, 25)) # 25 variables, 100 observations

Analyzes the batch of data x and update the estimation of mean and covariance matrix

>>> pcanode1.train(x)

At this point the input dimension and the dtype have been inherited from x

>>> pcanode1
PCANode(input_dim=25, output_dim=None, dtype=’float64’)

We can train our node with more than one chunk of data. This is especially useful when the input data is too long
to be stored in memory or when it has to be created on-the-fly. (See also the Iterables section)

>>> for i in range(100):
... x = np.random.random((100, 25))
... pcanode1.train(x)

8 Chapter 3. Nodes

Modular toolkit for Data Processing

Tutorial, Release 3.2

Some nodes don’t need to or cannot be trained

>>> expnode.is_trainable()
False

Trying to train them anyway would raise an IsNotTrainableException.

The training phase ends when the stop_training, execute, inverse, and possibly some other node-
specific methods are called. For example we can finalize the PCA algorithm by computing and selecting the
principal eigenvectors

>>> pcanode1.stop_training()

If the PCANode was declared to have a number of output components dependent on the input variance to be
explained, we can check after training the number of output components and the actually explained variance

>>> pcanode3.train(x)
>>> pcanode3.stop_training()
>>> pcanode3.output_dim
16
>>> pcanode3.explained_variance
0.85261144755506446

It is now possible to access the trained internal data. In general, a list of the interesting internal attributes can be
found in the class documentation.

>>> avg = pcanode1.avg # mean of the input data
>>> v = pcanode1.get_projmatrix() # projection matrix

Some nodes, namely the one corresponding to supervised algorithms, e.g. Fisher Discriminant Analysis (FDA),
may need some labels or other supervised signals to be passed during training. Detailed information about the
signature of the train method can be read in its doc-string.

>>> fdanode = mdp.nodes.FDANode()
>>> for label in [’a’, ’b’, ’c’]:
... x = np.random.random((100, 25))
... fdanode.train(x, label)

A node could also require multiple training phases. For example, the training of fdanode is not complete yet,
since it has two training phases: The first one computing the mean of the data conditioned on the labels, and the
second one computing the overall and within-class covariance matrices and solving the FDA problem. The first
phase must be stopped and the second one trained

>>> fdanode.stop_training()
>>> for label in [’a’, ’b’, ’c’]:
... x = np.random.random((100, 25))
... fdanode.train(x, label)

The easiest way to train multiple phase nodes is using flows, which automatically handle multiple phases (see the
Flows section).

3.3 Node Execution

Once the training is finished, it is possible to execute the node:

The input data is projected on the principal components learned in the training phase

>>> x = np.random.random((100, 25))
>>> y_pca = pcanode1.execute(x)

Calling a node instance is equivalent to executing it

3.3. Node Execution 9

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> y_pca = pcanode1(x)

The input data is expanded in the space of polynomials of degree 3

>>> x = np.random.random((100, 5))
>>> y_exp = expnode(x)

The input data is projected to the directions learned by FDA

>>> x = np.random.random((100, 25))
>>> y_fda = fdanode(x)

Some nodes may allow for optional arguments in the execute method. As always the complete information can
be found in the doc-string.

3.4 Node Inversion

If the operation computed by the node is invertible, the node can also be executed backwards, thus computing the
inverse transformation:

In the case of PCA, for example, this corresponds to projecting a vector in the principal components space back
to the original data space

>>> pcanode1.is_invertible()
True
>>> x = pcanode1.inverse(y_pca)

The expansion node in not invertible

>>> expnode.is_invertible()
False

Trying to compute the inverse would raise an IsNotInvertibleException.

3.5 Writing your own nodes: subclassing Node

MDP tries to make it easy to write new nodes that interface with the existing data processing elements.

The Node class is designed to make the implementation of new algorithms easy and intuitive. This base class
takes care of setting input and output dimension and casting the data to match the numerical type (e.g. float or
double) of the internal variables, and offers utility methods that can be used by the developer.

To expand the MDP library of implemented nodes with user-made nodes, it is sufficient to subclass Node,
overriding some of the methods according to the algorithm one wants to implement, typically the _train,
_stop_training, and _execute methods.

In its namespace MDP offers references to the main modules numpy or scipy, and the subpackages linalg,
random, and fft as mdp.numx, mdp.numx_linalg, mdp.numx_rand, and mdp.numx_fft. This is
done to possibly support additional numerical extensions in the future. For this reason it is recommended to
refer to the numpy or scipy numerical extensions through the MDP aliases mdp.numx, mdp.numx_linalg,
mdp.numx_fft, and mdp.numx_rand when writing Node subclasses. This shall ensure that your nodes can
be used without modifications should MDP support alternative numerical extensions in the future.

We’ll illustrate all this with some toy examples.

We start by defining a node that multiplies its input by 2.

Define the class as a subclass of Node:

>>> class TimesTwoNode(mdp.Node):

10 Chapter 3. Nodes

Modular toolkit for Data Processing

Tutorial, Release 3.2

This node cannot be trained. To specify this, one has to overwrite the is_trainable method to return False:

... def is_trainable(self):

... return False

Execute only needs to multiply x by 2:

... def _execute(self, x):

... return 2*x

Note that the execute method, which should never be overwritten and which is inherited from the Node parent
class, will perform some tests, for example to make sure that x has the right rank, dimensionality and casts it to
have the right dtype. After that the user-supplied _execute method is called. Each subclass has to handle
the dtype defined by the user or inherited by the input data, and make sure that internal structures are stored
consistently. To help with this the Node base class has a method called _refcast(array) that casts the input
array only when its dtype is different from the Node instance’s dtype.

The inverse of the multiplication by 2 is of course the division by 2

... def _inverse(self, y):

... return y/2

Test the new node

>>> class TimesTwoNode(mdp.Node):
... def is_trainable(self):
... return False
... def _execute(self, x):
... return 2*x
... def _inverse(self, y):
... return y/2
>>> node = TimesTwoNode(dtype = ’float32’)
>>> x = mdp.numx.array([[1.0, 2.0, 3.0]])
>>> y = node(x)
>>> print x, ’* 2 = ’, y
[[1. 2. 3.]] * 2 = [[2. 4. 6.]]
>>> print y, ’/ 2 =’, node.inverse(y)
[[2. 4. 6.]] / 2 = [[1. 2. 3.]]

We then define a node that raises the input to the power specified in the initialiser:

>>> class PowerNode(mdp.Node):

We redefine the init method to take the power as first argument. In general one should always give the possibility
to set the dtype and the input dimensions. The default value is None, which means that the exact value is going
to be inherited from the input data:

... def __init__(self, power, input_dim=None, dtype=None):

Initialize the parent class:

... super(PowerNode, self).__init__(input_dim=input_dim, dtype=dtype)

Store the power:

... self.power = power

PowerNode is not trainable:

... def is_trainable(self):

... return False

nor invertible:

... def is_invertible(self):

... return False

3.5. Writing your own nodes: subclassing Node 11

Modular toolkit for Data Processing

Tutorial, Release 3.2

It is possible to overwrite the function _get_supported_dtypes to return a list of dtype supported by the
node:

... def _get_supported_dtypes(self):

... return [’float32’, ’float64’]

The supported types can be specified in any format allowed by the numpy.dtype constructor. The interface
method get_supported_dtypes converts them and sets the property supported_dtypes, which is a list
of numpy.dtype objects.

The _execute method:

... def _execute(self, x):

... return self._refcast(x**self.power)

Test the new node

>>> class PowerNode(mdp.Node):
... def __init__(self, power, input_dim=None, dtype=None):
... super(PowerNode, self).__init__(input_dim=input_dim, dtype=dtype)
... self.power = power
... def is_trainable(self):
... return False
... def is_invertible(self):
... return False
... def _get_supported_dtypes(self):
... return [’float32’, ’float64’]
... def _execute(self, x):
... return self._refcast(x**self.power)
>>> node = PowerNode(3)
>>> x = mdp.numx.array([[1.0, 2.0, 3.0]])
>>> y = node(x)
>>> print x, ’**’, node.power, ’=’, node(x)
[[1. 2. 3.]] ** 3 = [[1. 8. 27.]]

We now define a node that needs to be trained. The MeanFreeNode computes the mean of its training data and
subtracts it from the input during execution:

>>> class MeanFreeNode(mdp.Node):
... def __init__(self, input_dim=None, dtype=None):
... super(MeanFreeNode, self).__init__(input_dim=input_dim,
... dtype=dtype)

We store the mean of the input data in an attribute. We initialize it to None since we still don’t know how large is
an input vector:

... self.avg = None

Same for the number of training points:

... self.tlen = 0

The subclass only needs to overwrite the _train method, which will be called by the parent train after some
testing and casting has been done:

... def _train(self, x):

... # Initialize the mean vector with the right

... # size and dtype if necessary:

... if self.avg is None:

... self.avg = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

Update the mean with the sum of the new data:

12 Chapter 3. Nodes

Modular toolkit for Data Processing

Tutorial, Release 3.2

... self.avg += mdp.numx.sum(x, axis=0)

Count the number of points processed:

... self.tlen += x.shape [0]

Note that the train method can have further arguments, which might be useful to implement algorithms that
require supervised learning. For example, if you want to define a node that performs some form of classification
you can define a _train(self, data, labels) method. The parent train checks data and takes care
to pass the labels on (cf. for example mdp.nodes.FDANode).

The _stop_training function is called by the parent stop_training method when the training phase is
over. We divide the sum of the training data by the number of training vectors to obtain the mean:

... def _stop_training(self):

... self.avg /= self.tlen

... if self.output_dim is None:

... self.output_dim = self.input_dim

Note that we input_dim are set automatically by the train method, and we want to ensure that the node has
output_dim set after training. For nodes that do not need training, the setting is performed automatically upon
execution. The _execute and _inverse methods:

... def _execute(self, x):

... return x - self.avg

... def _inverse(self, y):

... return y + self.avg

Test the new node

>>> class MeanFreeNode(mdp.Node):
... def __init__(self, input_dim=None, dtype=None):
... super(MeanFreeNode, self).__init__(input_dim=input_dim,
... dtype=dtype)
... self.avg = None
... self.tlen = 0
... def _train(self, x):
... # Initialize the mean vector with the right
... # size and dtype if necessary:
... if self.avg is None:
... self.avg = mdp.numx.zeros(self.input_dim,
... dtype=self.dtype)
... self.avg += mdp.numx.sum(x, axis=0)
... self.tlen += x.shape[0]
... def _stop_training(self):
... self.avg /= self.tlen
... if self.output_dim is None:
... self.output_dim = self.input_dim
... def _execute(self, x):
... return x - self.avg
... def _inverse(self, y):
... return y + self.avg
>>> node = MeanFreeNode()
>>> x = np.random.random((10,4))
>>> node.train(x)
>>> y = node(x)
>>> print ’Mean of y (should be zero):\n’, np.abs(np.around(np.mean(y, 0), 15))
Mean of y (should be zero):
[0. 0. 0. 0.]

It is also possible to define nodes with multiple training phases. In such a case, calling the train and
stop_training functions multiple times is going to execute successive training phases (this kind of node
is much easier to train using Flows). Here we’ll define a node that returns a meanfree, unit variance signal. We
define two training phases: first we compute the mean of the signal and next we sum the squared, meanfree input

3.5. Writing your own nodes: subclassing Node 13

Modular toolkit for Data Processing

Tutorial, Release 3.2

to compute the standard deviation (of course it is possible to solve this problem in one single step - remember this
is just a toy example).

>>> class UnitVarianceNode(mdp.Node):
... def __init__(self, input_dim=None, dtype=None):
... super(UnitVarianceNode, self).__init__(input_dim=input_dim,
... dtype=dtype)
... self.avg = None # average
... self.std = None # standard deviation
... self.tlen = 0

The training sequence is defined by the user-supplied method _get_train_seq, that returns a list of tuples,
one for each training phase. The tuples contain references to the training and stop-training methods of each of
them. The default output of this method is [(_train, _stop_training)], which explains the standard
behavior illustrated above. We overwrite the method to return the list of our training/stop_training methods:

... def _get_train_seq(self):

... return [(self._train_mean, self._stop_mean),

... (self._train_std, self._stop_std)]

Next we define the training methods. The first phase is identical to the one in the previous example:

... def _train_mean(self, x):

... if self.avg is None:

... self.avg = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

... self.avg += mdp.numx.sum(x, 0)

... self.tlen += x.shape[0]

... def _stop_mean(self):

... self.avg /= self.tlen

The second one is only marginally different and does not require many explanations:

... def _train_std(self, x):

... if self.std is None:

... self.tlen = 0

... self.std = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

... self.std += mdp.numx.sum((x - self.avg)**2., 0)

... self.tlen += x.shape[0]

... def _stop_std(self):

... # compute the standard deviation

... self.std = mdp.numx.sqrt(self.std/(self.tlen-1))

The _execute and _inverse methods are not surprising, either:

... def _execute(self, x):

... return (x - self.avg)/self.std

... def _inverse(self, y):

... return y*self.std + self.avg

Test the new node

>>> class UnitVarianceNode(mdp.Node):
... def __init__(self, input_dim=None, dtype=None):
... super(UnitVarianceNode, self).__init__(input_dim=input_dim,
... dtype=dtype)
... self.avg = None # average
... self.std = None # standard deviation
... self.tlen = 0
... def _get_train_seq(self):
... return [(self._train_mean, self._stop_mean),
... (self._train_std, self._stop_std)]
... def _train_mean(self, x):
... if self.avg is None:

14 Chapter 3. Nodes

Modular toolkit for Data Processing

Tutorial, Release 3.2

... self.avg = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

... self.avg += mdp.numx.sum(x, 0)

... self.tlen += x.shape[0]

... def _stop_mean(self):

... self.avg /= self.tlen

... def _train_std(self, x):

... if self.std is None:

... self.tlen = 0

... self.std = mdp.numx.zeros(self.input_dim,

... dtype=self.dtype)

... self.std += mdp.numx.sum((x - self.avg)**2., 0)

... self.tlen += x.shape[0]

... def _stop_std(self):

... # compute the standard deviation

... self.std = mdp.numx.sqrt(self.std/(self.tlen-1))

... def _execute(self, x):

... return (x - self.avg)/self.std

... def _inverse(self, y):

... return y*self.std + self.avg
>>> node = UnitVarianceNode()
>>> x = np.random.random((10,4))
>>> # loop over phases
... for phase in range(2):
... node.train(x)
... node.stop_training()
...
...
>>> # execute
... y = node(x)
>>> print ’Standard deviation of y (should be one): ’, mdp.numx.std(y, axis=0, ddof=1)
Standard deviation of y (should be one): [1. 1. 1. 1.]

In our last example we’ll define a node that returns two copies of its input. The output is going to have twice as
many dimensions.

>>> class TwiceNode(mdp.Node):
... def is_trainable(self): return False
... def is_invertible(self): return False

When Node inherits the input dimension, output dimension, and dtype from the input data, it calls the
methods set_input_dim, set_output_dim, and set_dtype. Those are the setters for input_dim,
output_dim and dtype, which are Python properties. If a subclass needs to change the default behavior,
the internal methods _set_input_dim, _set_output_dim and _set_dtype can be overwritten. The
property setter will call the internal method after some basic testing and internal settings. The private methods
_set_input_dim, _set_output_dim and _set_dtype are responsible for setting the private attributes
_input_dim, _output_dim, and _dtype that contain the actual value.

Here we overwrite _set_input_dim to automatically set the output dimension to be twice the input one, and
_set_output_dim to raise an exception, since the output dimension should not be set explicitly.

... def _set_input_dim(self, n):

... self._input_dim = n

... self._output_dim = 2*n

... def _set_output_dim(self, n):

... raise mdp.NodeException, "Output dim can not be set explicitly!"

The _execute method:

... def _execute(self, x):

... return mdp.numx.concatenate((x, x), 1)

Test the new node

3.5. Writing your own nodes: subclassing Node 15

http://www.python.org/download/releases/2.2/descrintro/#property

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> class TwiceNode(mdp.Node):
... def is_trainable(self): return False
... def is_invertible(self): return False
... def _set_input_dim(self, n):
... self._input_dim = n
... self._output_dim = 2*n
... def _set_output_dim(self, n):
... raise mdp.NodeException, "Output dim can not be set explicitly!"
... def _execute(self, x):
... return mdp.numx.concatenate((x, x), 1)
>>> node = TwiceNode()
>>> x = mdp.numx.zeros((5,2))
>>> x
array([[0., 0.],

[0., 0.],
[0., 0.],
[0., 0.],
[0., 0.]])

>>> node.execute(x)
array([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])

16 Chapter 3. Nodes

CHAPTER

FOUR

FLOWS

CodeSnippet

You can download all the code on this page from the code snippets directory

A flow is a sequence of nodes that are trained and executed together to form a more complex algorithm. Input data
is sent to the first node and is successively processed by the subsequent nodes along the sequence.

Using a flow as opposed to handling manually a set of nodes has a clear advantage: The general flow implementa-
tion automatizes the training (including supervised training and multiple training phases), execution, and inverse
execution (if defined) of the whole sequence.

Crash recovery is optionally available: in case of failure the current state of the flow is saved for later inspection.
A subclass of the basic flow class (CheckpointFlow) allows user-supplied checkpoint functions to be executed
at the end of each phase, for example to save the internal structures of a node for later analysis. Flow objects are
Python containers. Most of the builtin list methods are available. A Flow can be saved or copied using the
corresponding save and copy methods.

4.1 Flow instantiation, training and execution

For example, suppose we need to analyze a very high-dimensional input signal using Independent Component
Analysis (ICA). To reduce the computational load, we would like to reduce the input dimensionality of the data
using PCA. Moreover, we would like to find the data that produces local maxima in the output of the ICA compo-
nents on a new test set (this information could be used for instance to characterize the ICA filters).

We start by generating some input signal at random (which makes the example useless, but it’s just for illustra-
tion...). Generate 1000 observations of 20 independent source signals

>>> inp = np.random.random((1000, 20))

Rescale x to have zero mean and unit variance

>>> inp = (inp - np.mean(inp, 0))/np.std(inp, axis=0, ddof=0)

We reduce the variance of the last 15 components, so that they are going to be eliminated by PCA

>>> inp[:,5:] /= 10.0

Mix the input signals linearly

>>> x = mdp.utils.mult(inp,np.random.random((20, 20)))

x is now the training data for our simulation. In the same way we also create a test set x_test.

>>> inp_test = np.random.random((1000, 20))
>>> inp_test = (inp_test - np.mean(inp_test, 0))/np.std(inp_test, 0)

17

http://mdp-toolkit.sourceforge.net/code/tutorial/flows.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> inp_test[:,5:] /= 10.0
>>> x_test = mdp.utils.mult(inp_test, np.random.random((20, 20)))

We could now perform our analysis using only nodes, that’s the lengthy way...

1. Perform PCA

>>> pca = mdp.nodes.PCANode(output_dim=5)
>>> pca.train(x)
>>> out1 = pca(x)

2. Perform ICA using CuBICA algorithm

>>> ica = mdp.nodes.CuBICANode()
>>> ica.train(out1)
>>> out2 = ica(out1)

3. Find the three largest local maxima in the output of the ICA node when applied to the test data, using a
HitParadeNode

>>> out1_test = pca(x_test)
>>> out2_test = ica(out1_test)
>>> hitnode = mdp.nodes.HitParadeNode(3)
>>> hitnode.train(out2_test)
>>> maxima, indices = hitnode.get_maxima()

or we could use flows, which is the best way

>>> flow = mdp.Flow([mdp.nodes.PCANode(output_dim=5), mdp.nodes.CuBICANode()])

Note that flows can be built simply by concatenating nodes

>>> flow = mdp.nodes.PCANode(output_dim=5) + mdp.nodes.CuBICANode()

Train the resulting flow

>>> flow.train(x)

Now the training phase of PCA and ICA are completed. Next we append a HitParadeNode which we want to
train on the test data

>>> flow.append(mdp.nodes.HitParadeNode(3))

As before, new nodes can be appended to an existing flow by adding them ot it

>>> flow += mdp.nodes.HitParadeNode(3)

Train the HitParadeNode on the test data

>>> flow.train(x_test)
>>> maxima, indices = flow[2].get_maxima()

A single call to the flow‘s train method will automatically take care of training nodes with multiple training
phases, if such nodes are present.

Just to check that everything works properly, we can calculate covariance between the generated sources and the
output (should be approximately 1)

>>> out = flow.execute(x)
>>> cov = np.amax(abs(mdp.utils.cov2(inp[:,:5], out)), axis=1)
>>> print cov
[0.9957042 0.98482351 0.99557617 0.99680391 0.99232424]

The HitParadeNode is an analysis node and as such does not interfere with the data flow.

Note that flows can be executed by calling the Flow instance directly

18 Chapter 4. Flows

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> out = flow(x)

4.2 Flow inversion

Flows can be inverted by calling their inversemethod. In the case where the flow contains non-invertible nodes,
trying to invert it would raise an exception. In this case, however, all nodes are invertible. We can reconstruct the
mix by inverting the flow

>>> rec = flow.inverse(out)

Calculate covariance between input mix and reconstructed mix: (should be approximately 1)

>>> cov = np.amax(abs(mdp.utils.cov2(x/np.std(x,axis=0),
... rec/np.std(rec,axis=0))))
>>> print cov
0.999622205447

4.3 Flows are container type objects

Flow objects are defined as Python containers, and thus are endowed with most of the methods of Python lists.

You can loop through a Flow

>>> for node in flow:
... print repr(node)
PCANode(input_dim=20, output_dim=5, dtype=’float64’)
CuBICANode(input_dim=5, output_dim=5, dtype=’float64’)
HitParadeNode(input_dim=5, output_dim=5, dtype=’float64’)
HitParadeNode(input_dim=5, output_dim=5, dtype=’float64’)

You can get slices, pop, insert, and append nodes

>>> len(flow)
4
>>> print flow[::2]
[PCANode, HitParadeNode]
>>> nodetoberemoved = flow.pop(-1)
>>> nodetoberemoved
HitParadeNode(input_dim=5, output_dim=5, dtype=’float64’)
>>> len(flow)
3

Finally, you can concatenate flows

>>> dummyflow = flow[1:].copy()
>>> longflow = flow + dummyflow
>>> len(longflow)
5

The returned flow must always be consistent, i.e. input and output dimensions of successive nodes always have to
match. If you try to create an inconsistent flow you’ll get an exception.

4.4 Crash recovery

If a node in a flow fails, you’ll get a traceback that tells you which node has failed. You can also switch the crash
recovery capability on. If something goes wrong you’ll end up with a pickle dump of the flow, that can be later
inspected.

4.2. Flow inversion 19

Modular toolkit for Data Processing

Tutorial, Release 3.2

To see how it works let’s define a bogus node that always throws an Exception and put it into a flow

>>> class BogusExceptNode(mdp.Node):
... def train(self,x):
... self.bogus_attr = 1
... raise Exception, "Bogus Exception"
... def execute(self,x):
... raise Exception, "Bogus Exception"
...
>>> flow = mdp.Flow([BogusExceptNode()])

Switch on crash recovery

>>> flow.set_crash_recovery(1)

Attempt to train the flow

>>> flow.train(x)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
[...]

mdp.linear_flows.FlowExceptionCR:
--
! Exception in node #0 (BogusExceptNode):
Node Traceback:
Traceback (most recent call last):

[...]
Exception: Bogus Exception
--
A crash dump is available on: "/tmp/MDPcrash_LmISO_.pic"

You can give a file name to tell the flow where to save the dump:

>>> flow.set_crash_recovery(’/home/myself/mydumps/MDPdump.pic’)

20 Chapter 4. Flows

CHAPTER

FIVE

ITERABLES

CodeSnippet

You can download all the code on this page from the code snippets directory

Python allows user-defined classes to support iteration, as described in the Python docs. A class is a so called
iterable if it defines a method __iter__ that returns an iterator instance. An iterable is typically some kind of
container or collection (e.g. list and tuple are iterables).

The iterator instance must have a next method that returns the next element in the iteration. In Python an iterable
also has to have an __iter__ method itself that returns self instead of a new iterator. It is important to
understand that an iterator only manages a single iteration. After this iteration it is spend and cannot be used for a
second iteration (it cannot be restarted). An iterable on the other hand can create as many iterators as needed and
therefore supports multiple iterations. Even though both iterables and iterators have an __iter__ method they
are semantically very different (duck-typing can be misleading in this case).

In the context of MDP this means that an iterator can only be used for a single training phase, while iterables also
support multiple training phases. So if you use a node with multiple training phases and train it in a flow make
sure that you provide an iterable for this node (otherwise an exception will be raised). For nodes with a single
training phase you can use either an iterable or an iterator.

A convenient implementation of the iterator protocol is provided by generators: see this article for an introduction,
and the official PEP 255 for a complete description.

Let us define two bogus node classes to be used as examples of nodes

>>> class BogusNode(mdp.Node):
... """This node does nothing."""
... def _train(self, x):
... pass
>>> class BogusNode2(mdp.Node):
... """This node does nothing. But it’s neither trainable nor invertible.
... """
... def is_trainable(self): return False
... def is_invertible(self): return False

This generator generates blocks input blocks to be used as training set. In this example one block is a 2-
dimensional time series. The first variable is [2,4,6,....,1000] and the second one [0,1,3,5,...,999]. All blocks are
equal, this of course would not be the case in a real-life example.

In this example we use a progress bar to get progress information.

>>> def gen_data(blocks):
... for i in mdp.utils.progressinfo(xrange(blocks)):
... block_x = np.atleast_2d(np.arange(2.,1001,2))
... block_y = np.atleast_2d(np.arange(1.,1001,2))
... # put variables on columns and observations on rows
... block = np.transpose(np.concatenate([block_x,block_y]))
... yield block

21

http://mdp-toolkit.sourceforge.net/code/tutorial/iterables.html
http://docs.python.org/library/stdtypes.html#iterator-types
http://linuxgazette.net/100/pramode.html
http://www.python.org/dev/peps/pep-0255

Modular toolkit for Data Processing

Tutorial, Release 3.2

The progressinfo function is a fully configurable text-mode progress info box tailored to the command-line
die-hards. Have a look at its doc-string and prepare to be amazed!

Let’s define a bogus flow consisting of 2 BogusNodes

>>> flow = mdp.Flow([BogusNode(),BogusNode()], verbose=1)

Train the first node with 5000 blocks and the second node with 3000 blocks. Note that the only allowed argument
to train is a sequence (list or tuple) of iterables or iterators. In case you don’t want or need to use incremental
learning and want to do a one-shot training, you can use as argument to train a single array of data.

5.1 Block-mode training

>>> flow.train([gen_data(5000),gen_data(3000)])
Training node #0 (BogusNode)
<BLANKLINE>
[===================================100%==================================>]
<BLANKLINE>
Training finished
Training node #1 (BogusNode)
[===================================100%==================================>]
<BLANKLINE>
Training finished
Close the training phase of the last node

5.2 One-shot training using one single set of data for both nodes

>>> flow = BogusNode() + BogusNode()
>>> block_x = np.atleast_2d(np.arange(2.,1001,2))
>>> block_y = np.atleast_2d(np.arange(1.,1001,2))
>>> single_block = np.transpose(np.concatenate([block_x,block_y]))
>>> flow.train(single_block)

If your flow contains non-trainable nodes, you must specify a None for the non-trainable nodes

>>> flow = mdp.Flow([BogusNode2(),BogusNode()], verbose=1)
>>> flow.train([None, gen_data(5000)])
Training node #0 (BogusNode2)
Training finished
Training node #1 (BogusNode)
[===================================100%==================================>]
<BLANKLINE>
Training finished
Close the training phase of the last node

You can use the one-shot training

>>> flow = mdp.Flow([BogusNode2(),BogusNode()], verbose=1)
>>> flow.train(single_block)
Training node #0 (BogusNode2)
Training finished
Training node #1 (BogusNode)
Training finished
Close the training phase of the last node

Iterators can always be safely used for execution and inversion, since only a single iteration is needed

>>> flow = mdp.Flow([BogusNode(),BogusNode()], verbose=1)
>>> flow.train([gen_data(1), gen_data(1)])
Training node #0 (BogusNode)

22 Chapter 5. Iterables

Modular toolkit for Data Processing

Tutorial, Release 3.2

Training finished
Training node #1 (BosgusNode)
[===================================100%==================================>]
<BLANKLINE>
Training finished
Close the training phase of the last node
>>> output = flow.execute(gen_data(1000))
[===================================100%==================================>]
>>> output = flow.inverse(gen_data(1000))
[===================================100%==================================>]

Execution and inversion can be done in one-shot mode also. Note that since training is finished you are not going
to get a warning

>>> output = flow(single_block)
>>> output = flow.inverse(single_block)

If a node requires multiple training phases (e.g., GaussianClassifierNode), Flow automatically takes care
of using the iterable multiple times. In this case generators (and iterators) are not allowed, since they are spend
after yielding the last data block.

However, it is fairly easy to wrap a generator in a simple iterable if you need to

>>> class SimpleIterable(object):
... def __init__(self, blocks):
... self.blocks = blocks
... def __iter__(self):
... # this is a generator
... for i in range(self.blocks):
... yield generate_some_data()

Note that if you use random numbers within the generator, you usually would like to reset the random number
generator to produce the same sequence every time

>>> class RandomIterable(object):
... def __init__(self):
... self.state = None
... def __iter__(self):
... if self.state is None:
... self.state = np.random.get_state()
... else:
... np.random.set_state(self.state)
... for i in range(2):
... yield np.random.random((1,4))
>>> iterable = RandomIterable()
>>> for x in iterable:
... print x
[[0.5488135 0.71518937 0.60276338 0.54488318]]
[[0.4236548 0.64589411 0.43758721 0.891773]]
>>> for x in iterable:
... print x
[[0.5488135 0.71518937 0.60276338 0.54488318]]
[[0.4236548 0.64589411 0.43758721 0.891773]]

5.2. One-shot training using one single set of data for both nodes 23

Modular toolkit for Data Processing

Tutorial, Release 3.2

24 Chapter 5. Iterables

CHAPTER

SIX

CHECKPOINTS

CodeSnippet

You can download all the code on this page from the code snippets directory

It can sometimes be useful to execute arbitrary functions at the end of the training or execution phase, for
example to save the internal structures of a node for later analysis. This can easily be done by defining a
CheckpointFlow. As an example imagine the following situation: you want to perform Principal Compo-
nent Analysis (PCA) on your data to reduce the dimensionality. After this you want to expand the signals into
a nonlinear space and then perform Slow Feature Analysis to extract slowly varying signals. As the expansion
will increase the number of components, you don’t want to run out of memory, but at the same time you want
to keep as much information as possible after the dimensionality reduction. You could do that by specifying the
percentage of the total input variance that has to be conserved in the dimensionality reduction. As the number of
output components of the PCA node now can become as large as the that of the input components, you want to
check, after training the PCA node, that this number is below a certain threshold. If this is not the case you want
to abort the execution and maybe start again requesting less variance to be kept.

Let start defining a generator to be used through the whole example

>>> def gen_data(blocks,dims):
... mat = np.random.random((dims,dims))-0.5
... for i in xrange(blocks):
... # put variables on columns and observations on rows
... block = mdp.utils.mult(np.random.random((1000,dims)), mat)
... yield block

Define a PCANode which reduces dimensionality of the input, a PolynomialExpansionNode to expand the
signals in the space of polynomials of degree 2 and a SFANode to perform SFA

>>> pca = mdp.nodes.PCANode(output_dim=0.9)
>>> exp = mdp.nodes.PolynomialExpansionNode(2)
>>> sfa = mdp.nodes.SFANode()

As you see we have set the output dimension of the PCANode to be 0.9. This means that we want to keep at
least 90% of the variance of the original signal. We define a PCADimensionExceededException that has
to be thrown when the number of output components exceeds a certain threshold

>>> class PCADimensionExceededException(Exception):
... """Exception base class for PCA exceeded dimensions case."""
... pass

Then, write a CheckpointFunction that checks the number of output dimensions of the PCANode and aborts
if this number is larger than max_dim

>>> class CheckPCA(mdp.CheckpointFunction):
... def __init__(self,max_dim):
... self.max_dim = max_dim
... def __call__(self,node):

25

http://mdp-toolkit.sourceforge.net/code/tutorial/checkpoints.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

... node.stop_training()

... act_dim = node.get_output_dim()

... if act_dim > self.max_dim:

... errstr = ’PCA output dimensions exceeded maximum ’+\

... ’(%d > %d)’%(act_dim,self.max_dim)

... raise PCADimensionExceededException, errstr

... else:

... print ’PCA output dimensions = %d’%(act_dim)

Define the CheckpointFlow

>>> flow = mdp.CheckpointFlow([pca, exp, sfa])

To train it we have to supply 3 generators and 3 checkpoint functions

>>> flow.train([gen_data(10, 50), None, gen_data(10, 50)],
... [CheckPCA(10), None, None])
Traceback (most recent call last):

File "<stdin>", line 2, in ?
[...]

__main__.PCADimensionExceededException: PCA output dimensions exceeded maximum (25 > 10)

The training fails with a PCADimensionExceededException. If we only had 12 input dimensions instead
of 50 we would have passed the checkpoint

>>> flow[0] = mdp.nodes.PCANode(output_dim=0.9)
>>> flow.train([gen_data(10, 12), None, gen_data(10, 12)],
... [CheckPCA(10), None, None])
PCA output dimensions = 7

We could use the built-in CheckpoinSaveFunction to save the SFANode and analyze the results later

>>> pca = mdp.nodes.PCANode(output_dim=0.9)
>>> exp = mdp.nodes.PolynomialExpansionNode(2)
>>> sfa = mdp.nodes.SFANode()
>>> flow = mdp.CheckpointFlow([pca, exp, sfa])
>>> flow.train([gen_data(10, 12), None, gen_data(10, 12)],
... [CheckPCA(10),
... None,
... mdp.CheckpointSaveFunction(’dummy.pic’,
... stop_training = 1,
... protocol = 0)])
PCA output dimensions = 6

We can now reload and analyze the SFANode

>>> fl = file(’dummy.pic’)
>>> import cPickle
>>> sfa_reloaded = cPickle.load(fl)
>>> sfa_reloaded
SFANode(input_dim=27, output_dim=27, dtype=’float64’)

Don’t forget to clean the rubbish

>>> fl.close()
>>> import os
>>> os.remove(’dummy.pic’)

26 Chapter 6. Checkpoints

CHAPTER

SEVEN

NODE EXTENSIONS

CodeSnippet

You can download all the code on this page from the code snippets directory

The node extension mechanism is an advanced topic, so you might want to skip this section at first. The examples
here partly use the parallel and hinet packages, which are explained later in the tutorial.

The node extension mechanism makes it possible to dynamically add methods or class attributes for specific
features to node classes (e.g. for parallelization the nodes need a _fork and _join method). Note that methods
are just a special case of class attributes, the extension mechanism treats them like any other class attributes. It is
also possible for users to define custom extensions to introduce new functionality for MDP nodes without having
to directly modify any MDP code. The node extension mechanism basically enables some form of Aspect-oriented
programming (AOP) to deal with cross-cutting concerns (i.e., you want to add a new aspect to node classes which
are spread all over MDP and possibly your own code). In the AOP terminology any new methods you introduce
contain advice and the pointcut is effectively defined by the calling of these methods.

Without the extension mechanism the adding of new aspects to nodes would be done through inheritance, deriving
new node classes that implement the aspect for the parent node class. This is fine unless one wants to use multiple
aspects, requiring multiple inheritance for every combination of aspects one wants to use. Therefore this approach
does not scale well with the number of aspects.

The node extension mechanism does not directly depend on inheritance, instead it adds the methods or class
attributes to the node classes dynamically at runtime (like method injection). This makes it possible to activate
extensions just when they are needed, reducing the risk of interference between different extensions. One can also
use multiple extensions at the same time, as long as there is no interference, i.e., both extensions do not use any
attributes with the same name.

The node extension mechanism uses a special Metaclass, which allows it to define the node extensions as classes
derived from nodes (bascially just what one would do without the extension mechanism). This keeps the code
readable and avoids some problems when using automatic code checkers (like the background pylint checks in the
Eclipse IDE with PyDev).

In MDP the node extension mechanism is currently used by the parallel package and for the the HTML
representation in the hinet package, so the best way to learn more is to look there. We also use these packages
in the following examples.

7.1 Using Extensions

First of all you can get all the available node extensions by calling the get_extensions function, or to get
just a list of their names use get_extensions().keys(). Be careful not to modify the dict returned by
get_extensions, since this will actually modify the registered extensions. The currently activated extensions
are returned by get_active_extensions. To activate an extension use activate_extension, e.g. to
activate the parallel extension write:

27

http://mdp-toolkit.sourceforge.net/code/tutorial/extensions.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> mdp.activate_extension("parallel")
>>> # now you can use the added attributes / methods
>>> mdp.deactivate_extension("parallel")
>>> # the additional attributes are no longer available

Note: As a user you will never have to activate the parallel extension yourself, this is done automatically by the
ParallelFlow class. The parallel package will be explained later, it is used here only as an example.

Activating an extension adds the available extensions attributes to the supported nodes. MDP also provides a
context manager for the with statement:

>>> with mdp.extension("parallel"):
... pass

The with statement ensures that the activated extension is deactivated after the code block, even if there is an
exception. But the deactivation at the end happens only for the extensions that were activated by this context
manager (not for those that were already active when the context was entered). This prevents unintended side
effects.

Finally there is also a function decorator:

>>> @mdp.with_extension("parallel")
... def f():
... pass

Again this ensures that the extension is deactivated after the function call, even in the case of an exception. The
deactivation happens only if the extension was activated by the decorator (not if it was already active before).

7.2 Writing Extension Nodes

Suppose you have written your own nodes and would like to make them compatible with a particular extension
(e.g. add the required methods). The first way to do this is by using multiple inheritance to derive from the base
class of this extension and your custom node class. For example the parallel extension of the SFA node is defined
in a class

>>> class ParallelSFANode(mdp.parallel.ParallelExtensionNode,
... mdp.nodes.SFANode):
... def _fork(self):
... # implement the forking for SFANode
... return ...
... def _join(self):
... # implement the joining for SFANode
... return ...

Here ParallelExtensionNode is the base class of the extension. Then you define the required methods or
attributes just like in a normal class. If you want you could even use the new ParallelSFANode class like a
normal class, ignoring the extension mechanism. Note that your extension node is automatically registered in the
extension mechanism (through a little metaclass magic).

For methods you can alternatively use the extension_method function decorator. You define the extension
method like a normal function, but add the function decorator on top. For example to define the _fork method
for the SFANode we could have also used

>>> @mdp.extension_method("parallel", mdp.nodes.SFANode)
... def _fork(self):
... return ...

The first decorator argument is the name of the extension, the second is the class you want to extend. You can also
specify the method name as a third argument, then the name of the function is ignored (this allows you to get rid
of warnings about multiple functions with the same name).

28 Chapter 7. Node Extensions

Modular toolkit for Data Processing

Tutorial, Release 3.2

7.3 Creating Extensions

To create a new node extension you just have to create a new extension base class. For example the HTML
representation extension in mdp.hinet is created with

>>> class HTMLExtensionNode(mdp.ExtensionNode, mdp.Node):
... """Extension node for HTML representations of individual nodes."""
... extension_name = "html2"
... def html_representation(self):
... pass
... def _html_representation(self):
... pass

Note that you must derive from ExtensionNode. If you also derive from mdp.Node then the methods (and
attributes) in this class are the default implementation for the mdp.Node class. So they will be used by all nodes
without a more specific implementation. If you do not derive from mdp.Node then there is no such default
implementation. You can also derive from a more specific node class if your extension only applies to these
specific nodes.

When you define a new extension then you must define the extension_name attribute. This magic attribute is
used to register the new extension and you can activate or deactivate the extension by using this name.

Note that extensions can override attributes and methods that are defined in a node class. The original attributes
can still be accessed by prefixing the name with _non_extension_ (the prefix string is also available as
mdp.ORIGINAL_ATTR_PREFIX). On the other hand one extension is not allowed to override attributes that
were defined by another currently active extension.

The extension mechanism uses some magic to make the behavior more intuitive with respect to inheritance. Basi-
cally methods or attributes defined by extensions shadow those which are not defined in the extension. Here is an
example

>>> class TestExtensionNode(mdp.ExtensionNode):
... extension_name = "test"
... def _execute(self):
... return 0
>>> class TestNode(mdp.Node):
... def _execute(self):
... return 1
>>> class ExtendedTestNode(TestExtensionNode, TestNode):
... pass

After this extension is activated any calls of _execute in instances of TestNode will return 0 instead of
1. The _execute from the extension base-class shadows the method from TestNode. This makes it easier
to share behavior for different classes. Without this magic one would have to explicitly override _execute
in ExtendedTestNode (or derive the extension base-class from Node, but that would give this behavior to
all node classes). Note that there is a verbose argument in activate_extension which can help with
debugging.

7.3. Creating Extensions 29

Modular toolkit for Data Processing

Tutorial, Release 3.2

30 Chapter 7. Node Extensions

CHAPTER

EIGHT

HIERARCHICAL NETWORKS

CodeSnippet

You can download all the code on this page from the code snippets directory

The hinet subpackage makes it possible to construct arbitrary feed-forward architectures, and in particular
hierarchical networks (networks which are organized in layers).

8.1 Building blocks

The hinet package contains three basic building blocks, all of which are derived from the Node class: Layer,
FlowNode, and Switchboard.

The first building block is the Layer node, which works like a horizontal version of flow. It acts as a wrapper
for a set of nodes that are trained and executed in parallel. For example, we can combine two nodes with 100
dimensional input to construct a layer with a 200-dimensional input:

>>> node1 = mdp.nodes.PCANode(input_dim=100, output_dim=10)
>>> node2 = mdp.nodes.SFANode(input_dim=100, output_dim=20)
>>> layer = mdp.hinet.Layer([node1, node2])
>>> layer
Layer(input_dim=200, output_dim=30, dtype=None)

The first half of the 200 dimensional input data is then automatically assigned to node1 and the second half to
node2. A layer Layer node can be trained and executed just like any other node. Note that the dimensions of
the nodes must be already set when the layer is constructed.

In order to be able to build arbitrary feed-forward node structures, hinet provides a wrapper class for flows (i.e.,
vertical stacks of nodes) called FlowNode. For example, we can replace node1 in the above example with a
FlowNode:

>>> node1_1 = mdp.nodes.PCANode(input_dim=100, output_dim=50)
>>> node1_2 = mdp.nodes.SFANode(input_dim=50, output_dim=10)
>>> node1_flow = mdp.Flow([node1_1, node1_2])
>>> node1 = mdp.hinet.FlowNode(node1_flow)
>>> layer = mdp.hinet.Layer([node1, node2])
>>> layer
Layer(input_dim=200, output_dim=30, dtype=None)

In this example node1 has two training phases (one for each internal node). Therefore layer now has two
training phases as well and behaves like any other node with two training phases. By combining and nesting
FlowNode and Layer, it is thus possible to build modular node structures. Note that while the Flow interface
looks pretty similar to that of Node it is not compatible and therefore we must use FlowNode as an adapter.

When implementing networks one might have to route different parts of the data to different nodes in a layer.
This functionality is provided by the Switchboard node. A basic Switchboard is initialized with a 1-D

31

http://mdp-toolkit.sourceforge.net/code/tutorial/hinet.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Array with one entry for each output connection, containing the corresponding index of the input connection that
it receives its input from, e.g.:

>>> switchboard = mdp.hinet.Switchboard(input_dim=6, connections=[0,1,2,3,4,3,4,5])
>>> switchboard
Switchboard(input_dim=6, output_dim=8, dtype=None)
>>> x = mdp.numx.array([[2,4,6,8,10,12]])
>>> switchboard.execute(x)
array([[2, 4, 6, 8, 10, 8, 10, 12]])

The switchboard can then be followed by a layer that splits the routed input to the appropriate nodes, as illustrated
in following picture:

By combining layers with switchboards one can realize any feed-forward network topology. Defining the switch-
board routing manually can be quite tedious. One way to automatize this is by defining switchboard subclasses for
special routing situations. The Rectangular2dSwitchboard class is one such example and will be briefly
described in a later example.

8.2 HTML representation

Since hierarchical networks can be quite complicated, hinet includes the class HiNetHTMLTranslator that
translates an MDP flow into a graphical visualization in an HTML file. We also provide the helper function
show_flow which creates a complete HTML file with the flow visualization in it and opens it in your standard
browser.

>>> mdp.hinet.show_flow(flow)

To integrate the HTML representation into your own custom HTML file you can take a look at show_flow to
learn the usage of HiNetHTMLTranslator. You can also specify custom translations for node types via the
extension mechanism (e.g to define which parameters are displayed).

8.3 Example application (2-D image data)

As promised we now present a more complicated example. We define the lowest layer for some kind of image
processing system. The input data is assumed to consist of image sequences, with each image having a size of
50 by 50 pixels. We take color images, so after converting the images to one dimensional numpy arrays each
pixel corresponds to three numeric values in the array, which the values just next to each other (one for each color
channel).

32 Chapter 8. Hierarchical Networks

Modular toolkit for Data Processing

Tutorial, Release 3.2

The processing layer consists of many parallel units, which only see a small image region with a size of 10
by 10 pixels. These so called receptive fields cover the whole image and have an overlap of five pixels. Note
that the image data is represented as an 1-D array. Therefore we need the Rectangular2dSwitchboard
class to correctly route the data for each receptive field to the corresponding unit in the following layer. We also
call the switchboard output for a single receptive field an output channel and the three RGB values for a single
pixel form an input channel. Each processing unit is a flow consisting of an SFANode (to somewhat reduce the
dimensionality) that is followed by an SFA2Node. Since we assume that the statistics are similar in each receptive
filed we actually use the same nodes for each receptive field. Therefore we use a CloneLayer instead of the
standard Layer. Here is the actual code:

>>> switchboard = mdp.hinet.Rectangular2dSwitchboard(in_channels_xy=(50, 50),
... field_channels_xy=(10, 10),
... field_spacing_xy=(5, 5),
... in_channel_dim=3)
>>> sfa_dim = 48
>>> sfa_node = mdp.nodes.SFANode(input_dim=switchboard.out_channel_dim,
... output_dim=sfa_dim)
>>> sfa2_dim = 32
>>> sfa2_node = mdp.nodes.SFA2Node(input_dim=sfa_dim,
... output_dim=sfa2_dim)
>>> flownode = mdp.hinet.FlowNode(mdp.Flow([sfa_node, sfa2_node]))
>>> sfa_layer = mdp.hinet.CloneLayer(flownode,
... n_nodes=switchboard.output_channels)
>>> flow = mdp.Flow([switchboard, sfa_layer])

The HTML representation of the the constructed flow looks like this in your browser:

8.3. Example application (2-D image data) 33

Modular toolkit for Data Processing

Tutorial, Release 3.2

Now one can train this flow for example with image sequences from a movie. After the training phase
one can compute the image pattern that produces the highest response in a given output coordinate (use
mdp.utils.QuadraticForm). One such optimal image pattern may look like this (only a grayscale ver-
sion is shown):

34 Chapter 8. Hierarchical Networks

Modular toolkit for Data Processing

Tutorial, Release 3.2

So the network units have developed some kind of primitive line detector. More on this topic can be found in:
Berkes, P. and Wiskott, L., Slow feature analysis yields a rich repertoire of complex cell properties. Journal of
Vision, 5(6):579-602.

One could also add more layers on top of this first layer to do more complicated stuff. Note that the
in_channel_dim in the next Rectangular2dSwitchboard would be 32, since this is the output di-
mension of one unit in the CloneLayer (instead of 3 in the first switchboard, corresponding to the three RGB
colors).

8.3. Example application (2-D image data) 35

http://www.journalofvision.org/content/5/6/9
http://www.journalofvision.org/content/5/6/9

Modular toolkit for Data Processing

Tutorial, Release 3.2

36 Chapter 8. Hierarchical Networks

CHAPTER

NINE

PARALLELIZATION

CodeSnippet

You can download all the code on this page from the code snippets directory

The parallel package adds the ability to parallelize the training and execution of MPD flows. This package is
split into two decoupled parts.

The first part consists of a parallel extension for the familiar MDP structures of nodes and flows. In principle
all MDP nodes aldready support parallel execution, since copies of a node can be made and used in parallel.
Parallelization of the training on the other hand depends on the specific node or algorithm. For nodes which can
be trained in a parallelized way there is the extension class ParallelExtensionNode. It adds the fork and
join methods. When providing a parallel extension for custom node classes you should implement _fork and
_join. Secondly there is the ParallelFlow class, which internally splits the training or execution into tasks
which are then processed in parallel.

The second part consists of the schedulers. A scheduler takes tasks and processes them in a more or less parallel
way (e.g. in multiple Python processes). A scheduler deals with the more technical aspects of the parallelization,
but does not need to know anything about nodes and flows.

9.1 Basic Examples

In the following example we parallelize a simple Flow consisting of PCA and quadratic SFA, so that it makes use
of multiple cores on a modern CPU:

>>> node1 = mdp.nodes.PCANode(input_dim=100, output_dim=10)
>>> node2 = mdp.nodes.SFA2Node(input_dim=10, output_dim=10)
>>> parallel_flow = mdp.parallel.ParallelFlow([node1, node2])
>>> parallel_flow2 = parallel_flow.copy()
>>> parallel_flow3 = parallel_flow.copy()
>>> n_data_chunks = 10
>>> data_iterables = [[np.random.random((50, 100))
... for _ in range(n_data_chunks)]] * 2
>>> scheduler = mdp.parallel.ProcessScheduler()
>>> parallel_flow.train(data_iterables, scheduler=scheduler)
>>> scheduler.shutdown()

Only two additional lines were needed to parallelize the training of the flow. All one has to do is use a
ParallelFlow instead of the normal Flow and provide a scheduler. The ProcessScheduler will au-
tomatically create as many Python processes as there are CPU cores. The parallel flow gives the training task for
each data chunk over to the scheduler, which in turn then distributes them across the available worker processes.
The results are then returned to the flow, which puts them together in the right way. Note that the shutdown
method should be always called at the end to make sure that the recources used by the scheduler are cleaned up
properly. One should therefore put the shutdown call into a safe try/finally statement

37

http://mdp-toolkit.sourceforge.net/code/tutorial/parallel.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> scheduler = mdp.parallel.ProcessScheduler()
>>> try:
... parallel_flow2.train(data_iterables, scheduler=scheduler)
... finally:
... scheduler.shutdown()

The Scheduler class also supports the context manager interface of Python. One can therefore use a with
statement

>>> with mdp.parallel.ProcessScheduler() as scheduler:
... parallel_flow3.train(data_iterables, scheduler=scheduler)

The with statement ensures that scheduler.shutdown is automatically called (even if there is an exception).

9.2 Scheduler

The scheduler classes in MDP are derived from the Scheduler base class (which itself does not implement any
parallelization). The standard choice at the moment is the ProcessScheduler, which distributes the incoming
tasks over multiple Python processes (circumventing the global interpreter lock or GIL). The performance gain is
highly dependent on the specific situation, but can potentially scale well with the number of CPU cores (in one
real world case we saw a speed-up factor of 4.2 on an Intel Core i7 processor with 4 physical / 8 logical cores).

MDP has experimental support for the Parallel Python library in the mdp.parallel.pp_support package.
In principle this makes it possible to parallelize across multiple machines. Recently we also added the thread based
scheduler ThreadScheduler. While it is limited by the GIL it can still achieve a real-world speedup (since
NumPy releases the GIL when possible) and it causes less overhead compared to the ProcessScheduler.

(The following information is only releveant for people who want to implement custom scheduler classes.)

The first important method of the scheduler class is add_task. This method takes two arguments: data
and task_callable, which can be a function or an object with a __call__ method. The return
value of the task_callable is the result of the task. If task_callable is None then the last pro-
vided task_callable will be used. This splitting into callable and data makes it possible to implement
caching of the task_callable in the scheduler and its workers (caching is turned on by default in the
ProcessScheduler). To further influence caching one can derive from the TaskCallable class, which
has a fork method to generate new callables in order to preserve the original cached callable. For MDP training
and execution there are corresponding classes derived from TaskCallable which are automatically used, so
normally there is no need to worry about this.

After submitting all the tasks with add_task you can then call the get_results method. This method
returns all the task results, normally in a list. If there are open tasks in the scheduler then get_results will
wait until all the tasks are finished (it blocks). You can also check the status of the scheduler by looking at the
n_open_tasks property, which gives you the number of open tasks. After using the scheduler you should
always call the shutdown method, otherwise you might get error messages from not properly closed processes.

Internally an instance of the base class mdp.parallel.ResultContainer is used for the storage of the
results in the scheduler. By providing your own result container to the scheduler you modify the storage. For
example the default result container is an instance of OrderedResultContainer. The ParallelFlow
class by default makes sure that the right container is used for the task (this can be overriden manually via the
overwrite_result_container parameter of the train and execute methods).

9.3 Parallel Nodes

If you want to parallelize your own nodes you have to provide parallel extensions for them. The
ParallelExtensionNode base class has the new template methods fork and join. fork should re-
turn a new node instance. This new instance can then be trained somewhere else (e.g. in a different process) with
the usual train method. Afterwards join is called on the original node, with the forked node as the argument.
This should be equivalent to calling train directly on the original node.

38 Chapter 9. Parallelization

http://www.parallelpython.com

Modular toolkit for Data Processing

Tutorial, Release 3.2

During Execution nodes are not forked by default, instead they are just copied (for example they are pickled and
send to the Python worker processes). It is possible for nodes during execution to explicitly request that they are
forked and joined (like during training). This is done by overriding the use_execute_fork method, which
by default returns False. For example nodes that record data during execution can use this feature to become
compatible with parallelization.

When writing custom parallel node extension you should only overwrite the _fork and _join methods, which
are automatically called by fork and join. The fork and join take care of the standard node attributes like
the dimensions. You should also look at the source code of a parallel node like ParallelPCANode to get a
better idea of how to parallelize nodes. By overwriting use_execute_fork to return True you can force
forking and joining during execution. Note that the same _fork and _join implementation is called as during
training, so if necessary one should add an node.is_training() check there to determine the correct action.

Currently we provide the following parallel nodes: ParallelPCANode, ParallelWhiteningNode,
ParallelSFANode, ParallelSFA2Node, ParallelFDANode, ParallelHistogramNode,
ParallelAdaptiveCutoffNode, ParallelFlowNode, ParallelLayer, ParallelCloneLayer
(the last three are derived from the hinet package).

9.3. Parallel Nodes 39

Modular toolkit for Data Processing

Tutorial, Release 3.2

40 Chapter 9. Parallelization

CHAPTER

TEN

CACHING EXECUTION RESULTS

CodeSnippet

You can download all the code on this page from the code snippets directory

10.1 Introduction

It is relatively common for nodes to process the same data several times. Usually this happens when training a long
sequence of nodes using a fixed data set: to train the nodes at end of the sequence, the data has to be processed
by all the preceding ones. This duplication of efforts may be costly, for example in image processing, when one
needs to repeatedly filter the images (as in this example).

MDP offers a node extension that automatically caches the result of the execute method, which can boost the
speed of an application considerably in such scenarios. The cache can be activated globally (i.e., for all node
instances), for some node classes only, or for specific instances.

The caching mechanism is based on the library joblib, version 0.4.3 or higher.

10.2 Activating the caching extension

It is possible to activate the caching extension as for regular extension using the extension name
’cache_execute’. By default, the cached results will be stored in a database created in a temporary di-
rectory for the duration of the Python session. To change the caching directory, which may be useful to create a
permanent cache over multiple sessions, one can call the function mdp.caching.set_cachedir.

We will illustrate the caching extension using a simple but relatively large Principal Component Analysis problem:

>>> # set up a relatively large PCA run
>>> import mdp
>>> import numpy as np
>>> from timeit import Timer
>>> x = np.random.rand(3000,1000)
>>> # create a PCANode and train it using the random data in ’x’
>>> pca_node = mdp.nodes.PCANode()
>>> pca_node.train(x)
>>> pca_node.stop_training()

The time for projecting the data x on the principal components drops dramatically after the caching extension is
activated:

>>> # we will use this timer to measure the speed of ’pca_node.execute’
>>> timer = Timer("pca_node.execute(x)", "from __main__ import pca_node, x")
>>> mdp.caching.set_cachedir("/tmp/my_cache")
>>> mdp.activate_extension("cache_execute")

41

http://mdp-toolkit.sourceforge.net/code/tutorial/caching.html
http://packages.python.org/joblib/

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> # all calls to the ’execute’ method will now be cached in ’my_cache’
>>> # the first time execute is called, the method is run
>>> # and the result is cached
>>> print timer.repeat(1, 1)[0], ’sec’
1.188946008682251 sec
>>> # the second time, the result is retrieved from the cache
>>> print timer.repeat(1, 1)[0], ’sec’
0.112375974655 sec
>>> mdp.deactivate_extension("cache_execute")
>>> # when the cache extension is deactivated, the ’execute’ method is
>>> # called as usual
>>> print timer.repeat(1, 1)[0], ’sec’
0.801102161407 sec

Alternative ways to activate the caching extension, which also expose more functionalities, can be found in the
mdp.caching module. The functions activate_caching and deactivate_caching allow activating
the cache only on certain Node classes, or specific instances. For example, the following line starts the cache
extension, caching only instances of the classes SFANode and FDANode, and the instance pca_node.

>>> mdp.caching.activate_caching(cachedir=’/tmp/my_cache’,
... cache_classes=[mdp.nodes.SFANode, mdp.nodes.FDANode],
... cache_instances=[pca_node])
>>> # all calls to the ’execute’ method of instances of ’SFANode’ and
>>> # ’FDANode’, and of ’pca_node’ will now be cached in ’my_cache’
>>> mdp.caching.deactivate_caching()

Make sure to call the deactivate_caching method before the end of the session, or the cache directory may
remain in a broken state.

Finally, the module mdp.caching also defines a context manager that closes the cache properly at the end of
the block:

>>> with mdp.caching.cache(cachedir=’/tmp/my_cache’, cache_instances=[pca_node]):
... # in the block, the cache is active
... print timer.repeat(1, 1)[0], ’sec’
...
0.101263999939 sec
>>> # at the end of the block, the cache is deactivated
>>> print timer.repeat(1, 1)[0], ’sec’
0.801436901093 sec

42 Chapter 10. Caching execution results

CHAPTER

ELEVEN

CLASSIFIER NODES

CodeSnippet

You can download all the code on this page from the code snippets directory

New in MDP 2.6 is the ClassifierNode base class which offers a simple interface for creating classification
tasks. Usually, one does not want to use the classification output in a flow but extract this information inde-
pendently. By default classification nodes will therefore simply return the identity function on execute; all
classification work is done with the new methods label, prob and rank. However, if a classification node
is the last node in a flow then it is possible to perform the classification as part of the normal flow execution by
setting the execute_method attribute (more on this later).

As a first example, we will use the GaussianClassifier.

>>> gc = mdp.nodes.GaussianClassifier()
>>> gc.train(np.random.random((50, 3)), +1)
>>> gc.train(np.random.random((50, 3)) - 0.8, -1)

We have trained the node and assigned the labels +1 and -1 to the sample points. Note that in this simple case we
do not need to give a label to each individual point, when only a single label is given, it is assigned to the whole
batch of features. However, it is also possible to use the more explicit form:

>>> gc.train(np.random.random((50, 3)), [+1] * 50)

We can then retrieve the most probable labels for some testing data,

>>> test_data = np.array([[0.1, 0.2, 0.1], [-0.1, -0.2, -0.1]])
>>> gc.label(test_data)
[1, -1]

and also get the probability for each label.

>>> prob = gc.prob(test_data)
>>> print prob[0][-1], prob[0][+1]
0.188737388144 0.811262611856
>>> print prob[1][-1], prob[1][+1]
0.992454101588 0.00754589841187

Finally, it is possible to get the ranking of the labels, starting with the likeliest.

>>> gc.rank(test_data)
[[1, -1], [-1, 1]]

New nodes should inherit from ClassifierNode and implement the _label and _prob methods. The
public rank method will be created automatically from prob.

As mentioned earlier it is possible to perform the classification in via the execute method of a classifier
node. Every classifier node has an execute_method attribite which can be set to the string values "label",
"rank", or "prob". The execute method of the node will then automatically call the indicated classification

43

http://mdp-toolkit.sourceforge.net/code/tutorial/classifiers.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

method and return the result. This is especially useful when the classification node is the last node in a flow,
because then the normal flow execution can be used to get the classification results. An example application is
given in the MNSIT handwritten digits classification example.

The execute_method attribute can be also set when the node is created via the execute_method argument
of the __init__ method.

44 Chapter 11. Classifier nodes

CHAPTER

TWELVE

INTERFACING WITH OTHER
LIBRARIES

CodeSnippet

You can download all the code on this page from the code snippets directory

MDP is, of course, not the only Python library to offer an implementation of signal processing and machine learn-
ing methods. Several other projects, often specialized in different algorithms, or based on different approaches, are
being developed in parallel. In order to avoid an excessive duplication of efforts, the long-term philosophy of MDP
is that of automatically wrapping the algorithms defined in external libraries, if these are installed. In this way,
MDP users have access to a larger number of algorithms, and at the same time,we offer the MDP infrastructure
(flows, caching, etc.) to users of the wrapped libraries.

At present, MDP automatically creates wrapper nodes for the following libraries if they are installed:

• Shogun (http://www.shogun-toolbox.org/): The Shogun machine learning toolbox provides a large set of
different support vector machine implementations and classifiers. Each of them can be combined with
another large set of kernels.

The MDP wrapper simplifies setting the parameters for the kernels and classifiers, and provides reasonable
default values. In order to avoid conflicts, users are encouraged to keep an eye on the original C++ API and
provide as many parameters as specified.

• libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/): libsvm is a library for support vector machines. Even
though there is also a libsvm wrapper in the Shogun toolbox, the direct libsvm interface is simpler to use
and it provides estimates of the probability of different labels.

Note that starting with MDP 3.0 we only support the Python API for the recent libsvm versions 2.91 and
3.0.

• scikits.learn (http://scikit-learn.sourceforge.net/index.html): scikits.learn is a collection of efficient ma-
chine learning algorithms. We offer automatic wrappers to all algorithms defined by in the library scik-
its.learn, and there are a lot of them! The wrapped algorithms can be recognised as their name end with
ScikitsLearnNode.

All ScikitsLearnNode contain an instance of the wrapped scikits.learn instance in the attribute
scikits_alg, and allow setting all the parameters using the original keywords. You can see the scik-
its.learn wrapper in action in this example application that uses scikits.learn to perform handwritten digits
recognition.

As of MDP 3.0, the wrappers must be considered experimental, because there are still a few inconsistencies
in the scikits.learn interface that we need to address.

45

http://mdp-toolkit.sourceforge.net/code/tutorial/wrappers.html
http://www.shogun-toolbox.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://scikit-learn.sourceforge.net/index.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

46 Chapter 12. Interfacing with other libraries

CHAPTER

THIRTEEN

BIMDP

CodeSnippet

You can download all the code on this page from the code snippets directory

BiMDP defines a framework for more general flow sequences, involving top-down processes (e.g. for error back-
propagation) and loops. So the bi in BiMDP primarily stands for bidirectional. It also adds a couple of other
features, like a standardized way to transport additional data, and a HTML based flow inspection utility. Because
BiMDP is a rather large addition and changes a few things compared to standard MDP it is not included in mdp
but must be imported separately as bimdp (BiMDP is included in the standard MDP installation)

>>> import bimdp

Warning: BiMDP is a relatively new addition to MDP (it was added in MDP 2.6). Even though it already
went through long testing and several refactoring rounds it is still not as mature and polished as the rest of
MDP. The API of BiMDP should be stable now, we don’t expect any significant breakages in the future.

Here is a brief summary of the most important new features in BiMDP:

• Nodes can specify other nodes as jump targets, where the execution or training will be continued. It is now
possible to use loops or backpropagation, in contrast to the strictly linear execution of a normal MDP flow.
This is enabled by the new BiFlow class. The new BiNode base class adds a node_id string attribute,
which can be used to target a node.

The complexities of arbitrary data flows are evenly split up between BiNode and BiFlow: Nodes specify
their data and target using a standardized interface, which is then interpreted by the flow (somewhat like a
very primitive domain specific language). The alternative approach would have been to use specialized flow
classes or container nodes for each use case, which ultimately comes down to a design decision. Of course
you can (and should) still take that route if for some reason BiMDP is not an adequate solution for your
problem.

• In addition to the standard array data, nodes can transport more data in a message dictionary (these are
really just standard Python dictionaries, so they are dict instances). The new BiNode base class provides
functionality to make this as convenient as possible.

• An interactive HTML-based inspection for flow training and execution is available. This allows you to step
through your flow for debugging or add custom visualizations to analyze what is going on.

• BiMDP supports and extends the hinet and the parallel packages from MDP. BiMDP in general is
compatible with MDP, so you can use standard MDP nodes in a BiFlow. You can also use BiNode
instances in a standard MDP flow, as long as you don’t use certain BiMDP features.

The structure of BiMDP closely follows that of MDP, so there are submodules bimdp.nodes,
bimdp.parallel, and bimdp.hinet. The module bimdp.nodes contains BiNode versions of
nearly all MDP nodes. For example bimdp.nodes.PCABiNode is derived from both BiNode and
mdp.nodes.PCANode.

47

http://mdp-toolkit.sourceforge.net/code/tutorial/bimdp.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

There are several examples available in the mdp-examples repository, which demonstrate how BiMDP can be
used. For example backpropagation demonstrates how to implement a simple multilayer perceptron, using
backpropagation for learning. The example binetdbn is a proof-of-concept implementation of a deep belief
network. In addition there are a couple of smaller examples in bimdp_examples.

Finally note that this tutorial is intended to serve as an introduction, covering all the basic aspects of BiMDP. For
more detailed specifications have a look at the docstrings.

13.1 Targets, id’s and Messages

In a normal MDP node the return value of the execute method is restricted to a single 2d array. A BiMDP
BiNode on the other hand can optionally return a tuple containing an additional message dictionary and a target
value. So in general the return value is a tuple (x, msg, target), where x is a the usual 2d array. Alterna-
tively a BiNode is also allowed to return only the array x or a 2-tuple (x, msg) (specifying no target value).
Unless stated otherwise the last entry in the tuple should not be None, but all the other values are allowed to be
None (so if you specify a target then msg can be None, and even x can be None).

The msg message is a normal Python dictionary. You can use it to transport any data that does not fit into the x 2d
data array. Nodes can take data from to the message and add data to it. The message is propagated along with the
x data. If a normal MDP node is contained in a BiFlow then the message is simply passed around it. A BiNode
can freely decide how to interact with the message (see the BiNode section for more information).

The target value is either a string or a number. The number is the relative position of the target node in the flow, so
a target value of 1 corresponds to the following node, while -1 is the previous node. The BiNode base class also
allows the specification of a node_id string in the __init__ method. This string can then be used as a target
value.

The node_id string is also useful to access nodes in a BiFlow instance. The standard MDP Flow class already
implements standard Python container methods, so flow[2] will return the third node in the flow. BiFlow in
addition enables you to use the node_id to index nodes in the flow, just like for a dictionary. Here is a simple
example

>>> pca_node = bimdp.nodes.PCABiNode(node_id="pca")
>>> biflow = bimdp.BiFlow([pca_node])
>>> biflow["pca"]
PCABiNode(input_dim=None, output_dim=None, dtype=None, node_id="pca")

13.2 BiFlow

The BiFlow class mostly works in the same way as the normal Flow class. We already mentioned several
of the new features, like support for targets, messages, and retrieving nodes based on their node_id. Apart
from that the only major difference is the way in which you can provide additional arguments for nodes. For
example the FDANode in MDP requires class labels in addition to the data array (telling the node to which
class each data point belongs). In the Flow class the additional training data (the class labels) is provided by
the same iterable as the data. In a BiFlow this is no longer allowed, since this functionality is provided by
the more general message mechanism. In addition to the data_iterables keyword argument of train
there is a new msg_iterables argument, to provide iterables for the message dictionary. The structure of the
msg_iterables argument must be the same as that of data_iterables, but instead of yielding arrays it
should yield dictionaries (containing the additional data values with the corresponding keys). Here is an example

>>> samples = np.random.random((100,10))
>>> labels = np.arange(100)
>>> biflow = bimdp.BiFlow([mdp.nodes.PCANode(), bimdp.nodes.FDABiNode()])
>>> biflow.train([[samples],[samples]], msg_iterables=[None,[{"labels": labels}]])

The _train method of FDANode requires the labels argument, so this is used as the key value. Note that
we have to use the BiNode version of FDANode, called FDABiNode (alomost every MDP node has a BiNode

48 Chapter 13. BiMDP

Modular toolkit for Data Processing

Tutorial, Release 3.2

version following this naming convention). The BiNode class provides the cl value from the message to the
_train method.

In a normal Flow the additional arguments can only be given to the node which is currently in training. This
limitation does not apply to a BiFlow, where the message can be accessed by all nodes (more on this later).
Message iterators can also be used during execution, via the msg_iterable argument in BiFlow.execute.
Of course messages can be also returned by BiFlow.execute, so the return value always has the form (y,
msg) (where msg can be an empty dictionary). For example:

>>> biflow = bimdp.nodes.PCABiNode(output_dim=10) + bimdp.nodes.SFABiNode()
>>> x = np.random.random((100,20))
>>> biflow.train(x)
>>> y, msg = biflow.execute(x)
>>> msg
{}
>>> # include a message that is not used
>>> y, msg = biflow.execute(x, msg_iterable={"test": 1})
>>> msg
{’test’: 1}

Note that BiNode overloads the plus operator to create a BiFlow. If iterables are used for execution then the
BiFlow not only concatenates the y result arrays, but also tries to join the msg dictionaries into a single one.
Arrays in the msg will be concatenated, for all other types the plus operator is used.

The train method of BiFlow also has an additional argument called stop_messages, which can be used
to provide message iterables for stop_training. The execute method on the other hand has an argument
target_iterable, which can be used to specify the initial target in the flow execution (if the iterable is
just a single array then of course the target_iterable should be just a single node_id).

13.3 BiNode

We now want to give an overview of the BiNode API, which is mostly an extension of the Node API. First we
take a look at the possible return values of a BiNode and briefly explain their meaning:

• execute

– x or (x, msg) or (x, msg, target). Normal execution continues, directly jumping to
the target if one is specified.

• train

– None terminates training.

– x or (x, msg) or (x, msg, target). Means that execution is continued and that this
node will be reached again to terminate training. If x is None and no target is specified then the
remaining msg is dropped (so it is not required to “clear” the message manually in _train for
custom nodes to terminate training).

• stop_training

– None doesn’t do anything, like the normal MDP stop_training.

– x or (x, msg) or (x, msg, target). Causes an execute like phase, which terminates
when the end of the flow is reached or when EXIT_TARGET is given as target value (just like
during a normal execute phase, EXIT_TARGET is explained later).

Of course all these methods also accept messages. Compared to Node methods they have a new msg argument.
The target part on the other hand is only used by the BiFlow.

As you can see from train, the training does not always stop when the training node is reached. Instead it
is possible to continue with the execution to come back later. For example this is used in the backpropagation
example (in the MDP examples repository). There are also the new stop_training result options that start an
execute phase. This can be used to propagate results from the node training or to prepare nodes for their upcoming
training.

13.3. BiNode 49

Modular toolkit for Data Processing

Tutorial, Release 3.2

Some of these new options might be confusing at first. However, you can simply ignore those that you don’t need
and concentrate on the features that are useful for your current project. For example you could use messages
without ever worrying about targets.

There are also two more additions to the BiNode API:

• node_id This is a read-only property, which returns the node id (which is None if it wasn’t specified).
The __init__ method of a BiNode generally accepts a node_id keyword argument to set this
value.

• bi_reset This method is called by the BiFlow before and after training and execution (and after the
stop_training execution phase). You can be override the private _bi_reset method to reset
internal state variables (_bi_reset is called by bi_reset).

13.4 Inspection

Using jumps and messages can result in complex data flows. Therefore BiMDP offers some convenient inspection
capabilities to help with debugging and analyzing what is going on. This functionality is based on the static HTML
view from the mdp.hinet module. Instead of a static view of the flow you get an animated slideshow of the
flow training or execution. An example is provided in bimdp/test/demo_hinet_inspection.py. You
can simply call bimdp.show_execution(flow, data) instead of the normal flow.execute(data).
This will automatically perform the inspection and open it in your webbrowser. Similar functionality is available
for training. Just call bimdp.show_execution(flow, data_iterables), which will perform training
as in flow.train(data_iterables). Have a look at the docstrings to learn about additional options.

The BiMDP inspection is also useful to visualize the data processing that is happening inside a flow. This is
especially handy if you are trying to build or understand new algorithms and want to know what is going on.
Therefore we made it very easy to customize the HTML views in the inspection. One simple example is provided
in bimdp/test/demo_custom_inspection.py, where we use matplotlib to plot the data and present it
inside the HTML view. Note that bimdp.show_training and bimdp.show_execution are just helper

50 Chapter 13. BiMDP

Modular toolkit for Data Processing

Tutorial, Release 3.2

functions. If you need more flexibility you can directly access the machinery below (but this is rather messy and
hardly ever needed).

Browser Compatibility

The inspection works with all browser except Chrome. This is due to a controversial chromium issue.
Until this is fixed by the Chrome developers the only workarounds are to either start Chrome with the
--allow-file-access-from-files flag or to access the inspection via a webserver.

13.5 Extending BiNode and Message Handling

As in the Node class any derived BiNode classes should not directly overwrite the public execute or train
methods but instead the private versions with an underscore in front (for training you can of course also overwrite
_get_train_seq). In addition to the dimensionality checks performed on x by the Node class this enables a
couple of message handling features.

The automatic message handling is a major feature in BiNode and relies on the dynamic nature of Python. In the
FDABiNode and BiFlow example we have already seen how a value from the message is automatically passed
to the _train method, because the key of the value is also the name of a keyword argument.

Public methods like execute in BiNode accept not only a data array x, but also a message dictionary msg.
When given a message they perform introspection to determine the arguments for the corresponding private meth-
ods (like _train). If there is a matching key for an argument in the message then the value is provided as a
keyword argument. It remains in the dictionary and can therefore be used by other nodes in the flow as well.

A private method like _train has the same return options as the public train method, so one can for example
return a tuple (x, msg). The msg in the return value from _train is then used by train to update the
original msg. Thereby _train can overwrite or add new values to the message. There are also some special
features (“magic”) to make handling messages more convenient:

• You can use message keys of the form node_id->argument_key to address parts of the message to a
specific node. When the node with the corresponding id is reached then the value is not only provided as an
argument, but the key is also deleted from the message. If the argument_key is not an argument of the
method then the whole key is simply erased.

• If a private method like _train has a keyword argument called msg then the complete message is pro-
vided. The message from the return value replaces the original message in this case. For example this makes
it possible to delete parts of the message (instead of just updating them with new values).

• The key "method" is treated in a special way. Instead of calling the standard private method like _train
(or _execute, depending on the called public method) the "method" value will be used as the method
name, with an underscore in front. For example the message {"method": "classify"} has the
effect that a method _classify will be called. Note that this feature can be combined with the extension
mechanism, when methods are added at runtime.

• The key "target" is treated in a special way. If the called private method does not return a target value
(e.g., if it just returned x) then the "target" value is used as target return value (e.g, instead of x the
return value of execute would then have the form x, None, target).

• If the key "method" has the value inverse then, as expected, the _inverse method is called. How-
ever, additionally the checks from inverse are run on the data array. If _inverse does not return a
target value then the target -1 is returned. So with the message {"method": "inverse"} one can
execute a BiFlow in inverse node (note that one also has to provide the last node in the flow as the initial
target to the flow).

• This is more of a BiFlow feature, but the target value specified in bimdp.EXIT_TARGET (currently set
to "exit") causes BiFlow to terminate the execution and to return the last return value.

Of course all these features can be combined, or can be ignored when they are not needed.

13.5. Extending BiNode and Message Handling 51

http://code.google.com/p/chromium/issues/detail?id=47416

Modular toolkit for Data Processing

Tutorial, Release 3.2

13.6 HiNet in BiMDP

BiMDP is mostly compatible with the hierarchical networks introduced in mdp.hinet. For the full BiMDP
functionality it is of required to use the BiMDP versions of the the building blocks.

The bimdp.hinet module provides a BiFlowNode class, which is offers the same functionality as a
FlowNode but with the added capability of handling messages, targets, and all other BiMDP concepts.

There is also a new BiSwitchboard base class, which is able to deal with messages. Arrays present in the
message are mapped with the switchboard routing if the second axis matches the switchboard dimension (this
works for both execute and inverse).

Finally there is a CloneBiLayer class, which is the BiMDP version of the CloneLayer class in mdp.hinet.
To support all the features of BiMDP some significant functionality has been added to this class. The most
important new aspect is the use_copies property. If it is set to True then multiple deep copies are used
instead of just a reference to the same node. This makes it possible to use internal variables in a node that persist
while the node is left and later reentered. You can set this property as often as you like (note that there is of course
some overhead for the deep copying). You can also set the use_copies property via the message mechanism
by simply adding a "use_copies" key with the required boolean value. The CloneBiLayer class also looks
for this key in outgoing messages (so it can be send by nodes inside the layer). A CloneBiLayer can also
split arrays in the message to feed them to the nodes (see the doctring for more details). CloneBiLayer is
compatible with the target mechanism (e.g. if the CloneBiLayer contains a BiFlowNode you can target an
internal node).

13.7 Parallel in BiMDP

The parallelisation capabilites introduced in mdp.parallel can be used for BiMDP. The bimdp.parallel
module provides a ParallelBiFlow class which can be used like the normal ParallelFlow. No changes
to schedulers are required.

Note that a ParallelBiFlow uses a special callable class to handle the message data. So if you want to use
a custom callable you will have to make a few modifications (compared to the standard callable class used by
ParallFlow).

13.8 Coroutine Decorator

For complex flow control (like in the DBN example) one might need a node that keeps track of the current status in
the execution. The standard pattern for this is to implement a state machine, which would require some boilerplate
code. Python on the other hand supports so called continuations via coroutines. A coroutine is very similar to
a generator function, but the yield statement can also return a value (i.e., the coroutine is receiving a value).
Coroutines might be difficult to grasp, but they are well documented on the web. Most importantly, coroutines can
be a very elegant implementation of the state machine pattern.

Using a couroutine in a BiNode to maintain a state would still require some boilerplate code. Therefore BiMDP
provides a special function decorator to minimize the effort, making it extremely convenient to use coroutines.
This is demonstrated in the gradnewton and binetdbn examples. For example decorating the _execute
method can be done like this:

>>> class SimpleCoroutineNode(bimdp.nodes.IdentityBiNode):
... # the arg ["b"] means that that the signature will be (x, b)
... @bimdp.binode_coroutine(["b"])
... def _execute(self, x, n_iterations):
... """Gather all the incomming b and return them finally."""
... bs = []
... for _ in range(n_iterations):
... x, b = yield x
... bs.append(b)
... raise StopIteration(x, {"all the b": bs})

52 Chapter 13. BiMDP

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> n_iterations = 3
>>> x = np.random.random((1,1))
>>> node = SimpleCoroutineNode()
>>> # during the first call the decorator creates the actual coroutine
>>> x, msg = node.execute(x, {"n_iterations": n_iterations})
>>> # the following calls go to the yield statement,
>>> # finally the bs are returned
>>> for i in range(n_iterations-1):
... x, msg = node.execute(x, {"b": i})
>>> x, msg = node.execute(x, {"b": n_iterations-1})

You can find the complete runable code in the bimdp_simple_coroutine.py example.

13.9 Classifiers in BiMDP

BiMDP introduces a special BiClassifier base class for the new Classifier nodes in MDP. This makes
it possible to fully use classifiers in a normal BiFlow. Just like for normal nodes the BiMDP versions of the
classifier are available in bimdp.nodes (the SVM classifiers are currently not available by default, but it is
possible to manually derive a BiClassifier version of them).

The BiClassifier class makes it possible to provide the training labels via the message mechanism (simply
store the labels with a "labels" key in the msg dict). It is also possible to transport the classification results
in the outgoing message. The _execute method of a BiClassifier has three keyword arguments called
return_labels, return_ranks, and return_probs. These can be set via the message mechanism. If
for example return_labels is set to True then execute will call the label method from the classifier
node and store the result in the outgoing message (under the key "labels"). The return_labels argument
(and the other two) can also be set to a string value, which is then used as a prefix for the "labels" key in the
outgoing message (e.g., to target this information at a specific node in the flow).

13.9. Classifiers in BiMDP 53

Modular toolkit for Data Processing

Tutorial, Release 3.2

54 Chapter 13. BiMDP

CHAPTER

FOURTEEN

NODE LIST

Full API documentation: nodes

class mdp.nodes.PCANode
Filter the input data through the most significatives of its principal components.

Internal variables of interest

self.avg Mean of the input data (available after training).

self.v Transposed of the projection matrix (available after training).

self.d Variance corresponding to the PCA components (eigenvalues of the covariance ma-
trix).

self.explained_variance When output_dim has been specified as a fraction of the total
variance, this is the fraction of the total variance that is actually explained.

More information about Principal Component Analysis, a.k.a. discrete Karhunen-Loeve transform can be
found among others in I.T. Jolliffe, Principal Component Analysis, Springer-Verlag (1986).

Full API documentation: PCANode

class mdp.nodes.WhiteningNode
Whiten the input data by filtering it through the most significatives of its principal components. All output
signals have zero mean, unit variance and are decorrelated.

Internal variables of interest

self.avg Mean of the input data (available after training).

self.v Transpose of the projection matrix (available after training).

self.d Variance corresponding to the PCA components (eigenvalues of the covariance ma-
trix).

self.explained_variance When output_dim has been specified as a fraction of the total
variance, this is the fraction of the total variance that is actually explained.

Full API documentation: WhiteningNode

class mdp.nodes.NIPALSNode
Perform Principal Component Analysis using the NIPALS algorithm. This algorithm is particularyl useful if
you have more variable than observations, or in general when the number of variables is huge and calculating
a full covariance matrix may be unfeasable. It’s also more efficient of the standard PCANode if you expect
the number of significant principal components to be a small. In this case setting output_dim to be a certain
fraction of the total variance, say 90%, may be of some help.

Internal variables of interest

self.avg Mean of the input data (available after training).

self.d Variance corresponding to the PCA components.

self.v Transposed of the projection matrix (available after training).

55

http://mdp-toolkit.sourceforge.net/api/mdp.nodes-module.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PCANode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.WhiteningNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

self.explained_variance When output_dim has been specified as a fraction of the total
variance, this is the fraction of the total variance that is actually explained.

Reference for NIPALS (Nonlinear Iterative Partial Least Squares): Wold, H. Nonlinear estimation by iter-
ative least squares procedures. in David, F. (Editor), Research Papers in Statistics, Wiley, New York, pp
411-444 (1966).

More information about Principal Component Analysis, a.k.a. discrete Karhunen-Loeve transform can be
found among others in I.T. Jolliffe, Principal Component Analysis, Springer-Verlag (1986).

Original code contributed by: Michael Schmuker, Susanne Lezius, and Farzad Farkhooi (2008).

Full API documentation: NIPALSNode

class mdp.nodes.FastICANode
Perform Independent Component Analysis using the FastICA algorithm. Note that FastICA is a batch-
algorithm. This means that it needs all input data before it can start and compute the ICs. The algorithm is
here given as a Node for convenience, but it actually accumulates all inputs it receives. Remember that to
avoid running out of memory when you have many components and many time samples.

FastICA does not support the telescope mode (the convergence criterium is not robust in telescope mode).

Reference: Aapo Hyvarinen (1999). Fast and Robust Fixed-Point Algorithms for Independent Component
Analysis IEEE Transactions on Neural Networks, 10(3):626-634.

Internal variables of interest

self.white The whitening node used for preprocessing.

self.filters The ICA filters matrix (this is the transposed of the projection matrix after
whitening).

self.convergence The value of the convergence threshold.

History:

•1.4.1998 created for Matlab by Jarmo Hurri, Hugo Gavert, Jaakko Sarela, and Aapo Hyvarinen

•7.3.2003 modified for Python by Thomas Wendler

•3.6.2004 rewritten and adapted for scipy and MDP by MDP’s authors

•25.5.2005 now independent from scipy. Requires Numeric or numarray

•26.6.2006 converted to numpy

•14.9.2007 updated to Matlab version 2.5

Full API documentation: FastICANode

class mdp.nodes.CuBICANode
Perform Independent Component Analysis using the CuBICA algorithm. Note that CuBICA is a batch-
algorithm, which means that it needs all input data before it can start and compute the ICs. The algorithm
is here given as a Node for convenience, but it actually accumulates all inputs it receives. Remember that to
avoid running out of memory when you have many components and many time samples.

As an alternative to this batch mode you might consider the telescope mode (see the docs of the __init__
method).

Reference: Blaschke, T. and Wiskott, L. (2003). CuBICA: Independent Component Analysis by Simulta-
neous Third- and Fourth-Order Cumulant Diagonalization. IEEE Transactions on Signal Processing, 52(5),
pp. 1250-1256.

Internal variables of interest

self.white The whitening node used for preprocessing.

self.filters The ICA filters matrix (this is the transposed of the projection matrix after
whitening).

self.convergence The value of the convergence threshold.

56 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NIPALSNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.FastICANode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Full API documentation: CuBICANode

class mdp.nodes.TDSEPNode
Perform Independent Component Analysis using the TDSEP algorithm. Note that TDSEP, as implemented
in this Node, is an online algorithm, i.e. it is suited to be trained on huge data sets, provided that the training
is done sending small chunks of data for each time.

Reference: Ziehe, Andreas and Muller, Klaus-Robert (1998). TDSEP an efficient algorithm for blind sep-
aration using time structure. in Niklasson, L, Boden, M, and Ziemke, T (Editors), Proc. 8th Int. Conf.
Artificial Neural Networks (ICANN 1998).

Internal variables of interest

self.white The whitening node used for preprocessing.

self.filters The ICA filters matrix (this is the transposed of the projection matrix after
whitening).

self.convergence The value of the convergence threshold.

Full API documentation: TDSEPNode

class mdp.nodes.JADENode
Perform Independent Component Analysis using the JADE algorithm. Note that JADE is a batch-algorithm.
This means that it needs all input data before it can start and compute the ICs. The algorithm is here given as
a Node for convenience, but it actually accumulates all inputs it receives. Remember that to avoid running
out of memory when you have many components and many time samples.

JADE does not support the telescope mode.

Main references:

•Cardoso, Jean-Francois and Souloumiac, Antoine (1993). Blind beamforming for non Gaussian sig-
nals. Radar and Signal Processing, IEE Proceedings F, 140(6): 362-370.

•Cardoso, Jean-Francois (1999). High-order contrasts for independent component analysis. Neural
Computation, 11(1): 157-192.

Original code contributed by: Gabriel Beckers (2008).

History:

•May 2005 version 1.8 for MATLAB released by Jean-Francois Cardoso

•Dec 2007 MATLAB version 1.8 ported to Python/NumPy by Gabriel Beckers

•Feb 15 2008 Python/NumPy version adapted for MDP by Gabriel Beckers

Full API documentation: JADENode

class mdp.nodes.SFANode
Extract the slowly varying components from the input data. More information about Slow Feature Anal-
ysis can be found in Wiskott, L. and Sejnowski, T.J., Slow Feature Analysis: Unsupervised Learning of
Invariances, Neural Computation, 14(4):715-770 (2002).

Instance variables of interest

self.avg Mean of the input data (available after training)

self.sf Matrix of the SFA filters (available after training)

self.d Delta values corresponding to the SFA components (generalized eigenvalues). [See
the docs of the get_eta_values method for more information]

Special arguments for constructor

include_last_sample If False the train method discards the last sample in every chunk
during training when calculating the covariance matrix. The last sample is in this case only
used for calculating the covariance matrix of the derivatives. The switch should be set to
False if you plan to train with several small chunks. For example we can split a sequence
(index is time):

57

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.CuBICANode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.TDSEPNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.JADENode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

x_1 x_2 x_3 x_4

in smaller parts like this:

x_1 x_2
x_2 x_3
x_3 x_4

The SFANode will see 3 derivatives for the temporal covariance matrix, and the first 3
points for the spatial covariance matrix. Of course you will need to use a generator that
connects the small chunks (the last sample needs to be sent again in the next chunk). If
include_last_sample was True, depending on the generator you use, you would ei-
ther get:

x_1 x_2
x_2 x_3
x_3 x_4

in which case the last sample of every chunk would be used twice when calculating the
covariance matrix, or:

x_1 x_2
x_3 x_4

in which case you loose the derivative between x_3 and x_2.

If you plan to train with a single big chunk leave include_last_sample to the default
value, i.e. True.

You can even change this behaviour during training. Just set the corresponding switch in the
train method.

Full API documentation: SFANode

class mdp.nodes.SFA2Node
Get an input signal, expand it in the space of inhomogeneous polynomials of degree 2 and extract its slowly
varying components. The get_quadratic_form method returns the input-output function of one of the
learned unit as a QuadraticForm object. See the documentation of mdp.utils.QuadraticForm
for additional information.

More information about Slow Feature Analysis can be found in Wiskott, L. and Sejnowski, T.J., Slow
Feature Analysis: Unsupervised Learning of Invariances, Neural Computation, 14(4):715-770 (2002).

Full API documentation: SFA2Node

class mdp.nodes.ISFANode
Perform Independent Slow Feature Analysis on the input data.

Internal variables of interest

self.RP The global rotation-permutation matrix. This is the filter applied on input_data to get
output_data

self.RPC The complete global rotation-permutation matrix. This is a matrix of dimension
input_dim x input_dim (the ‘outer space’ is retained)

self.covs A mdp.utils.MultipleCovarianceMatrices instance containing the current time-
delayed covariance matrices of the input_data. After convergence the uppermost
output_dim x output_dim submatrices should be almost diagonal.

self.covs[n-1] is the covariance matrix relative to the n-th time-lag

Note: they are not cleared after convergence. If you need to free some memory, you can
safely delete them with:

58 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SFANode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SFA2Node-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> del self.covs

self.initial_contrast A dictionary with the starting contrast and the SFA and ICA
parts of it.

self.final_contrast Like the above but after convergence.

Note: If you intend to use this node for large datasets please have a look at the stop_training method
documentation for speeding things up.

References: Blaschke, T. , Zito, T., and Wiskott, L. (2007). Independent Slow Feature Analysis and
Nonlinear Blind Source Separation. Neural Computation 19(4):994-1021 (2007) http://itb.biologie.hu-
berlin.de/~wiskott/Publications/BlasZitoWisk2007-ISFA-NeurComp.pdf

Full API documentation: ISFANode

class mdp.nodes.XSFANode
Perform Non-linear Blind Source Separation using Slow Feature Analysis.

This node is designed to iteratively extract statistically independent sources from (in principle) arbitrary
invertible nonlinear mixtures. The method relies on temporal correlations in the sources and consists of a
combination of nonlinear SFA and a projection algorithm. More details can be found in the reference given
below (once it’s published).

The node has multiple training phases. The number of training phases depends on the number of sources
that must be extracted. The recommended way of training this node is through a container flow:

>>> flow = mdp.Flow([XSFANode()])
>>> flow.train(x)

doing so will automatically train all training phases. The argument x to the Flow.train method can be
an array or a list of iterables (see the section about Iterators in the MDP tutorial for more info).

If the number of training samples is large, you may run into memory problems: use data iterators and chunk
training to reduce memory usage.

If you need to debug training and/or execution of this node, the suggested approach is to use the capabilities
of BiMDP. For example:

>>> flow = mdp.Flow([XSFANode()])
>>> tr_filename = bimdp.show_training(flow=flow, data_iterators=x)
>>> ex_filename, out = bimdp.show_execution(flow, x=x)

this will run training and execution with bimdp inspection. Snapshots of the internal flow state for each
training phase and execution step will be opened in a web brower and presented as a slideshow.

References: Sprekeler, H., Zito, T., and Wiskott, L. (2009). An Extension of Slow Fea-
ture Analysis for Nonlinear Blind Source Separation. Journal of Machine Learning Research.
http://cogprints.org/7056/1/SprekelerZitoWiskott-Cogprints-2010.pdf

Full API documentation: XSFANode

class mdp.nodes.FDANode
Perform a (generalized) Fisher Discriminant Analysis of its input. It is a supervised node that implements
FDA using a generalized eigenvalue approach.

FDANode has two training phases and is supervised so make sure to pay attention to the following points
when you train it:

•call the train method with two arguments: the input data and the labels (see the doc string of the
train method for details).

•if you are training the node by hand, call the train method twice.

•if you are training the node using a flow (recommended), the only argument to Flow.train must be
a list of (data_point, label) tuples or an iterator returning lists of such tuples, not a generator.

59

http://itb.biologie.hu-berlin.de/~wiskott/Publications/BlasZitoWisk2007-ISFA-NeurComp.pdf
http://itb.biologie.hu-berlin.de/~wiskott/Publications/BlasZitoWisk2007-ISFA-NeurComp.pdf
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ISFANode-class.html
http://cogprints.org/7056/1/SprekelerZitoWiskott-Cogprints-2010.pdf
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.XSFANode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

The Flow.train function can be called just once as usual, since it takes care of rewinding the
iterator to perform the second training step.

More information on Fisher Discriminant Analysis can be found for example in C. Bishop, Neural Networks
for Pattern Recognition, Oxford Press, pp. 105-112.

Internal variables of interest

self.avg Mean of the input data (available after training)

self.v Transposed of the projection matrix, so that output = dot(input-self.avg,
self.v) (available after training).

Full API documentation: FDANode

class mdp.nodes.FANode
Perform Factor Analysis.

The current implementation should be most efficient for long data sets: the sufficient statistics are collected
in the training phase, and all EM-cycles are performed at its end.

The execute method returns the Maximum A Posteriori estimate of the latent variables. The
generate_input method generates observations from the prior distribution.

Internal variables of interest

self.mu Mean of the input data (available after training)

self.A Generating weights (available after training)

self.E_y_mtx Weights for Maximum A Posteriori inference

self.sigma Vector of estimated variance of the noise for all input components

More information about Factor Analysis can be found in Max Welling’s classnotes:
http://www.ics.uci.edu/~welling/classnotes/classnotes.html , in the chapter ‘Linear Models’.

Full API documentation: FANode

class mdp.nodes.RBMNode
Restricted Boltzmann Machine node. An RBM is an undirected probabilistic network with binary variables.
The graph is bipartite into observed (visible) and hidden (latent) variables.

By default, the executemethod returns the probability of one of the hiden variables being equal to 1 given
the input.

Use the sample_v method to sample from the observed variables given a setting of the hidden variables,
and sample_h to do the opposite. The energy method can be used to compute the energy of a given
setting of all variables.

The network is trained by Contrastive Divergence, as described in Hinton, G. E. (2002). Training products
of experts by minimizing contrastive divergence. Neural Computation, 14(8):1711-1800

Internal variables of interest

self.w Generative weights between hidden and observed variables

self.bv bias vector of the observed variables

self.bh bias vector of the hidden variables

For more information on RBMs, see Geoffrey E. Hinton (2007) Boltzmann machine. Scholarpedia,
2(5):1668

Full API documentation: RBMNode

class mdp.nodes.RBMWithLabelsNode
Restricted Boltzmann Machine with softmax labels. An RBM is an undirected probabilistic network with
binary variables. In this case, the node is partitioned into a set of observed (visible) variables, a set of hidden
(latent) variables, and a set of label variables (also observed), only one of which is active at any time. The
node is able to learn associations between the visible variables and the labels.

60 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.FDANode-class.html
http://www.ics.uci.edu/~welling/classnotes/classnotes.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.FANode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RBMNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

By default, the executemethod returns the probability of one of the hiden variables being equal to 1 given
the input.

Use the sample_v method to sample from the observed variables (visible and labels) given a setting of
the hidden variables, and sample_h to do the opposite. The energy method can be used to compute the
energy of a given setting of all variables.

The network is trained by Contrastive Divergence, as described in Hinton, G. E. (2002). Training products
of experts by minimizing contrastive divergence. Neural Computation, 14(8):1711-1800

Internal variables of interest:

self.w Generative weights between hidden and observed variables

self.bv bias vector of the observed variables

self.bh bias vector of the hidden variables

For more information on RBMs with labels, see

•Geoffrey E. Hinton (2007) Boltzmann machine. Scholarpedia, 2(5):1668.

•Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Full API documentation: RBMWithLabelsNode

class mdp.nodes.GrowingNeuralGasNode
Learn the topological structure of the input data by building a corresponding graph approximation.

The algorithm expands on the original Neural Gas algorithm (see mdp.nodes NeuralGasNode) in that the
algorithm adds new nodes are added to the graph as more data becomes available. Im this way, if the growth
rate is appropriate, one can avoid overfitting or underfitting the data.

More information about the Growing Neural Gas algorithm can be found in B. Fritzke, A Growing Neural
Gas Network Learns Topologies, in G. Tesauro, D. S. Touretzky, and T. K. Leen (editors), Advances in
Neural Information Processing Systems 7, pages 625-632. MIT Press, Cambridge MA, 1995.

A java implementation is available at: http://www.neuroinformatik.ruhr-uni-
bochum.de/ini/VDM/research/gsn/DemoGNG/GNG.html

Attributes and methods of interest

•graph – The corresponding mdp.graph.Graph object

Full API documentation: GrowingNeuralGasNode

class mdp.nodes.LLENode
Perform a Locally Linear Embedding analysis on the data.

Internal variables of interest

self.training_projection The LLE projection of the training data (defined when
training finishes).

self.desired_variance variance limit used to compute intrinsic dimensionality.

Based on the algorithm outlined in An Introduction to Locally Linear Embedding by L. Saul and S. Roweis,
using improvements suggested in Locally Linear Embedding for Classification by D. deRidder and R.P.W.
Duin.

References: Roweis, S. and Saul, L., Nonlinear dimensionality reduction by locally linear embedding,
Science 290 (5500), pp. 2323-2326, 2000.

Original code contributed by: Jake VanderPlas, University of Washington,

Full API documentation: LLENode

class mdp.nodes.HLLENode
Perform a Hessian Locally Linear Embedding analysis on the data.

Internal variables of interest

61

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RBMWithLabelsNode-class.html
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/DemoGNG/GNG.html
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/DemoGNG/GNG.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GrowingNeuralGasNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LLENode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

self.training_projection the HLLE projection of the training data (defined when
training finishes)

self.desired_variance variance limit used to compute intrinsic dimensionality.

Implementation based on algorithm outlined in Donoho, D. L., and Grimes, C., Hessian Eigenmaps: new
locally linear embedding techniques for high-dimensional data, Proceedings of the National Academy of
Sciences 100(10): 5591-5596, 2003.

Original code contributed by: Jake Vanderplas, University of Washington

Full API documentation: HLLENode

class mdp.nodes.LinearRegressionNode
Compute least-square, multivariate linear regression on the input data, i.e., learn coefficients b_j so that:

y_i = b_0 + b_1 x_1 + ... b_N x_N ,

for i = 1 ... M, minimizes the square error given the training x‘s and y‘s.

This is a supervised learning node, and requires input data x and target data y to be supplied during training
(see train docstring).

Internal variables of interest

self.beta The coefficients of the linear regression

Full API documentation: LinearRegressionNode

class mdp.nodes.QuadraticExpansionNode
Perform expansion in the space formed by all linear and quadratic monomials.
QuadraticExpansionNode() is equivalent to a PolynomialExpansionNode(2)

Full API documentation: QuadraticExpansionNode

class mdp.nodes.PolynomialExpansionNode
Perform expansion in a polynomial space.

Full API documentation: PolynomialExpansionNode

class mdp.nodes.RBFExpansionNode
Expand input space with Gaussian Radial Basis Functions (RBFs).

The input data is filtered through a set of unnormalized Gaussian filters, i.e.:

y_j = exp(-0.5/s_j * ||x - c_j||^2)

for isotropic RBFs, or more in general:

y_j = exp(-0.5 * (x-c_j)^T S^-1 (x-c_j))

for anisotropic RBFs.

Full API documentation: RBFExpansionNode

class mdp.nodes.GeneralExpansionNode
Expands the input signal x according to a list [f_0, ... f_k] of functions.

Each function f_i should take the whole two-dimensional array x as input and output another two-
dimensional array. Moreover the output dimension should depend only on the input dimension. The output
of the node is [f_0[x], ... f_k[x]], that is, the concatenation of each one of the outputs f_i[x].

Original code contributed by Alberto Escalante.

Full API documentation: GeneralExpansionNode

class mdp.nodes.GrowingNeuralGasExpansionNode
Perform a trainable radial basis expansion, where the centers and sizes of the basis functions are learned
through a growing neural gas.

positions of RBFs position of the nodes of the neural gas

62 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.HLLENode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LinearRegressionNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.QuadraticExpansionNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PolynomialExpansionNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RBFExpansionNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GeneralExpansionNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

sizes of the RBFs mean distance to the neighbouring nodes.

Important: Adjust the maximum number of nodes to control the dimension of the expansion.

More information on this expansion type can be found in: B. Fritzke. Growing cell structures-a self-
organizing network for unsupervised and supervised learning. Neural Networks 7, p. 1441–1460 (1994).

Full API documentation: GrowingNeuralGasExpansionNode

class mdp.nodes.NeuralGasNode
Learn the topological structure of the input data by building a corresponding graph approximation (original
Neural Gas algorithm).

The Neural Gas algorithm was originally published in Martinetz, T. and Schulten, K.: A “Neural-Gas”
Network Learns Topologies. In Kohonen, T., Maekisara, K., Simula, O., and Kangas, J. (eds.), Artificial
Neural Networks. Elsevier, North-Holland., 1991.

Attributes and methods of interest

•graph – The corresponding mdp.graph.Graph object

•max_epochs - maximum number of epochs until which to train.

Full API documentation: NeuralGasNode

class mdp.nodes.SignumClassifier
This classifier node classifies as 1 if the sum of the data points is positive and as -1 if the data point is
negative

Full API documentation: SignumClassifier

class mdp.nodes.PerceptronClassifier
A simple perceptron with input_dim input nodes.

Full API documentation: PerceptronClassifier

class mdp.nodes.SimpleMarkovClassifier
A simple version of a Markov classifier. It can be trained on a vector of tuples the label being the next
element in the testing data.

Full API documentation: SimpleMarkovClassifier

class mdp.nodes.DiscreteHopfieldClassifier
Node for simulating a simple discrete Hopfield model

Full API documentation: DiscreteHopfieldClassifier

class mdp.nodes.KMeansClassifier
Employs K-Means Clustering for a given number of centroids.

Full API documentation: KMeansClassifier

class mdp.nodes.NormalizeNode
Make input signal meanfree and unit variance

Full API documentation: NormalizeNode

class mdp.nodes.GaussianClassifier
Perform a supervised Gaussian classification.

Given a set of labelled data, the node fits a gaussian distribution to each class.

Full API documentation: GaussianClassifier

class mdp.nodes.NearestMeanClassifier
Nearest-Mean classifier.

Full API documentation: NearestMeanClassifier

class mdp.nodes.KNNClassifier
K-Nearest-Neighbour Classifier.

63

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GrowingNeuralGasExpansionNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NeuralGasNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SignumClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PerceptronClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SimpleMarkovClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.DiscreteHopfieldClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.KMeansClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NormalizeNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GaussianClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NearestMeanClassifier-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Full API documentation: KNNClassifier

class mdp.nodes.EtaComputerNode
Compute the eta values of the normalized training data.

The delta value of a signal is a measure of its temporal variation, and is defined as the mean of the derivative
squared, i.e. delta(x) = mean(dx/dt(t)^2). delta(x) is zero if x is a constant signal, and
increases if the temporal variation of the signal is bigger.

The eta value is a more intuitive measure of temporal variation, defined as:

eta(x) = T/(2*pi) * sqrt(delta(x))

If x is a signal of length T which consists of a sine function that accomplishes exactly N oscillations, then
eta(x)=N.

EtaComputerNode normalizes the training data to have unit variance, such that it is possible to compare
the temporal variation of two signals independently from their scaling.

Reference: Wiskott, L. and Sejnowski, T.J. (2002). Slow Feature Analysis: Unsupervised Learning of
Invariances, Neural Computation, 14(4):715-770.

Important: if a data chunk is tlen data points long, this node is going to consider only the first tlen-1 points
together with their derivatives. This means in particular that the variance of the signal is not computed on
all data points. This behavior is compatible with that of SFANode.

This is an analysis node, i.e. the data is analyzed during training and the results are stored internally. Use
the method get_eta to access them.

Full API documentation: EtaComputerNode

class mdp.nodes.HitParadeNode
Collect the first n local maxima and minima of the training signal which are separated by a minimum gap
d.

This is an analysis node, i.e. the data is analyzed during training and the results are stored internally. Use
the get_maxima and get_minima methods to access them.

Full API documentation: HitParadeNode

class mdp.nodes.NoiseNode
Inject multiplicative or additive noise into the input data.

Original code contributed by Mathias Franzius.

Full API documentation: NoiseNode

class mdp.nodes.NormalNoiseNode
Special version of NoiseNode for Gaussian additive noise.

Unlike NoiseNode it does not store a noise function reference but simply uses numx_rand.normal.

Full API documentation: NormalNoiseNode

class mdp.nodes.TimeFramesNode
Copy delayed version of the input signal on the space dimensions.

For example, for time_frames=3 and gap=2:

[X(1) Y(1) [X(1) Y(1) X(3) Y(3) X(5) Y(5)
X(2) Y(2) X(2) Y(2) X(4) Y(4) X(6) Y(6)
X(3) Y(3) --> X(3) Y(3) X(5) Y(5) X(7) Y(7)
X(4) Y(4) X(4) Y(4) X(6) Y(6) X(8) Y(8)
X(5) Y(5)]
X(6) Y(6)
X(7) Y(7)
X(8) Y(8)
... ...]

64 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.KNNClassifier-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.EtaComputerNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.HitParadeNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NoiseNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NormalNoiseNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

It is not always possible to invert this transformation (the transformation is not surjective. However, the
pseudo_inverse method does the correct thing when it is indeed possible.

Full API documentation: TimeFramesNode

class mdp.nodes.TimeDelayNode
Copy delayed version of the input signal on the space dimensions.

For example, for time_frames=3 and gap=2:

[X(1) Y(1) [X(1) Y(1) 0 0 0 0
X(2) Y(2) X(2) Y(2) 0 0 0 0
X(3) Y(3) --> X(3) Y(3) X(1) Y(1) 0 0
X(4) Y(4) X(4) Y(4) X(2) Y(2) 0 0
X(5) Y(5) X(5) Y(5) X(3) Y(3) X(1) Y(1)
X(6) Y(6)]
X(7) Y(7)
X(8) Y(8)
... ...]

This node provides similar functionality as the TimeFramesNode, only that it performs a time embedding
into the past rather than into the future.

See TimeDelaySlidingWindowNode for a sliding window delay node for application in a non-batch
manner.

Original code contributed by Sebastian Hoefer <mail@sebastianhoefer.de> Dec 31, 2010

Full API documentation: TimeDelayNode

class mdp.nodes.TimeDelaySlidingWindowNode
TimeDelaySlidingWindowNode is an alternative to TimeDelayNode which should be used for
online learning/execution. Whereas the TimeDelayNode works in a batch manner, for online application
a sliding window is necessary which yields only one row per call.

Applied to the same data the collection of all returned rows of the TimeDelaySlidingWindowNode is
equivalent to the result of the TimeDelayNode.

Original code contributed by Sebastian Hoefer <mail@sebastianhoefer.de> Dec 31, 2010

Full API documentation: TimeDelaySlidingWindowNode

class mdp.nodes.CutoffNode
Node to cut off values at specified bounds.

Works similar to numpy.clip, but also works when only a lower or upper bound is specified.

Full API documentation: CutoffNode

class mdp.nodes.AdaptiveCutoffNode
Node which uses the data history during training to learn cutoff values.

As opposed to the simple CutoffNode, a different cutoff value is learned for each data coordinate. For
example if an upper cutoff fraction of 0.05 is specified, then the upper cutoff bound is set so that the upper
5% of the training data would have been clipped (in each dimension). The cutoff bounds are then applied
during execution. This node also works as a HistogramNode, so the histogram data is stored.

When stop_training is called the cutoff values for each coordinate are calculated based on the col-
lected histogram data.

Full API documentation: AdaptiveCutoffNode

class mdp.nodes.HistogramNode
Node which stores a history of the data during its training phase.

The data history is stored in self.data_hist and can also be deleted to free memory. Alternatively it
can be automatically pickled to disk.

Note that data is only stored during training.

65

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.TimeFramesNode-class.html
mailto:mail@sebastianhoefer.de
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.TimeDelayNode-class.html
mailto:mail@sebastianhoefer.de
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.TimeDelaySlidingWindowNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.CutoffNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.AdaptiveCutoffNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Full API documentation: HistogramNode

class mdp.nodes.IdentityNode
Execute returns the input data and the node is not trainable.

This node can be instantiated and is for example useful in complex network layouts.

Full API documentation: IdentityNode

class mdp.nodes.Convolution2DNode
Convolve input data with filter banks.

The filters argument specifies a set of 2D filters that are convolved with the input data during execution.
Convolution can be selected to be executed by linear filtering of the data, or in the frequency domain using
a Discrete Fourier Transform.

Input data can be given as 3D data, each row being a 2D array to be convolved with the filters, or as 2D
data, in which case the input_shape argument must be specified.

This node depends on scipy.

Full API documentation: Convolution2DNode

class mdp.nodes.ShogunSVMClassifier
The ShogunSVMClassifier works as a wrapper class for accessing the SHOGUN machine learning
toolbox for support vector machines.

Most kernel machines and linear classifier should work with this class.

Currently, distance machines such as the K-means classifier are not supported yet.

Information to paramters and additional options can be found on http://www.shogun-toolbox.org/

Note that some parts in this classifier might receive some refinement in the future.

This node depends on shogun.

Full API documentation: ShogunSVMClassifier

class mdp.nodes.LibSVMClassifier
The LibSVMClassifier class acts as a wrapper around the LibSVM library for support vector machines.

Information to the parameters can be found on http://www.csie.ntu.edu.tw/~cjlin/libsvm/

The class provides access to change kernel and svm type with a text string.

Additionally self.parameter is exposed which allows to change all other svm parameters directly.

This node depends on libsvm.

Full API documentation: LibSVMClassifier

class mdp.nodes.SGDRegressorScikitsLearnNode
Linear model fitted by minimizing a regularized empirical loss with SGD

This node has been automatically generated by wrapping the scikits.learn.linear_model.sparse.stochastic_gradient.SGDRegressor
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and
the model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net).
If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to
allow for learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the
features.

Parameters

66 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.HistogramNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.IdentityNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.Convolution2DNode-class.html
http://www.shogun-toolbox.org/
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ShogunSVMClassifier-class.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LibSVMClassifier-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

loss [str, ‘squared_loss’ or ‘huber’] The loss function to be used. Defaults to ‘squared_loss’ which refers
to the ordinary least squares fit. ‘huber’ is an epsilon insensitive loss function for robust regression.

penalty [str, ‘l2’ or ‘l1’ or ‘elasticnet’] The penalty (aka regularization term) to be used. Defaults to ‘l2’
which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ migh bring sparsity to
the model (feature selection) not achievable with ‘l2’.

alpha [float] Constant that multiplies the regularization term. Defaults to 0.0001

rho [float] The Elastic Net mixing parameter, with 0 < rho <= 1. Defaults to 0.85.

fit_intercept: bool Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter: int The number of passes over the training data (aka epochs). Defaults to 5.

shuffle: bool Whether or not the training data should be shuffled after each epoch. Defaults to False.

seed: int, optional The seed of the pseudo random number generator to use when shuffling the data.

verbose: integer, optional The verbosity level

p [float] Epsilon in the epsilon insensitive huber loss function; only if loss==’huber’.

learning_rate [string, optional] The learning rate:

• constant: eta = eta0

• optimal: eta = 1.0/(t+t0)

• invscaling: eta = eta0 / pow(t, power_t) [default]

eta0 [double, optional] The initial learning rate [default 0.01].

power_t [double, optional] The exponent for inverse scaling learning rate [default 0.25].

Attributes

coef_ [array, shape = [n_features]] Weights asigned to the features.

intercept_ [array, shape = [1]] The intercept term.

Examples

>>> import numpy as np
>>> from scikits.learn import linear_model
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = linear_model.sparse.SGDRegressor()
>>> clf.fit(X, y)
SGDRegressor(loss=’squared_loss’, power_t=0.25, shuffle=False, verbose=0,

n_iter=5, learning_rate=’invscaling’, fit_intercept=True,
penalty=’l2’, p=0.1, seed=0, eta0=0.01, rho=1.0, alpha=0.0001)

See also

RidgeRegression, ElasticNet, Lasso, SVR

Full API documentation: SGDRegressorScikitsLearnNode

class mdp.nodes.RFEScikitsLearnNode
Feature ranking with Recursive feature elimination

This node has been automatically generated by wrapping the scikits.learn.feature_selection.rfe.RFE
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

67

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SGDRegressorScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

estimator [object] A supervised learning estimator with a fit method that updates a coef_ attributes that
holds the fitted parameters. The first dimension of the coef_ array must be equal n_features an
important features must yield high absolute values in the coef_ array.

For instance this is the case for most supervised learning algorithms such as Support Vector Classifiers
and Generalized Linear Models from the svm and linear_model package.

n_features [int] Number of features to select

percentage [float] The percentage of features to remove at each iteration Should be between (0, 1]. By
default 0.1 will be taken.

Attributes

support_ [array-like, shape = [n_features]] Mask of estimated support

ranking_ [array-like, shape = [n_features]] Mask of the ranking of features

Methods

fit(X, y) [self] Fit the model

transform(X) [array] Reduce X to support

Examples

>>> # TODO!

References

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using
support vector machines. Mach. Learn., 46(1-3), 389–422.

Full API documentation: RFEScikitsLearnNode

class mdp.nodes.NMFScikitsLearnNode
Non-Negative matrix factorization by Projected Gradient (NMF)

This node has been automatically generated by wrapping the scikits.learn.decomposition.nmf.NMF
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

X: array, [n_samples, n_features] Data the model will be fit to.

n_components: int or None Number of components if n_components is not set all components are kept

init: ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | int | RandomState Method used to initialize the procedure. De-
fault: ‘nndsvdar’ Valid options:

• ‘nndsvd’: default Nonnegative Double Singular Value

• Decomposition (NNDSVD) initialization (better for sparseness)

• ‘nndsvda’: NNDSVD with zeros filled with the average of X

• (better when sparsity is not desired)

• ‘nndsvdar’: NNDSVD with zeros filled with small random values

• (generally faster, less accurate alternative to NNDSVDa

• for when sparsity is not desired)

• int seed or RandomState: non-negative random matrices

sparseness: ‘data’ | ‘components’ | None Where to enforce sparsity in the model. Default: None

beta: double Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. De-
fault: 1

68 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RFEScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

eta: double Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger error.
Default: 0.1

tol: double Tolerance value used in stopping conditions. Default: 1e-4

max_iter: int Number of iterations to compute. Default: 200

nls_max_iter: int Number of iterations in NLS subproblem. Default: 2000

Attributes

components_: array, [n_components, n_features] Non-negative components of the data

reconstruction_err_: number Frobenius norm of the matrix difference between the training data and the
reconstructed data from the fit produced by the model. || X - WH ||_2

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from scikits.learn.decomposition import ProjectedGradientNMF
>>> model = ProjectedGradientNMF(n_components=2, init=0)
>>> model.fit(X)
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,

init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness=None, n_components=2, tol=0.0001)

>>> model.components_
array([[0.77032744, 0.11118662],

[0.38526873, 0.38228063]])
>>> model.reconstruction_err_
0.00746...
>>> model = ProjectedGradientNMF(n_components=2, init=0,
... sparseness=’components’)
>>> model.fit(X)
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,

init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness=’components’, n_components=2, tol=0.0001)

>>> model.components_
array([[1.67481991, 0.29614922],

[-0. , 0.4681982]])
>>> model.reconstruction_err_
0.513...

Notes

This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Com-
putation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/

NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonneg-
ative matrix factorization - Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

Full API documentation: NMFScikitsLearnNode

class mdp.nodes.SelectFprScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.feature_selection.univariate_selection.SelectFpr
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: SelectFprScikitsLearnNode

class mdp.nodes.SparseBaseLibSVMScikitsLearnNode
Full API documentation: SparseBaseLibSVMScikitsLearnNode

class mdp.nodes.VectorizerScikitsLearnNode
Convert a collection of raw documents to a matrix

This node has been automatically generated by wrapping the scikits.learn.feature_extraction.text.Vectorizer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg

69

http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NMFScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SelectFprScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SparseBaseLibSVMScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

attribute.

Equivalent to CountVectorizer followed by TfidfTransformer.

Full API documentation: VectorizerScikitsLearnNode

class mdp.nodes.SGDClassifierScikitsLearnNode
Linear model fitted by minimizing a regularized empirical loss with SGD.

This node has been automatically generated by wrapping the scikits.learn.linear_model.stochastic_gradient.SGDClassifier
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and
the model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net).
If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to
allow for learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the
features.

Parameters

loss [str, ‘hinge’ or ‘log’ or ‘modified_huber’] The loss function to be used. Defaults to ‘hinge’. The
hinge loss is a margin loss used by standard linear SVM models. The ‘log’ loss is the loss of logistic
regression models and can be used for probability estimation in binary classifiers. ‘modified_huber’ is
another smooth loss that brings tolerance to outliers.

penalty [str, ‘l2’ or ‘l1’ or ‘elasticnet’] The penalty (aka regularization term) to be used. Defaults to ‘l2’
which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ migh bring sparsity to
the model (feature selection) not achievable with ‘l2’.

alpha [float] Constant that multiplies the regularization term. Defaults to 0.0001

rho [float] The Elastic Net mixing parameter, with 0 < rho <= 1. Defaults to 0.85.

fit_intercept: bool Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered. Defaults to True.

n_iter: int, optional The number of passes over the training data (aka epochs). Defaults to 5.

shuffle: bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to
False.

seed: int, optional The seed of the pseudo random number generator to use when shuffling the data.

verbose: integer, optional The verbosity level

n_jobs: integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class
problems) computation. -1 means ‘all CPUs’. Defaults to 1.

learning_rate [int] The learning rate:

• constant: eta = eta0

• optimal: eta = 1.0/(t+t0) [default]

• invscaling: eta = eta0 / pow(t, power_t)

eta0 [double] The initial learning rate [default 0.01].

power_t [double] The exponent for inverse scaling learning rate [default 0.25].

Attributes

coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]

Weights assigned to the features.

70 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.VectorizerScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

intercept_ [array, shape = [1] if n_classes == 2 else [n_classes]] Constants in decision function.

Examples

>>> import numpy as np
>>> from scikits.learn import linear_model
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> Y = np.array([1, 1, 2, 2])
>>> clf = linear_model.SGDClassifier()
>>> clf.fit(X, Y)
SGDClassifier(loss=’hinge’, n_jobs=1, shuffle=False, verbose=0, n_iter=5,

learning_rate=’optimal’, fit_intercept=True, penalty=’l2’,
power_t=0.5, seed=0, eta0=0.0, rho=1.0, alpha=0.0001)

>>> print clf.predict([[-0.8, -1]])
[1.]

See also

LinearSVC, LogisticRegression

Full API documentation: SGDClassifierScikitsLearnNode

class mdp.nodes.LinearModelCVScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.linear_model.coordinate_descent.LinearModelCV
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: LinearModelCVScikitsLearnNode

class mdp.nodes.SVCScikitsLearnNode
C-Support Vector Classification.

This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVC
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg at-
tribute.

Parameters

C [float, optional (default=1.0)] penalty parameter C of the error term.

kernel [string, optional] Specifies the kernel type to be used in the algorithm. one of ‘linear’, ‘poly’, ‘rbf’,
‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

degree [int, optional] degree of kernel function is significant only in poly, rbf, sigmoid

gamma [float, optional] kernel coefficient for rbf and poly, by default 1/n_features will be taken.

coef0 [float, optional] independent term in kernel function. It is only significant in poly/sigmoid.

probability: boolean, optional (False by default) enable probability estimates. This must be enabled
prior to calling prob_predict.

shrinking: boolean, optional wether to use the shrinking heuristic.

tol: float, optional precision for stopping criteria

cache_size: float, optional specify the size of the cache (in MB)

Attributes

support_ [array-like, shape = [n_SV]] Index of support vectors.

support_vectors_ [array-like, shape = [n_SV, n_features]] Support vectors.

n_support_ [array-like, dtype=int32, shape = [n_class]] number of support vector for each class.

dual_coef_ [array, shape = [n_class-1, n_SV]] Coefficients of the support vector in the decision function.

coef_ [array, shape = [n_class-1, n_features]] Weights asigned to the features (coefficients in the primal
problem). This is only available in the case of linear kernel.

71

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SGDClassifierScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LinearModelCVScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

intercept_ [array, shape = [n_class * (n_class-1) / 2]] Constants in decision function.

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from scikits.learn.svm import SVC
>>> clf = SVC()
>>> clf.fit(X, y)
SVC(kernel=’rbf’, C=1.0, probability=False, degree=3, coef0=0.0, tol=0.001,
cache_size=100.0, shrinking=True, gamma=0.25)

>>> print clf.predict([[-0.8, -1]])
[1.]

See also

SVR, LinearSVC

Full API documentation: SVCScikitsLearnNode

class mdp.nodes.KernelPCAScikitsLearnNode
Kernel Principal component analysis (KPCA)

This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.KernelPCA
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Non-linear dimensionality reduction through the use of kernels.

Parameters

n_components: int or None Number of components. If None, all non-zero components are kept.

kernel: “linear” | “poly” | “rbf” | “precomputed” kernel Default: “linear”

sigma: float width of the rbf kernel Default: 1.0

degree: int degree of the polynomial kernel Default: 3

alpha: int hyperparameter of the ridge regression that learns the inverse transform (when
fit_inverse_transform=True) Default: 1.0

fit_inverse_transform: bool learn the inverse transform (i.e. learn to find the pre-image of a point) Default:
False

Attributes

lambdas_, alphas_:

•Eigenvalues and eigenvectors of the centered kernel matrix

dual_coef_:

•Inverse transform matrix

X_transformed_fit_:

•Projection of the fitted data on the kernel principal components

Reference

Kernel PCA was intoduced in:

•Bernhard Schoelkopf, Alexander J. Smola,

•and Klaus-Robert Mueller. 1999. Kernel principal

•component analysis. In Advances in kernel methods,

•MIT Press, Cambridge, MA, USA 327-352.

Full API documentation: KernelPCAScikitsLearnNode

72 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SVCScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.KernelPCAScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

class mdp.nodes.SelectPercentileScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.feature_selection.univariate_selection.SelectPercentile
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: SelectPercentileScikitsLearnNode

class mdp.nodes.ScalerScikitsLearnNode
Object to standardize a dataset

This node has been automatically generated by wrapping the scikits.learn.preprocessing.Scaler
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

It centers the dataset and optionaly scales to fix the variance to 1 for each feature

Full API documentation: ScalerScikitsLearnNode

class mdp.nodes.CCAScikitsLearnNode
CCA Canonical Correlation Analysis. CCA inherits from PLS with mode=”B” and defla-
tion_mode=”canonical”.

This node has been automatically generated by wrapping the scikits.learn.pls.CCA class from the
sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X: array-like of predictors, shape (n_samples, p) Training vectors, where n_samples in the number of
samples and p is the number of predictors.

Y: array-like of response, shape (n_samples, q) Training vectors, where n_samples in the number of
samples and q is the number of response variables.

n_components: int, number of components to keep. (default 2).

scale: boolean, scale data? (default True)

algorithm: str “nipals” or “svd” the algorithm used to estimate the weights, it will be called
“n_components” time ie.: for each iteration of the outer loop.

max_iter: an integer, the maximum number of iterations (default 500) of the NIPALS inner loop
(used only if algorithm=”nipals”)

tol: a not negative real, the tolerance used in the iterative algorithm default 1e-06.

copy: boolean, should the deflation been made on a copy? Let the default value to True unless you
don’t care about side effect

Attributes

x_weights_: array, [p, n_components] X block weights vectors.

y_weights_: array, [q, n_components] Y block weights vectors.

x_loadings_: array, [p, n_components] X block loadings vectors.

y_loadings_: array, [q, n_components] Y block loadings vectors.

x_scores_: array, [n_samples, n_components] X scores.

y_scores_: array, [n_samples, n_components] Y scores.

x_rotations_: array, [p, n_components] X block to latents rotations.

y_rotations_: array, [q, n_components] Y block to latents rotations.

Notes

For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that |u| = |v| = 1

Note that it maximizes only the correlations between the scores.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

73

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SelectPercentileScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ScalerScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference:

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:

Editions Technic.

See also

PLSCanonical PLSSVD

Full API documentation: CCAScikitsLearnNode

class mdp.nodes.LinearSVCScikitsLearnNode
Linear Support Vector Classification, Sparse Version

This node has been automatically generated by wrapping the scikits.learn.svm.sparse.classes.LinearSVC
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Similar to SVC with parameter kernel=’linear’, but uses internally liblinear rather than libsvm, so it has
more flexibility in the choice of penalties and loss functions and should be faster for huge datasets.

Parameters

loss [string, ‘l1’ or ‘l2’ (default ‘l2’)] Specifies the loss function. With ‘l1’ it is the standard SVM loss
(a.k.a. hinge Loss) while with ‘l2’ it is the squared loss. (a.k.a. squared hinge Loss)

penalty [string, ‘l1’ or ‘l2’ (default ‘l2’)] Specifies the norm used in the penalization. The ‘l2’ penalty is
the standard used in SVC. The ‘l1’ leads to coef_ vectors that are sparse.

dual [bool, (default True)] Select the algorithm to either solve the dual or primal optimization problem.

intercept_scaling [float, default: 1] when self.fit_intercept is True, instance vector x becomes [x,
self.intercept_scaling], i.e. a “synthetic” feature with constant value equals to intercept_scaling is
appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the
effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling
has to be increased

Attributes

coef_ [array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]] Wiehgiths asigned to the
features (coefficients in the primal problem). This is only available in the case of linear kernel.

intercept_ [array, shape = [1] if n_classes == 2 else [n_classes]] constants in decision function

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with
a smaller eps parameter.

See also

SVC

References

LIBLINEAR – A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Full API documentation: LinearSVCScikitsLearnNode

class mdp.nodes.KernelCentererScikitsLearnNode
Centers a kernel. This is equivalent to centering phi(X) with

74 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.CCAScikitsLearnNode-class.html
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LinearSVCScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

This node has been automatically generated by wrapping the scikits.learn.preprocessing.KernelCenterer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: KernelCentererScikitsLearnNode

class mdp.nodes.RidgeClassifierScikitsLearnNode
Classifier using Ridge regression

This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeClassifier
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

alpha [float] Small positive values of alpha improve the conditioning of the problem and reduce the vari-
ance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegres-
sion or LinearSVC.

fit_intercept [boolean] Whether to calculate the intercept for this model. If set to false, no intercept will
be used in calculations (e.g. data is expected to be already centered).

Note

For multi-class classification, n_class classifiers are trained in a one-versus-all approach.

Full API documentation: RidgeClassifierScikitsLearnNode

class mdp.nodes.BinarizerScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.preprocessing.sparse.Binarizer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: BinarizerScikitsLearnNode

class mdp.nodes.NeighborsClassifierScikitsLearnNode
Classifier implementing k-Nearest Neighbor Algorithm.

This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsClassifier
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

n_neighbors [int, optional] Default number of neighbors. Defaults to 5.

window_size [int, optional] Window size passed to BallTree

algorithm [{‘auto’, ‘ball_tree’, ‘brute’}, optional] Algorithm used to compute the nearest neighbors.
‘ball_tree’ will construct a BallTree while ‘brute’will perform brute-force search. ‘auto’ will guess
the most appropriate based on current dataset.

Examples

>>> samples = [[0, 0, 1], [1, 0, 0]]
>>> labels = [0, 1]
>>> from scikits.learn.neighbors import NeighborsClassifier
>>> neigh = NeighborsClassifier(n_neighbors=1)
>>> neigh.fit(samples, labels)
NeighborsClassifier(n_neighbors=1, window_size=1, algorithm=’auto’)
>>> print neigh.predict([[0,0,0]])
[1]

See also

BallTree

References

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

75

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.KernelCentererScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RidgeClassifierScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.BinarizerScikitsLearnNode-class.html
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Modular toolkit for Data Processing

Tutorial, Release 3.2

Full API documentation: NeighborsClassifierScikitsLearnNode

class mdp.nodes.LassoScikitsLearnNode
Linear Model trained with L1 prior as regularizer (aka the Lasso)

This node has been automatically generated by wrapping the scikits.learn.linear_model.coordinate_descent.Lasso
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Technically the Lasso model is optimizing the same objective function as the Elastic Net with rho=1.0 (no
L2 penalty).

Parameters

alpha [float, optional] Constant that multiplies the L1 term. Defaults to 1.0

fit_intercept [boolean] whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

Attributes

coef_ [array, shape = [n_features]] parameter vector (w in the fomulation formula)

intercept_ [float] independent term in decision function.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1, fit_intercept=True)
>>> print clf.coef_
[0.85 0.]
>>> print clf.intercept_
0.15

See also

LassoLARS

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
fortran contiguous numpy array.

Full API documentation: LassoScikitsLearnNode

class mdp.nodes.SelectFdrScikitsLearnNode
Filter : Select the p-values corresponding to an estimated false

This node has been automatically generated by wrapping the scikits.learn.feature_selection.univariate_selection.SelectFdr
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: SelectFdrScikitsLearnNode

class mdp.nodes.NuSVRScikitsLearnNode
NuSVR for sparse matrices (csr)

This node has been automatically generated by wrapping the scikits.learn.svm.sparse.classes.NuSVR
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

See scikits.learn.svm.NuSVC for a complete list of parameters

Notes

For best results, this accepts a matrix in csr format (scipy.sparse.csr), but should be able to convert from any
array-like object (including other sparse representations).

76 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NeighborsClassifierScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LassoScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SelectFdrScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Examples

>>> from scikits.learn.svm.sparse import NuSVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = NuSVR(nu=0.1, C=1.0)
>>> clf.fit(X, y)
NuSVR(kernel=’rbf’, C=1.0, probability=False, degree=3, shrinking=True,

tol=0.001, epsilon=0.1, cache_size=100.0, coef0=0.0, nu=0.1, gamma=0.1)

Full API documentation: NuSVRScikitsLearnNode

class mdp.nodes.WardAgglomerationScikitsLearnNode
Feature agglomeration based on Ward hierarchical clustering

This node has been automatically generated by wrapping the scikits.learn.cluster.hierarchical.WardAgglomeration
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

n_clusters [int or ndarray] The number of clusters.

connectivity [sparse matrix] connectivity matrix. Defines for each feature the neigbhoring features fol-
lowing a given structure of the data. Defaut is None, i.e, the hiearchical agglomeration algorithm is
unstructured.

memory [Instance of joblib.Memory or string] Used to cache the output of the computation of the tree. By
default, no caching is done. If a string is given, it is the path to the caching directory.

copy [bool] Copy the connectivity matrix or work inplace.

n_components [int (optional)] The number of connected components in the graph defined by the connec-
tivity matrix. If not set, it is estimated.

Methods

fit:

•Compute the clustering of features

Attributes

children_ [array-like, shape = [n_nodes, 2]] List of the children of each nodes. Leaves of the tree do
not appear.

labels_ [array [n_points]] cluster labels for each point

n_leaves_ [int] Number of leaves in the hiearchical tree.

Full API documentation: WardAgglomerationScikitsLearnNode

class mdp.nodes.SparseBaseLibLinearScikitsLearnNode
Full API documentation: SparseBaseLibLinearScikitsLearnNode

class mdp.nodes.LassoLARSScikitsLearnNode
Lasso model fit with Least Angle Regression a.k.a. LARS

This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LassoLARS
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

It is a Linear Model trained with an L1 prior as regularizer. lasso).

Parameters

alpha [float, optional] Constant that multiplies the L1 term. Defaults to 1.0

77

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NuSVRScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.WardAgglomerationScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SparseBaseLibLinearScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

fit_intercept [boolean] whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

Attributes

coef_ [array, shape = [n_features]] parameter vector (w in the fomulation formula)

intercept_ [float] independent term in decision function.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.LassoLARS(alpha=0.01)
>>> clf.fit([[-1,1], [0, 0], [1, 1]], [-1, 0, -1])
LassoLARS(alpha=0.01, verbose=False, fit_intercept=True)
>>> print clf.coef_
[0. -0.72649658]

References

http://en.wikipedia.org/wiki/Least_angle_regression

See also

lars_path, Lasso

Full API documentation: LassoLARSScikitsLearnNode

class mdp.nodes.RandomizedPCAScikitsLearnNode
Principal component analysis (PCA) using randomized SVD

This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.RandomizedPCA
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping
only the most significant singular vectors to project the data to a lower dimensional space.

This implementation uses a randomized SVD implementation and can handle both scipy.sparse and numpy
dense arrays as input.

Parameters

n_components: int Maximum number of components to keep: default is 50.

copy: bool If False, data passed to fit are overwritten

iterated_power: int, optional Number of iteration for the power method. 3 by default.

whiten: bool, optional When True (False by default) the components_ vectors are divided by the sin-
gular values to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative variance scales of
the components) but can sometime improve the predictive accuracy of the downstream estimators by
making there data respect some hard-wired assumptions.

Attributes

components_: array, [n_components, n_features] Components with maximum variance.

explained_variance_ratio_: array, [n_components] Percentage of variance explained by each of the se-
lected components. k is not set then all components are stored and the sum of explained variances is
equal to 1.0

Examples

>>> import numpy as np
>>> from scikits.learn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X)

78 Chapter 14. Node List

http://en.wikipedia.org/wiki/Least_angle_regression
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LassoLARSScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

RandomizedPCA(copy=True, n_components=2, iterated_power=3, whiten=False)
>>> print pca.explained_variance_ratio_
[0.99244289 0.00755711]

See also

PCA ProbabilisticPCA

Notes

References:

•Finding structure with randomness: Stochastic algorithms for constructing approximate matrix de-
compositions Halko, et al., 2009 (arXiv:909)

•A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin
and Mark Tygert

Full API documentation: RandomizedPCAScikitsLearnNode

class mdp.nodes.ElasticNetScikitsLearnNode
Linear Model trained with L1 and L2 prior as regularizer

This node has been automatically generated by wrapping the scikits.learn.linear_model.coordinate_descent.ElasticNet
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

rho=1 is the lasso penalty. Currently, rho <= 0.01 is not reliable, unless you supply your own sequence of
alpha.

Parameters

alpha [float] Constant that multiplies the L1 term. Defaults to 1.0

rho [float] The ElasticNet mixing parameter, with 0 < rho <= 1.

coef_: ndarray of shape n_features The initial coeffients to warm-start the optimization

fit_intercept: bool Whether the intercept should be estimated or not. If False, the data is assumed to be
already centered.

Notes

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
fortran contiguous numpy array.

Full API documentation: ElasticNetScikitsLearnNode

class mdp.nodes.ProjectedGradientNMFScikitsLearnNode
Non-Negative matrix factorization by Projected Gradient (NMF)

This node has been automatically generated by wrapping the scikits.learn.decomposition.nmf.ProjectedGradientNMF
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

X: array, [n_samples, n_features] Data the model will be fit to.

n_components: int or None Number of components if n_components is not set all components are kept

init: ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | int | RandomState Method used to initialize the procedure. De-
fault: ‘nndsvdar’ Valid options:

• ‘nndsvd’: default Nonnegative Double Singular Value

• Decomposition (NNDSVD) initialization (better for sparseness)

• ‘nndsvda’: NNDSVD with zeros filled with the average of X

• (better when sparsity is not desired)

79

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RandomizedPCAScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ElasticNetScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

• ‘nndsvdar’: NNDSVD with zeros filled with small random values

• (generally faster, less accurate alternative to NNDSVDa

• for when sparsity is not desired)

• int seed or RandomState: non-negative random matrices

sparseness: ‘data’ | ‘components’ | None Where to enforce sparsity in the model. Default: None

beta: double Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. De-
fault: 1

eta: double Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger error.
Default: 0.1

tol: double Tolerance value used in stopping conditions. Default: 1e-4

max_iter: int Number of iterations to compute. Default: 200

nls_max_iter: int Number of iterations in NLS subproblem. Default: 2000

Attributes

components_: array, [n_components, n_features] Non-negative components of the data

reconstruction_err_: number Frobenius norm of the matrix difference between the training data and the
reconstructed data from the fit produced by the model. || X - WH ||_2

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from scikits.learn.decomposition import ProjectedGradientNMF
>>> model = ProjectedGradientNMF(n_components=2, init=0)
>>> model.fit(X)
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,

init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness=None, n_components=2, tol=0.0001)

>>> model.components_
array([[0.77032744, 0.11118662],

[0.38526873, 0.38228063]])
>>> model.reconstruction_err_
0.00746...
>>> model = ProjectedGradientNMF(n_components=2, init=0,
... sparseness=’components’)
>>> model.fit(X)
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,

init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness=’components’, n_components=2, tol=0.0001)

>>> model.components_
array([[1.67481991, 0.29614922],

[-0. , 0.4681982]])
>>> model.reconstruction_err_
0.513...

Notes

This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Com-
putation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/

NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonneg-
ative matrix factorization - Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf

Full API documentation: ProjectedGradientNMFScikitsLearnNode

class mdp.nodes.NeighborsRegressorScikitsLearnNode
Regression based on k-Nearest Neighbor Algorithm

80 Chapter 14. Node List

http://www.csie.ntu.edu.tw/~cjlin/nmf/
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ProjectedGradientNMFScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

The target is predicted by local interpolation of the targets associated of the k-Nearest Neighbors in the
training set.

Different modes for estimating the result can be set via parameter mode. ‘barycenter’ will apply the weights
that best reconstruct the point from its neighbors while ‘mean’ will apply constant weights to each point.

Parameters

n_neighbors [int, optional] Default number of neighbors. Defaults to 5.

window_size [int, optional] Window size passed to BallTree

mode [{‘mean’, ‘barycenter’}, optional] Weights to apply to labels.

algorithm [{‘auto’, ‘ball_tree’, ‘brute’}, optional] Algorithm used to compute the nearest neighbors.
‘ball_tree’ will construct a BallTree, while ‘brute’ will perform brute-force search. ‘auto’ will guess
the most appropriate based on current dataset.

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from scikits.learn.neighbors import NeighborsRegressor
>>> neigh = NeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
NeighborsRegressor(n_neighbors=2, window_size=1, mode=’mean’,

algorithm=’auto’)
>>> print neigh.predict([[1.5]])
[0.5]

Notes

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Full API documentation: NeighborsRegressorScikitsLearnNode

class mdp.nodes.LDAScikitsLearnNode
Linear Discriminant Analysis (LDA)

This node has been automatically generated by wrapping the scikits.learn.lda.LDA class from the
sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

n_components: int Number of components (< n_classes - 1)

priors [array, optional, shape = [n_classes]] Priors on classes

Attributes

means_ [array-like, shape = [n_classes, n_features]] Class means

xbar_ [float, shape = [n_features]] Over all mean

priors_ [array-like, shape = [n_classes]] Class priors (sum to 1)

covariance_ [array-like, shape = [n_features, n_features]] Covariance matrix (shared by all classes)

Examples

>>> import numpy as np
>>> from scikits.learn.lda import LDA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LDA()
>>> clf.fit(X, y)
LDA(priors=None, n_components=None)

81

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NeighborsRegressorScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> print clf.predict([[-0.8, -1]])
[1]

See also

QDA

Full API documentation: LDAScikitsLearnNode

class mdp.nodes.NormalizerScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.preprocessing.Normalizer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: NormalizerScikitsLearnNode

class mdp.nodes.OneClassSVMScikitsLearnNode
Unsupervised Outliers Detection.

This node has been automatically generated by wrapping the scikits.learn.svm.classes.OneClassSVM
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Estimate the support of a high-dimensional distribution.

Parameters

kernel [string, optional] Specifies the kernel type to be used in the algorithm. Can be one of ‘linear’, ‘poly’,
‘rbf’, ‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

nu [float, optional] An upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

degree [int, optional] Degree of kernel function. Significant only in poly, rbf, sigmoid.

gamma [float, optional] kernel coefficient for rbf and poly, by default 1/n_features will be taken.

coef0 [float, optional] Independent term in kernel function. It is only significant in poly/sigmoid.

tol: float, optional precision for stopping criteria

shrinking: boolean, optional wether to use the shrinking heuristic.

cache_size: float, optional specify the size of the cache (in MB)

Attributes

support_ [array-like, shape = [n_SV]] Index of support vectors.

support_vectors_ [array-like, shape = [nSV, n_features]] Support vectors.

dual_coef_ [array, shape = [n_classes-1, n_SV]] Coefficient of the support vector in the decision function.

coef_ [array, shape = [n_classes-1, n_features]] Weights asigned to the features (coefficients in the primal
problem). This is only available in the case of linear kernel.

intercept_ [array, shape = [n_classes-1]] Constants in decision function.

Full API documentation: OneClassSVMScikitsLearnNode

class mdp.nodes.TfidfTransformerScikitsLearnNode
Transform a count matrix to a TF or TF-IDF representation

This node has been automatically generated by wrapping the scikits.learn.feature_extraction.text.TfidfTransformer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

TF means term-frequency while TF-IDF means term-frequency times inverse document-frequency:

http://en.wikipedia.org/wiki/TF-IDF

82 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LDAScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NormalizerScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.OneClassSVMScikitsLearnNode-class.html
http://en.wikipedia.org/wiki/TF-IDF

Modular toolkit for Data Processing

Tutorial, Release 3.2

The goal of using TF-IDF instead of the raw frequencies of occurrence of a token in a given document is to
scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically
less informative than feature that occur in a small fraction of the training corpus.

TF-IDF can be seen as a smooth alternative to the stop words filtering.

Parameters

use_tf: boolean enable term-frequency normalization

use_idf: boolean enable inverse-document-frequency reweighting

Full API documentation: TfidfTransformerScikitsLearnNode

class mdp.nodes.PCAScikitsLearnNode
Principal component analysis (PCA)

This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.PCA
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most
significant singular vectors to project the data to a lower dimensional space.

This implementation uses the scipy.linalg implementation of the singular value decomposition. It only
works for dense arrays and is not scalable to large dimensional data.

The time complexity of this implementation is O(n ** 3) assuming n ~ n_samples ~ n_features.

Parameters

n_components: int, none or string Number of components to keep. if n_components is not set all com-
ponents are kept:

• n_components == min(n_samples, n_features)

if n_components == ‘mle’, Minka’s MLE is used to guess the dimension

if 0 < n_components < 1, select the number of components such that the explained variance ratio
is greater than n_components

copy: bool If False, data passed to fit are overwritten

whiten: bool, optional When True (False by default) the components_ vectors are divided by
n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative variance scales of
the components) but can sometime improve the predictive accuracy of the downstream estimators by
making there data respect some hard-wired assumptions.

Attributes

components_: array, [n_components, n_features] Components with maximum variance.

explained_variance_ratio_: array, [n_components] Percentage of variance explained by each of the se-
lected components. k is not set then all components are stored and the sum of explained variances is
equal to 1.0

Notes

For n_components=’mle’, this class uses the method of Thomas P. Minka:

Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604

Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this imple-
mentation, running fit twice on the same matrix can lead to principal components with signs flipped (change
in direction). For this reason, it is important to always use the same estimator object to transform data in a
consistent fashion.

Examples

83

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.TfidfTransformerScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> import numpy as np
>>> from scikits.learn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, n_components=2, whiten=False)
>>> print pca.explained_variance_ratio_
[0.99244289 0.00755711]

See also

ProbabilisticPCA RandomizedPCA

Full API documentation: PCAScikitsLearnNode

class mdp.nodes.SelectKBestScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.feature_selection.univariate_selection.SelectKBest
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: SelectKBestScikitsLearnNode

class mdp.nodes.RFECVScikitsLearnNode
Feature ranking with Recursive feature elimination and cross validation

This node has been automatically generated by wrapping the scikits.learn.feature_selection.rfe.RFECV
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

estimator [object] A supervised learning estimator with a fit method that updates a coef_ attributes that
holds the fitted parameters. The first dimension of the coef_ array must be equal n_features an
important features must yield high absolute values in the coef_ array.

For instance this is the case for most supervised learning algorithms such as Support Vector Classifiers
and Generalized Linear Models from the svm and linear_model package.

n_features [int] Number of features to select

percentage [float] The percentage of features to remove at each iteration Should be between (0, 1]. By
default 0.1 will be taken.

Attributes

support_ [array-like, shape = [n_features]] Mask of estimated support

ranking_ [array-like, shape = [n_features]] Mask of the ranking of features

Methods

fit(X, y) [self] Fit the model

transform(X) [array] Reduce X to support

Examples

>>> # TODO!

References

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using
support vector machines. Mach. Learn., 46(1-3), 389–422.

Full API documentation: RFECVScikitsLearnNode

class mdp.nodes.LassoCVScikitsLearnNode
Lasso linear model with iterative fitting along a regularization path

84 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PCAScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SelectKBestScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RFECVScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

This node has been automatically generated by wrapping the scikits.learn.linear_model.coordinate_descent.LassoCV
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

The best model is selected by cross-validation.

Parameters

eps [float, optional] Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas [int, optional] Number of alphas along the regularization path

alphas [numpy array, optional] List of alphas where to compute the models. If None alphas are set auto-
matically

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
fortran contiguous numpy array.

Full API documentation: LassoCVScikitsLearnNode

class mdp.nodes.BayesianRidgeScikitsLearnNode
Bayesian ridge regression

This node has been automatically generated by wrapping the scikits.learn.linear_model.bayes.BayesianRidge
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights)
and alpha (precision of the noise).

Parameters

X [array, shape = (n_samples, n_features)] Training vectors.

y [array, shape = (length)] Target values for training vectors

n_iter [int, optional] Maximum number of interations. Default is 300.

eps [float, optional] Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 [float, optional] Hyper-parameter : shape parameter for the Gamma distribution prior over the
alpha parameter. Default is 1.e-6

alpha_2 [float, optional] Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distri-
bution prior over the alpha parameter. Default is 1.e-6.

lambda_1 [float, optional] Hyper-parameter : shape parameter for the Gamma distribution prior over the
lambda parameter. Default is 1.e-6.

lambda_2 [float, optional] Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma
distribution prior over the lambda parameter. Default is 1.e-6

compute_score [boolean, optional] If True, compute the objective function at each step of the model.
Default is False

fit_intercept [boolean, optional] wether to calculate the intercept for this model. If set to false, no intercept
will be used in calculations (e.g. data is expected to be already centered). Default is True.

Attributes

coef_ [array, shape = (n_features)] Coefficients of the regression model (mean of distribution)

alpha_ [float] estimated precision of the noise.

lambda_ [array, shape = (n_features)] estimated precisions of the weights.

scores_ [float] if computed, value of the objective function (to be maximized)

Methods

85

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LassoCVScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

fit(X, y) [self] Fit the model

predict(X) [array] Predict using the model.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
BayesianRidge(n_iter=300, verbose=False, lambda_1=1e-06, lambda_2=1e-06,

fit_intercept=True, eps=0.001, alpha_2=1e-06, alpha_1=1e-06,
compute_score=False)

>>> clf.predict([[1, 1]])
array([1.])

Notes

See examples/linear_model/plot_bayesian_ridge.py for an example.

Full API documentation: BayesianRidgeScikitsLearnNode

class mdp.nodes.RidgeCVScikitsLearnNode
Ridge regression with built-in cross-validation.

This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Parameters

alphas: numpy array of shape [n_alpha] Array of alpha values to try. Small positive values of alpha
improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds
to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.

fit_intercept [boolean] Whether to calculate the intercept for this model. If set to false, no intercept will
be used in calculations (e.g. data is expected to be already centered).

loss_func: callable, optional function that takes 2 arguments and compares them in order to evaluate the
performance of prediciton (small is good) if None is passed, the score of the estimator is maximized

score_func: callable, optional function that takes 2 arguments and compares them in order to evaluate the
performance of prediciton (big is good) if None is passed, the score of the estimator is maximized

See also

Ridge

Full API documentation: RidgeCVScikitsLearnNode

class mdp.nodes.GMMScikitsLearnNode
Gaussian Mixture Model

This node has been automatically generated by wrapping the scikits.learn.mixture.GMM class
from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation
of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution.

Initializes parameters such that every mixture component has zero mean and identity covariance.

Parameters

n_states [int, optional] Number of mixture components. Defaults to 1.

cvtype [string (read-only), optional] String describing the type of covariance parameters to use. Must be
one of ‘spherical’, ‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

Attributes

86 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.BayesianRidgeScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RidgeCVScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

cvtype [string (read-only)] String describing the type of covariance parameters used by the GMM. Must be
one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.

n_features [int] Dimensionality of the Gaussians.

n_states [int (read-only)] Number of mixture components.

weights [array, shape (n_states,)] Mixing weights for each mixture component.

means [array, shape (n_states, n_features)] Mean parameters for each mixture component.

covars [array] Covariance parameters for each mixture component. The shape depends on cvtype:

• (n_states,) if ‘spherical’,

• (n_features, n_features) if ‘tied’,

• (n_states, n_features) if ‘diag’,

• (n_states, n_features, n_features) if ‘full’

converged_ [bool] True when convergence was reached in fit(), False otherwise.

Methods

decode(X) Find most likely mixture components for each point in X.

eval(X) Compute the log likelihood of X under the model and the posterior distribution over mixture com-
ponents.

fit(X) Estimate model parameters from X using the EM algorithm.

predict(X) Like decode, find most likely mixtures components for each observation in X.

rvs(n=1) Generate n samples from the model.

score(X) Compute the log likelihood of X under the model.

Examples

>>> import numpy as np
>>> from scikits.learn import mixture
>>> g = mixture.GMM(n_states=2)

>>> # Generate random observations with two modes centered on 0
>>> # and 10 to use for training.
>>> np.random.seed(0)
>>> obs = np.concatenate((np.random.randn(100, 1),
... 10 + np.random.randn(300, 1)))
>>> g.fit(obs)
GMM(cvtype=’diag’, n_states=2)
>>> g.weights
array([0.25, 0.75])
>>> g.means
array([[0.05980802],

[9.94199467]])
>>> g.covars
[array([[1.01682662]]), array([[0.96080513]])]
>>> np.round(g.weights, 2)
array([0.25, 0.75])
>>> np.round(g.means, 2)
array([[0.06],

[9.94]])
>>> np.round(g.covars, 2)
...
array([[[1.02]],

[[0.96]]])
>>> g.predict([[0], [2], [9], [10]])
array([0, 0, 1, 1])

87

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> np.round(g.score([[0], [2], [9], [10]]), 2)
array([-2.32, -4.16, -1.65, -1.19])

>>> # Refit the model on new data (initial parameters remain the
>>> # same), this time with an even split between the two modes.
>>> g.fit(20 * [[0]] + 20 * [[10]])
GMM(cvtype=’diag’, n_states=2)
>>> np.round(g.weights, 2)
array([0.5, 0.5])

Full API documentation: GMMScikitsLearnNode

class mdp.nodes.GMMHMMScikitsLearnNode
Hidden Markov Model with Gaussin mixture emissions

This node has been automatically generated by wrapping the scikits.learn.hmm.GMMHMM class from
the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Attributes

n_states [int (read-only)] Number of states in the model.

transmat [array, shape (n_states, n_states)] Matrix of transition probabilities between states.

startprob [array, shape (‘n_states‘,)] Initial state occupation distribution.

gmms: array of GMM objects, length ‘n_states‘ GMM emission distributions for each state

Methods

eval(X) Compute the log likelihood of X under the HMM.

decode(X) Find most likely state sequence for each point in X using the Viterbi algorithm.

rvs(n=1) Generate n samples from the HMM.

init(X) Initialize HMM parameters from X.

fit(X) Estimate HMM parameters from X using the Baum-Welch algorithm.

predict(X) Like decode, find most likely state sequence corresponding to X.

score(X) Compute the log likelihood of X under the model.

Examples

>>> from scikits.learn.hmm import GMMHMM
>>> GMMHMM(n_states=2, n_mix=10, cvtype=’diag’)
...
GMMHMM(n_mix=10, cvtype=’diag’, n_states=2, startprob_prior=1.0,

startprob=array([0.5, 0.5]),
transmat=array([[0.5, 0.5],

[0.5, 0.5]]),
transmat_prior=1.0,
gmms=[GMM(cvtype=’diag’, n_states=10), GMM(cvtype=’diag’,

n_states=10)])

See Also

GaussianHMM : HMM with Gaussian emissions

Full API documentation: GMMHMMScikitsLearnNode

class mdp.nodes.ARDRegressionScikitsLearnNode
Bayesian ARD regression.

This node has been automatically generated by wrapping the scikits.learn.linear_model.bayes.ARDRegression
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

88 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GMMScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GMMHMMScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed
to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of
the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative
procedures (Evidence Maximization)

Parameters

X [array, shape = (n_samples, n_features)] Training vectors.

y [array, shape = (n_samples)] Target values for training vectors

n_iter [int, optional] Maximum number of interations. Default is 300

eps [float, optional] Stop the algorithm if w has converged. Default is 1.e-3.

alpha_1 [float, optional] Hyper-parameter : shape parameter for the Gamma distribution prior over the
alpha parameter. Default is 1.e-6.

alpha_2 [float, optional] Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distri-
bution prior over the alpha parameter. Default is 1.e-6.

lambda_1 [float, optional] Hyper-parameter : shape parameter for the Gamma distribution prior over the
lambda parameter. Default is 1.e-6.

lambda_2 [float, optional] Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma
distribution prior over the lambda parameter. Default is 1.e-6.

compute_score [boolean, optional] If True, compute the objective function at each step of the model.
Default is False.

threshold_lambda [float, optional] threshold for removing (pruning) weights with high precision from the
computation. Default is 1.e+4.

fit_intercept [boolean, optional] wether to calculate the intercept for this model. If set to false, no intercept
will be used in calculations (e.g. data is expected to be already centered). Default is True.

verbose [boolean, optional] Verbose mode when fitting the model. Default is False.

Attributes

coef_ [array, shape = (n_features)] Coefficients of the regression model (mean of distribution)

alpha_ [float] estimated precision of the noise.

lambda_ [array, shape = (n_features)] estimated precisions of the weights.

sigma_ [array, shape = (n_features, n_features)] estimated variance-covariance matrix of the weights

scores_ [float] if computed, value of the objective function (to be maximized)

Methods

fit(X, y) [self] Fit the model

predict(X) [array] Predict using the model.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
ARDRegression(n_iter=300, verbose=False, lambda_1=1e-06, lambda_2=1e-06,

fit_intercept=True, eps=0.001, threshold_lambda=10000.0,
alpha_2=1e-06, alpha_1=1e-06, compute_score=False)

>>> clf.predict([[1, 1]])
array([1.])

Notes

See examples/linear_model/plot_ard.py for an example.

Full API documentation: ARDRegressionScikitsLearnNode

89

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ARDRegressionScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

class mdp.nodes.GenericUnivariateSelectScikitsLearnNode
Full API documentation: GenericUnivariateSelectScikitsLearnNode

class mdp.nodes.CountVectorizerScikitsLearnNode
Convert a collection of raw documents to a matrix of token counts

This node has been automatically generated by wrapping the scikits.learn.feature_extraction.text.CountVectorizer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix.

If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature
selection then the number of features (the vocabulary size found by analysing the data) might be very large
and the count vectors might not fit in memory.

For this case it is either recommended to use the sparse.CountVectorizer variant of this class or a Hash-
ingVectorizer that will reduce the dimensionality to an arbitrary number by using random projection.

Parameters

analyzer: WordNGramAnalyzer or CharNGramAnalyzer, optional

vocabulary: dict, optional A dictionary where keys are tokens and values are indices in the matrix.

This is useful in order to fix the vocabulary in advance.

max_df [float in range [0.0, 1.0], optional, 1.0 by default] When building the vocabulary ignore terms that
have a term frequency strictly higher than the given threshold (corpus specific stop words).

This parameter is ignored if vocabulary is not None.

max_features [optional, None by default] If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.

This parameter is ignored if vocabulary is not None.

dtype: type, optional Type of the matrix returned by fit_transform() or transform().

Full API documentation: CountVectorizerScikitsLearnNode

class mdp.nodes.RidgeScikitsLearnNode
Ridge regression.

This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.Ridge
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

alpha [float] Small positive values of alpha improve the conditioning of the problem and reduce the vari-
ance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegres-
sion or LinearSVC.

fit_intercept [boolean] Whether to calculate the intercept for this model. If set to false, no intercept will
be used in calculations (e.g. data is expected to be already centered).

Examples

>>> from scikits.learn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge(alpha=1.0, fit_intercept=True)

Full API documentation: RidgeScikitsLearnNode

90 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GenericUnivariateSelectScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.CountVectorizerScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RidgeScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

class mdp.nodes.MultinomialHMMScikitsLearnNode
Hidden Markov Model with multinomial (discrete) emissions

This node has been automatically generated by wrapping the scikits.learn.hmm.MultinomialHMM
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Attributes

n_states [int (read-only)] Number of states in the model.

n_symbols [int] Number of possible symbols emitted by the model (in the observations).

transmat [array, shape (n_states, n_states)] Matrix of transition probabilities between states.

startprob [array, shape (‘n_states‘,)] Initial state occupation distribution.

emissionprob: array, shape (‘n_states‘, ‘n_symbols‘) Probability of emitting a given symbol when in
each state.

Methods

eval(X) Compute the log likelihood of X under the HMM.

decode(X) Find most likely state sequence for each point in X using the Viterbi algorithm.

rvs(n=1) Generate n samples from the HMM.

init(X) Initialize HMM parameters from X.

fit(X) Estimate HMM parameters from X using the Baum-Welch algorithm.

predict(X) Like decode, find most likely state sequence corresponding to X.

score(X) Compute the log likelihood of X under the model.

Examples

>>> from scikits.learn.hmm import MultinomialHMM
>>> MultinomialHMM(n_states=2)
...
MultinomialHMM(transmat=array([[0.5, 0.5],

[0.5, 0.5]]),
startprob_prior=1.0, n_states=2, startprob=array([0.5, 0.5]),

transmat_prior=1.0)

See Also

GaussianHMM : HMM with Gaussian emissions

Full API documentation: MultinomialHMMScikitsLearnNode

class mdp.nodes.LogisticRegressionScikitsLearnNode
Logistic Regression.

This node has been automatically generated by wrapping the scikits.learn.linear_model.logistic.LogisticRegression
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Implements L1 and L2 regularized logistic regression.

Parameters

penalty [string, ‘l1’ or ‘l2’] Used to specify the norm used in the penalization

dual [boolean] Dual or primal formulation. Dual formulation is only implemented for l2 penalty.

C [float] Specifies the strength of the regularization. The smaller it is the bigger in the regularization.

fit_intercept [bool, default: True] Specifies if a constant (a.k.a. bias or intercept) should be added the
decision function

91

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.MultinomialHMMScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

intercept_scaling [float, default: 1] when self.fit_intercept is True, instance vector x becomes [x,
self.intercept_scaling], i.e. a “synthetic” feature with constant value equals to intercept_scaling is
appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight
Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the
effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling
has to be increased

tol: float, optional tolerance for stopping criteria

Attributes

coef_ [array, shape = [n_classes-1, n_features]] Coefficient of the features in the decision function.

intercept_ [array, shape = [n_classes-1]] intercept (a.k.a. bias) added to the decision function. It is available
only when parameter intercept is set to True

See also

LinearSVC

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with
a smaller tol parameter.

References

LIBLINEAR – A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Full API documentation: LogisticRegressionScikitsLearnNode

class mdp.nodes.SVRScikitsLearnNode
epsilon-Support Vector Regression.

This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg at-
tribute.

The free parameters in the model are C and epsilon.

Parameters

nu [float, optional] An upper bound on the fraction of training errors and a lower bound of the fraction
of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. Only available if
impl=’nu_svc’

kernel [string, optional] Specifies the kernel type to be used in the algorithm. one of ‘linear’, ‘poly’, ‘rbf’,
‘sigmoid’, ‘precomputed’. If none is given ‘rbf’ will be used.

epsilon [float] epsilon in the epsilon-SVR model.

degree [int, optional] degree of kernel function is significant only in poly, rbf, sigmoid

gamma [float, optional] kernel coefficient for rbf and poly, by default 1/n_features will be taken.

C [float, optional (default=1.0)] penalty parameter C of the error term.

probability: boolean, optional (False by default) enable probability estimates. This must be enabled
prior to calling prob_predict.

tol: float, optional precision for stopping criteria

coef0 [float, optional] independent term in kernel function. It is only significant in poly/sigmoid.

cache_size: float, optional specify the size of the cache (in MB)

shrinking: boolean, optional wether to use the shrinking heuristic.

Attributes

support_ [array-like, shape = [n_SV]] Index of support vectors.

92 Chapter 14. Node List

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LogisticRegressionScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

support_vectors_ [array-like, shape = [nSV, n_features]] Support vectors.

dual_coef_ [array, shape = [n_classes-1, n_SV]] Coefficients of the support vector in the decision function.

coef_ [array, shape = [n_classes-1, n_features]] Weights asigned to the features (coefficients in the primal
problem). This is only available in the case of linear kernel.

intercept_ [array, shape = [n_class * (n_class-1) / 2]] Constants in decision function.

Examples

>>> from scikits.learn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(kernel=’rbf’, C=1.0, probability=False, degree=3, epsilon=0.2,
shrinking=True, tol=0.001, cache_size=100.0, coef0=0.0, nu=0.5,
gamma=0.1)

See also

NuSVR

Full API documentation: SVRScikitsLearnNode

class mdp.nodes.NuSVCScikitsLearnNode
NuSVC for sparse matrices (csr).

This node has been automatically generated by wrapping the scikits.learn.svm.sparse.classes.NuSVC
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

See scikits.learn.svm.NuSVC for a complete list of parameters

Notes

For best results, this accepts a matrix in csr format (scipy.sparse.csr), but should be able to convert from any
array-like object (including other sparse representations).

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from scikits.learn.svm.sparse import NuSVC
>>> clf = NuSVC()
>>> clf.fit(X, y)
NuSVC(kernel=’rbf’, probability=False, degree=3, coef0=0.0, tol=0.001,

cache_size=100.0, shrinking=True, nu=0.5, gamma=0.25)
>>> print clf.predict([[-0.8, -1]])
[1.]

Full API documentation: NuSVCScikitsLearnNode

class mdp.nodes.GaussianProcessScikitsLearnNode
The Gaussian Process model class.

This node has been automatically generated by wrapping the scikits.learn.gaussian_process.gaussian_process.GaussianProcess
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

93

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SVRScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.NuSVCScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

regr [string or callable, optional] A regression function returning an array of outputs of the linear regression
functional basis. The number of observations n_samples should be greater than the size p of this basis.
Default assumes a simple constant regression trend. Here is the list of built-in regression models:

• ‘constant’, ‘linear’, ‘quadratic’

corr [string or callable, optional] A stationary autocorrelation function returning the autocorrelation be-
tween two points x and x’. Default assumes a squared-exponential autocorrelation model. Here is the
list of built-in correlation models:

• ‘absolute_exponential’, ‘squared_exponential’,

• ‘generalized_exponential’, ‘cubic’, ‘linear’

beta0 [double array_like, optional] The regression weight vector to perform Ordinary Kriging (OK). De-
fault assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using
the maximum likelihood principle.

storage_mode [string, optional] A string specifying whether the Cholesky decomposition of the correlation
matrix should be stored in the class (storage_mode = ‘full’) or not (storage_mode = ‘light’). Default
assumes storage_mode = ‘full’, so that the Cholesky decomposition of the correlation matrix is stored.
This might be a useful parameter when one is not interested in the MSE and only plan to estimate the
BLUP, for which the correlation matrix is not required.

verbose [boolean, optional] A boolean specifying the verbose level. Default is verbose = False.

theta0 [double array_like, optional] An array with shape (n_features,) or (1,). The parameters in the
autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting
point for the maximum likelihood rstimation of the best set of parameters. Default assumes isotropic
autocorrelation model with theta0 = 1e-1.

thetaL [double array_like, optional] An array with shape matching theta0’s. Lower bound on the autocor-
relation parameters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

thetaU [double array_like, optional] An array with shape matching theta0’s. Upper bound on the autocor-
relation parameters for maximum likelihood estimation. Default is None, so that it skips maximum
likelihood estimation and it uses theta0.

normalize [boolean, optional] Input X and observations y are centered and reduced wrt means and standard
deviations estimated from the n_samples observations provided. Default is normalize = True so that
data is normalized to ease maximum likelihood estimation.

nugget [double, optional] Introduce a nugget effect to allow smooth predictions from noisy data. De-
fault assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MA-
CHINE_EPSILON).

optimizer [string, optional] A string specifying the optimization algorithm to be used. Default uses
‘fmin_cobyla’ algorithm from scipy.optimize. Here is the list of available optimizers:

• ‘fmin_cobyla’, ‘Welch’

‘Welch’ optimizer is dued to Welch et al., see reference [2]. It consists in iterating over several one-
dimensional optimizations instead of running one single multi-dimensional optimization.

random_start [int, optional] The number of times the Maximum Likelihood Estimation should be per-
formed from a random starting point. The first MLE always uses the specified starting point (theta0),
the next starting points are picked at random according to an exponential distribution (log-uniform on
[thetaL, thetaU]). Default does not use random starting point (random_start = 1).

Example

>>> import numpy as np
>>> from scikits.learn.gaussian_process import GaussianProcess
>>> X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T
>>> y = (X * np.sin(X)).ravel()
>>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.)

94 Chapter 14. Node List

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> gp.fit(X, y)
GaussianProcess(normalize=True, ...)

Implementation details

The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [1].

References

[1] H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard (2002). DACE - A MATLAB Krig-
ing Toolbox. http://www2.imm.dtu.dk/~hbn/dace/dace.pdf

[2] W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992).
Screening, predicting, and computer experiments. Technometrics, 34(1) 15–25.
http://www.jstor.org/pss/1269548

Full API documentation: GaussianProcessScikitsLearnNode

class mdp.nodes.GNBScikitsLearnNode
Gaussian Naive Bayes (GNB)

This node has been automatically generated by wrapping the scikits.learn.naive_bayes.GNB
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg at-
tribute.

Parameters

X [array-like, shape = [n_samples, n_features]] Training vector, where n_samples in the number of samples
and n_features is the number of features.

y [array, shape = [n_samples]] Target vector relative to X

Attributes

proba_y [array, shape = [n_classes]] probability of each class.

theta [array, shape [n_classes * n_features]] mean of each feature for the different class

sigma [array, shape [n_classes * n_features]] variance of each feature for the different class

Methods

fit(X, y) [self] Fit the model

predict(X) [array] Predict using the model.

predict_proba(X) [array] Predict the probability of each class using the model.

predict_log_proba(X) [array] Predict the log-probability of each class using the model.

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from scikits.learn.naive_bayes import GNB
>>> clf = GNB()
>>> clf.fit(X, Y)
GNB()
>>> print clf.predict([[-0.8, -1]])
[1]

See also

Full API documentation: GNBScikitsLearnNode

class mdp.nodes.ElasticNetCVScikitsLearnNode
Elastic Net model with iterative fitting along a regularization path

95

http://www2.imm.dtu.dk/~hbn/dace/dace.pdf
http://www.jstor.org/pss/1269548
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GaussianProcessScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GNBScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

This node has been automatically generated by wrapping the scikits.learn.linear_model.coordinate_descent.ElasticNetCV
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

The best model is selected by cross-validation.

Parameters

rho [float, optional] float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties)

eps [float, optional] Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas [int, optional] Number of alphas along the regularization path

alphas [numpy array, optional] List of alphas where to compute the models. If None alphas are set auto-
matically

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
fortran contiguous numpy array.

Full API documentation: ElasticNetCVScikitsLearnNode

class mdp.nodes.PLSRegressionScikitsLearnNode
PLS regression (Also known PLS2 or PLS in case of one dimensional response). PLSregression inherits
from PLS with mode=”A” and deflation_mode=”regression”.

This node has been automatically generated by wrapping the scikits.learn.pls.PLSRegression
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg at-
tribute.

Parameters

X: array-like of predictors, shape (n_samples, p) Training vectors, where n_samples in the number of
samples and p is the number of predictors.

Y: array-like of response, shape (n_samples, q) Training vectors, where n_samples in the number of
samples and q is the number of response variables.

n_components: int, number of components to keep. (default 2).

scale: boolean, scale data? (default True)

algorithm: str “nipals” or “svd” the algorithm used to estimate the weights, it will be called
“n_components” time ie.: for each iteration of the outer loop.

max_iter: an integer, the maximum number of iterations (default 500) of the NIPALS inner loop
(used only if algorithm=”nipals”)

tol: a not negative real, the tolerance used in the iterative algorithm default 1e-06.

copy: boolean, should the deflation been made on a copy? Let the default value to True unless you
don’t care about side effect

Attributes

x_weights_: array, [p, n_components] X block weights vectors.

y_weights_: array, [q, n_components] Y block weights vectors.

x_loadings_: array, [p, n_components] X block loadings vectors.

y_loadings_: array, [q, n_components] Y block loadings vectors.

x_scores_: array, [n_samples, n_components] X scores.

y_scores_: array, [n_samples, n_components] Y scores.

x_rotations_: array, [p, n_components] X block to latents rotations.

96 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ElasticNetCVScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

y_rotations_: array, [q, n_components] Y block to latents rotations.

coefs: array, [p, q] The coeficients of the linear model: Y = X coefs + Err

Notes

For each component k, find weights u, v that optimizes:

max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that |u| = |v| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the
PLS regression known as PLS2. This mode is prediction oriented.

Examples

>>> from scikits.learn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> pls2 = PLSRegression()
>>> pls2.fit(X, Y, n_components=2)
PLSRegression(scale=True, algorithm=’nipals’, max_iter=500, n_components=2,

tol=1e-06, copy=True)
>>> Y_pred = pls2.predict(X)

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference:

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:

Editions Technic.

Full API documentation: PLSRegressionScikitsLearnNode

class mdp.nodes.PLSCanonicalScikitsLearnNode
PLS canonical. PLSCanonical inherits from PLS with mode=”A” and deflation_mode=”canonical”.

This node has been automatically generated by wrapping the scikits.learn.pls.PLSCanonical
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg at-
tribute.

Parameters

X: array-like of predictors, shape (n_samples, p) Training vectors, where n_samples in the number of
samples and p is the number of predictors.

Y: array-like of response, shape (n_samples, q) Training vectors, where n_samples in the number of
samples and q is the number of response variables.

n_components: int, number of components to keep. (default 2).

scale: boolean, scale data? (default True)

algorithm: str “nipals” or “svd” the algorithm used to estimate the weights, it will be called
“n_components” time ie.: for each iteration of the outer loop.

max_iter: an integer, the maximum number of iterations (default 500) of the NIPALS inner loop
(used only if algorithm=”nipals”)

tol: a not negative real, the tolerance used in the iterative algorithm default 1e-06.

copy: boolean, should the deflation been made on a copy? Let the default value to True unless you
don’t care about side effect

Attributes

97

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PLSRegressionScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

x_weights_: array, [p, n_components] X block weights vectors.

y_weights_: array, [q, n_components] Y block weights vectors.

x_loadings_: array, [p, n_components] X block loadings vectors.

y_loadings_: array, [q, n_components] Y block loadings vectors.

x_scores_: array, [n_samples, n_components] X scores.

y_scores_: array, [n_samples, n_components] Y scores.

x_rotations_: array, [p, n_components] X block to latents rotations.

y_rotations_: array, [q, n_components] Y block to latents rotations.

Notes

For each component k, find weights u, v that optimizes:

max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that |u| = |v| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a
canonical symetric version of the PLS regression. But slightly different than the CCA. This is mode mostly
used for modeling

Examples

>>> from scikits.learn.pls import PLSCanonical, PLSRegression, CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> plsca = PLSCanonical()
>>> plsca.fit(X, Y, n_components=2)
PLSCanonical(scale=True, algorithm=’nipals’, max_iter=500, n_components=2,

tol=1e-06, copy=True)
>>> X_c, Y_c = plsca.transform(X, Y)

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference:

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:

Editions Technic.

See also

CCA PLSSVD

Full API documentation: PLSCanonicalScikitsLearnNode

class mdp.nodes.ProbabilisticPCAScikitsLearnNode
Additional layer on top of PCA that adds a probabilistic evaluation

This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.ProbabilisticPCA
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Principal component analysis (PCA)

Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most
significant singular vectors to project the data to a lower dimensional space.

This implementation uses the scipy.linalg implementation of the singular value decomposition. It only
works for dense arrays and is not scalable to large dimensional data.

98 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PLSCanonicalScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

The time complexity of this implementation is O(n ** 3) assuming n ~ n_samples ~ n_features.

Parameters

n_components: int, none or string Number of components to keep. if n_components is not set all com-
ponents are kept:

• n_components == min(n_samples, n_features)

if n_components == ‘mle’, Minka’s MLE is used to guess the dimension

if 0 < n_components < 1, select the number of components such that the explained variance ratio
is greater than n_components

copy: bool If False, data passed to fit are overwritten

whiten: bool, optional When True (False by default) the components_ vectors are divided by
n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative variance scales of
the components) but can sometime improve the predictive accuracy of the downstream estimators by
making there data respect some hard-wired assumptions.

Attributes

components_: array, [n_components, n_features] Components with maximum variance.

explained_variance_ratio_: array, [n_components] Percentage of variance explained by each of the se-
lected components. k is not set then all components are stored and the sum of explained variances is
equal to 1.0

Notes

For n_components=’mle’, this class uses the method of Thomas P. Minka:

Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604

Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this imple-
mentation, running fit twice on the same matrix can lead to principal components with signs flipped (change
in direction). For this reason, it is important to always use the same estimator object to transform data in a
consistent fashion.

Examples

>>> import numpy as np
>>> from scikits.learn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(copy=True, n_components=2, whiten=False)
>>> print pca.explained_variance_ratio_
[0.99244289 0.00755711]

See also

ProbabilisticPCA RandomizedPCA

Full API documentation: ProbabilisticPCAScikitsLearnNode

class mdp.nodes.LinearRegressionScikitsLearnNode
Ordinary least squares Linear Regression.

This node has been automatically generated by wrapping the scikits.learn.linear_model.base.LinearRegression
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Attributes

coef_ [array] Estimated coefficients for the linear regression problem.

intercept_ [array] Independent term in the linear model.

99

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.ProbabilisticPCAScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (numpy.linalg.lstsq)
wrapped as a predictor object.

Full API documentation: LinearRegressionScikitsLearnNode

class mdp.nodes.SelectFweScikitsLearnNode
This node has been automatically generated by wrapping the scikits.learn.feature_selection.univariate_selection.SelectFwe
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Full API documentation: SelectFweScikitsLearnNode

class mdp.nodes.LabelBinarizerScikitsLearnNode
Binarize labels in a one-vs-all fashion.

This node has been automatically generated by wrapping the scikits.learn.preprocessing.LabelBinarizer
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Several regression and binary classification algorithms are available in the scikit. A simple way to extend
these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one
needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer
makes this process easy with the transform method.

At prediction time, one assigns the class for which the corresponding model gave the greatest confidence.
LabelBinarizer makes this easy with the inverse_transform method.

Attributes

classes_ [array of shape [n_class]] Holds the label for each class.

Examples

>>> from scikits.learn import preprocessing
>>> clf = preprocessing.LabelBinarizer()
>>> clf.fit([1,2,6,4,2])
LabelBinarizer()
>>> clf.classes_
array([1, 2, 4, 6])
>>> clf.transform([1, 6])
array([[1., 0., 0., 0.],

[0., 0., 0., 1.]])

>>> clf.fit_transform([(1,2),(3,)])
array([[1., 1., 0.],

[0., 0., 1.]])

Full API documentation: LabelBinarizerScikitsLearnNode

class mdp.nodes.LengthNormalizerScikitsLearnNode
Full API documentation: LengthNormalizerScikitsLearnNode

class mdp.nodes.PLSSVDScikitsLearnNode
Partial Least Square SVD

This node has been automatically generated by wrapping the scikits.learn.pls.PLSSVD class from
the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Simply perform a svd on the crosscovariance matrix: X’Y The are no iterative deflation here.

Parameters

X: array-like of predictors, shape (n_samples, p) Training vector, where n_samples in the number of
samples and p is the number of predictors. X will be centered before any analysis.

100 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LinearRegressionScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.SelectFweScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LabelBinarizerScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LengthNormalizerScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

Y: array-like of response, shape (n_samples, q) Training vector, where n_samples in the number of sam-
ples and q is the number of response variables. X will be centered before any analysis.

n_components: int, number of components to keep. (default 2).

scale: boolean, scale X and Y (default True)

Attributes

x_weights_: array, [p, n_components] X block weights vectors.

y_weights_: array, [q, n_components] Y block weights vectors.

x_scores_: array, [n_samples, n_components] X scores.

y_scores_: array, [n_samples, n_components] Y scores.

See also

PLSCanonical CCA

Full API documentation: PLSSVDScikitsLearnNode

class mdp.nodes.GaussianHMMScikitsLearnNode
Hidden Markov Model with Gaussian emissions

This node has been automatically generated by wrapping the scikits.learn.hmm.GaussianHMM
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg at-
tribute.

Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of,
sampling from, and maximum-likelihood estimation of the parameters of a HMM.

Attributes

cvtype [string (read-only)] String describing the type of covariance parameters used by the model. Must
be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.

n_features [int (read-only)] Dimensionality of the Gaussian emissions.

n_states [int (read-only)] Number of states in the model.

transmat [array, shape (n_states, n_states)] Matrix of transition probabilities between states.

startprob [array, shape (‘n_states‘,)] Initial state occupation distribution.

means [array, shape (n_states, n_features)] Mean parameters for each state.

covars [array] Covariance parameters for each state. The shape depends on cvtype:

• (n_states,) if ‘spherical’,

• (n_features, n_features) if ‘tied’,

• (n_states, n_features) if ‘diag’,

• (n_states, n_features, n_features) if ‘full’

Methods

eval(X) Compute the log likelihood of X under the HMM.

decode(X) Find most likely state sequence for each point in X using the Viterbi algorithm.

rvs(n=1) Generate n samples from the HMM.

init(X) Initialize HMM parameters from X.

fit(X) Estimate HMM parameters from X using the Baum-Welch algorithm.

predict(X) Like decode, find most likely state sequence corresponding to X.

score(X) Compute the log likelihood of X under the model.

Examples

101

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.PLSSVDScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

>>> from scikits.learn.hmm import GaussianHMM
>>> GaussianHMM(n_states=2)
GaussianHMM(cvtype=’diag’, n_states=2, means_weight=0, startprob_prior=1.0,

startprob=array([0.5, 0.5]),
transmat=array([[0.5, 0.5],
[0.5, 0.5]]),
transmat_prior=1.0, means_prior=None, covars_weight=1,
covars_prior=0.01)

See Also

GMM : Gaussian mixture model

Full API documentation: GaussianHMMScikitsLearnNode

class mdp.nodes.LARSScikitsLearnNode
Least Angle Regression model a.k.a. LAR

This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS
class from the sklearn library. The wrapped instance can be accessed through the scikits_alg
attribute.

Parameters

n_features [int, optional] Number of selected active features

fit_intercept [boolean] whether to calculate the intercept for this model. If set to false, no intercept will be
used in calculations (e.g. data is expected to be already centered).

Attributes

coef_ [array, shape = [n_features]] parameter vector (w in the fomulation formula)

intercept_ [float] independent term in decision function.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.LARS()
>>> clf.fit([[-1,1], [0, 0], [1, 1]], [-1, 0, -1], max_features=1)
LARS(verbose=False, fit_intercept=True)
>>> print clf.coef_
[0. -0.81649658]

References

http://en.wikipedia.org/wiki/Least_angle_regression

See also

lars_path, LassoLARS

Full API documentation: LARSScikitsLearnNode

class mdp.nodes.QDAScikitsLearnNode
Quadratic Discriminant Analysis (QDA)

This node has been automatically generated by wrapping the scikits.learn.qda.QDA class from the
sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.

Parameters

X [array-like, shape = [n_samples, n_features]] Training vector, where n_samples in the number of samples
and n_features is the number of features.

y [array, shape = [n_samples]] Target vector relative to X

priors [array, optional, shape = [n_classes]] Priors on classes

Attributes

102 Chapter 14. Node List

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.GaussianHMMScikitsLearnNode-class.html
http://en.wikipedia.org/wiki/Least_angle_regression
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LARSScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

means_ [array-like, shape = [n_classes, n_features]] Class means

priors_ [array-like, shape = [n_classes]] Class priors (sum to 1)

covariances_ [list of array-like, shape = [n_features, n_features]] Covariance matrices of each class

Examples

>>> from scikits.learn.qda import QDA
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QDA()
>>> clf.fit(X, y)
QDA(priors=None)
>>> print clf.predict([[-0.8, -1]])
[1]

See also

LDA

Full API documentation: QDAScikitsLearnNode

class mdp.nodes.RidgeClassifierCVScikitsLearnNode
Full API documentation: RidgeClassifierCVScikitsLearnNode

103

http://mdp-toolkit.sourceforge.net/api/mdp.nodes.QDAScikitsLearnNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.nodes.RidgeClassifierCVScikitsLearnNode-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

104 Chapter 14. Node List

CHAPTER

FIFTEEN

ADDITIONAL UTILITIES

MDP offers some additional utilities of general interest in the mdp.utils module. Refer to the API for the full
documentation and interface description.

mdp.utils.CovarianceMatrix This class stores an empirical covariance matrix that can be updated incrementally.
A call to the fix method returns the current state of the covariance matrix, the average and the number of
observations, and resets the internal data.

Note that the internal sum is a standard __add__ operation. We are not using any of the fancy
sum algorithms to avoid round off errors when adding many numbers. If you want to contribute a
CovarianceMatrix class that uses such algorithms we would be happy to include it in MDP. For a
start see the Python recipe by Raymond Hettinger. For a review about floating point arithmetic and its
pitfalls see What every computer scientist should know about floating-point arithmetic by David Goldberg,
ACM Computing Surveys, Vol 23, No 1, March 1991.

mdp.utils.DelayCovarianceMatrix This class stores an empirical covariance matrix between the signal and time
delayed signal that can be updated incrementally.

mdp.utils.MultipleCovarianceMatrices Container class for multiple covariance matrices to easily execute op-
erations on all matrices at the same time.

mdp.utils.dig_node (node) Crawl recursively an MDP Node looking for arrays. Return (dictionary, string),
where the dictionary is: { attribute_name: (size_in_bytes, array_reference)} and string is a nice string
representation of it.

mdp.utils.get_node_size (node) Get node total byte-size using cPickle with protocol=2. (The byte-size is
related the memory needed by the node).

mdp.utils.progressinfo (sequence, length, style, custom) A fully configurable text-mode progress info box tai-
lored to the command-line die-hards. To get a progress info box for your loops use it like this:

>>> for i in progressinfo(sequence):
... do_something(i)

You can also use it with generators, files or any other iterable object, but in this case you have to specify the
total length of the sequence:

>>> for line in progressinfo(open_file, nlines):
... do_something(line)

A few examples of the available layouts:

[===================================73%==============>...................]

Progress: 67%[======================================>]

23% [02:01:28] - [00:12:37]

mdp.utils.QuadraticForm Define an inhomogeneous quadratic form as 1/2 x’Hx + f’x + c. This class
implements the quadratic form analysis methods presented in: Berkes, P. and Wiskott, L. On the analysis

105

http://mdp-toolkit.sourceforge.net/docs/api/index.html
http://mdp-toolkit.sourceforge.net/api/mdp.utils.CovarianceMatrix-class.html
http://code.activestate.com/recipes/393090/
http://mdp-toolkit.sourceforge.net/api/mdp.utils.DelayCovarianceMatrix-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.utils.MultipleCovarianceMatrices-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#dig_node
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#get_node_size
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#progressinfo
http://mdp-toolkit.sourceforge.net/api/mdp.utils.QuadraticForm-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

and interpretation of inhomogeneous quadratic forms as receptive fields. Neural Computation, 18(8): 1868-
1895. (2006).

mdp.utils.refcast (array, dtype) Cast the array to dtype only if necessary, otherwise return a reference.

mdp.utils.rotate (mat, angle, columns, units) Rotate in-place a NxM data matrix in the plane defined by the
columns when observation are stored on rows. Observations are rotated counterclockwise. This corre-
sponds to the following matrix-multiplication for each data-point (unchanged elements omitted):

[cos(angle) -sin(angle) [x_i]
sin(angle) cos(angle)] * [x_j]

mdp.utils.random_rot (dim, dtype) Return a random rotation matrix, drawn from the Haar distribution (the
only uniform distribution on SO(n)). The algorithm is described in the paper Stewart, G.W., The efficient
generation of random orthogonal matrices with an application to condition estimators, SIAM Journal on
Numerical Analysis, 17(3), pp. 403-409, 1980. For more information see this Wikipedia entry.

mdp.utils.symrand (dim_or_eigv, dtype) Return a random symmetric (Hermitian) matrix with eigenvalues uni-
formly distributed on (0,1].

15.1 HTML Slideshows

The mdp.utils module contains some classes and helper function to display animated results in a Webbrowser.
This works by creating an HTML file with embedded JavaScript code, which dynamically loads image files (the
images contain the content that you want to animate and can for example be created with matplotlib). MDP
internally uses the open source Templete templating libray, written by David Bau.

The easiest way to create a slideshow it to use one of these two helper function:

mdp.utils.show_image_slideshow (filenames, image_size, filename=None, title=None, **kwargs) Write the
slideshow into a HTML file, open it in the browser and return the file name. filenames is a list of
the images files that you want to display in the slideshow. image_size is a 2-tuple containing the width
and height at which the images should be displayed. There are also a couple of additional arguments, which
are documented in the docstring.

mdp.utils.image_slideshow (filenames, image_size, title=None, **kwargs) This function is similar to
show_image_slideshow, but it simply returns the slideshow HTML code (including the JavaScript
code) which you can then embed into your own HTML file. Note that the default slideshow CSS code is
not included, but it can be accessed in mdp.utils.IMAGE_SLIDESHOW_STYLE.

Note that there are also two demos in the Examples section slideshow.

15.2 Graph module

MDP contains mdp.graph, a lightweight package to handle directed graphs.

mdp.graph.Graph Represent a directed graph. This class contains several methods to create graph structures
and manipulate them, among which

• add_tree: Add a tree to the graph. The tree is specified with a nested list of tuple, in a LISP-
like notation. The values specified in the list become the values of the single nodes. Return an
equivalent nested list with the nodes instead of the values.

Example::

>>> g = mdp.graph.Graph()
>>> a = b = c = d = e = None
>>> nodes = g.add_tree((a, b, (c, d ,e)))

Graph g corresponds to this tree, with all node values being None:

106 Chapter 15. Additional utilities

http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#refcast
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#rotate
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#random_rot
http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#symrand
http://davidbau.com/downloads/templet.py
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#show_image_slideshow
http://mdp-toolkit.sourceforge.net/api/mdp.utils-module.html#image_slideshow
http://mdp-toolkit.sourceforge.net/api/mdp.graph.Graph-class.html

Modular toolkit for Data Processing

Tutorial, Release 3.2

a
/ \
b c

/ \
d e

• topological_sort: Perform a topological sort of the nodes.

• dfs, undirected_dfs: Perform Depth First sort.

• bfs, undirected_bfs: Perform Breadth First sort.

• connected_components: Return a list of lists containing the nodes of all connected components
of the graph.

• is_weakly_connected: Return True if the graph is weakly connected.

mdp.graph.GraphEdge Represent a graph edge and all information attached to it.

mdp.graph.GraphNode Represent a graph node and all information attached to it.

mdp.graph.recursive_map (fun, seq) Apply a function recursively on a sequence and all subsequences.

mdp.graph.recursive_reduce (func, seq, *argv) Apply reduce(func, seq) recursively to a sequence and
all its subsequences.

15.2. Graph module 107

http://mdp-toolkit.sourceforge.net/api/mdp.graph.GraphEdge-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.graph.GraphNode-class.html
http://mdp-toolkit.sourceforge.net/api/mdp.graph-module.html#recursive_map
http://mdp-toolkit.sourceforge.net/api/mdp.graph-module.html#recursive_reduce

Modular toolkit for Data Processing

Tutorial, Release 3.2

108 Chapter 15. Additional utilities

CHAPTER

SIXTEEN

LICENSE

MDP is distributed under the open source BSD license.

This file is part of Modular toolkit for Data Processing (MDP).
All the code in this package is distributed under the following conditions:

Copyright (c) 2003-2011, MDP Developers <mdp-toolkit-devel@lists.sourceforge.net>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the Modular toolkit for Data Processing (MDP)
nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

109

Modular toolkit for Data Processing

Tutorial, Release 3.2

110 Chapter 16. License

INDEX

A
AdaptiveCutoffNode (class in mdp.nodes), 65
ARDRegressionScikitsLearnNode (class in

mdp.nodes), 88

B
BayesianRidgeScikitsLearnNode (class in mdp.nodes),

85
BinarizerScikitsLearnNode (class in mdp.nodes), 75

C
CCAScikitsLearnNode (class in mdp.nodes), 73
Convolution2DNode (class in mdp.nodes), 66
CountVectorizerScikitsLearnNode (class in

mdp.nodes), 90
CuBICANode (class in mdp.nodes), 56
CutoffNode (class in mdp.nodes), 65

D
DiscreteHopfieldClassifier (class in mdp.nodes), 63

E
ElasticNetCVScikitsLearnNode (class in mdp.nodes),

95
ElasticNetScikitsLearnNode (class in mdp.nodes), 79
EtaComputerNode (class in mdp.nodes), 64

F
FANode (class in mdp.nodes), 60
FastICANode (class in mdp.nodes), 56
FDANode (class in mdp.nodes), 59

G
GaussianClassifier (class in mdp.nodes), 63
GaussianHMMScikitsLearnNode (class in mdp.nodes),

101
GaussianProcessScikitsLearnNode (class in

mdp.nodes), 93
GeneralExpansionNode (class in mdp.nodes), 62
GenericUnivariateSelectScikitsLearnNode (class in

mdp.nodes), 89
GMMHMMScikitsLearnNode (class in mdp.nodes), 88
GMMScikitsLearnNode (class in mdp.nodes), 86
GNBScikitsLearnNode (class in mdp.nodes), 95

GrowingNeuralGasExpansionNode (class in
mdp.nodes), 62

GrowingNeuralGasNode (class in mdp.nodes), 61

H
HistogramNode (class in mdp.nodes), 65
HitParadeNode (class in mdp.nodes), 64
HLLENode (class in mdp.nodes), 61

I
IdentityNode (class in mdp.nodes), 66
ISFANode (class in mdp.nodes), 58

J
JADENode (class in mdp.nodes), 57

K
KernelCentererScikitsLearnNode (class in mdp.nodes),

74
KernelPCAScikitsLearnNode (class in mdp.nodes), 72
KMeansClassifier (class in mdp.nodes), 63
KNNClassifier (class in mdp.nodes), 63

L
LabelBinarizerScikitsLearnNode (class in mdp.nodes),

100
LARSScikitsLearnNode (class in mdp.nodes), 102
LassoCVScikitsLearnNode (class in mdp.nodes), 84
LassoLARSScikitsLearnNode (class in mdp.nodes), 77
LassoScikitsLearnNode (class in mdp.nodes), 76
LDAScikitsLearnNode (class in mdp.nodes), 81
LengthNormalizerScikitsLearnNode (class in

mdp.nodes), 100
LibSVMClassifier (class in mdp.nodes), 66
LinearModelCVScikitsLearnNode (class in

mdp.nodes), 71
LinearRegressionNode (class in mdp.nodes), 62
LinearRegressionScikitsLearnNode (class in

mdp.nodes), 99
LinearSVCScikitsLearnNode (class in mdp.nodes), 74
LLENode (class in mdp.nodes), 61
LogisticRegressionScikitsLearnNode (class in

mdp.nodes), 91

M
mdp.nodes (module), 55

111

Modular toolkit for Data Processing

Tutorial, Release 3.2

MultinomialHMMScikitsLearnNode (class in
mdp.nodes), 90

N
NearestMeanClassifier (class in mdp.nodes), 63
NeighborsClassifierScikitsLearnNode (class in

mdp.nodes), 75
NeighborsRegressorScikitsLearnNode (class in

mdp.nodes), 80
NeuralGasNode (class in mdp.nodes), 63
NIPALSNode (class in mdp.nodes), 55
NMFScikitsLearnNode (class in mdp.nodes), 68
NoiseNode (class in mdp.nodes), 64
NormalizeNode (class in mdp.nodes), 63
NormalizerScikitsLearnNode (class in mdp.nodes), 82
NormalNoiseNode (class in mdp.nodes), 64
NuSVCScikitsLearnNode (class in mdp.nodes), 93
NuSVRScikitsLearnNode (class in mdp.nodes), 76

O
OneClassSVMScikitsLearnNode (class in mdp.nodes),

82

P
PCANode (class in mdp.nodes), 55
PCAScikitsLearnNode (class in mdp.nodes), 83
PerceptronClassifier (class in mdp.nodes), 63
PLSCanonicalScikitsLearnNode (class in mdp.nodes),

97
PLSRegressionScikitsLearnNode (class in mdp.nodes),

96
PLSSVDScikitsLearnNode (class in mdp.nodes), 100
PolynomialExpansionNode (class in mdp.nodes), 62
ProbabilisticPCAScikitsLearnNode (class in

mdp.nodes), 98
ProjectedGradientNMFScikitsLearnNode (class in

mdp.nodes), 79
Python Enhancement Proposals

PEP 255, 21

Q
QDAScikitsLearnNode (class in mdp.nodes), 102
QuadraticExpansionNode (class in mdp.nodes), 62

R
RandomizedPCAScikitsLearnNode (class in

mdp.nodes), 78
RBFExpansionNode (class in mdp.nodes), 62
RBMNode (class in mdp.nodes), 60
RBMWithLabelsNode (class in mdp.nodes), 60
RFECVScikitsLearnNode (class in mdp.nodes), 84
RFEScikitsLearnNode (class in mdp.nodes), 67
RidgeClassifierCVScikitsLearnNode (class in

mdp.nodes), 103
RidgeClassifierScikitsLearnNode (class in mdp.nodes),

75
RidgeCVScikitsLearnNode (class in mdp.nodes), 86
RidgeScikitsLearnNode (class in mdp.nodes), 90

S
ScalerScikitsLearnNode (class in mdp.nodes), 73
SelectFdrScikitsLearnNode (class in mdp.nodes), 76
SelectFprScikitsLearnNode (class in mdp.nodes), 69
SelectFweScikitsLearnNode (class in mdp.nodes), 100
SelectKBestScikitsLearnNode (class in mdp.nodes), 84
SelectPercentileScikitsLearnNode (class in

mdp.nodes), 72
SFA2Node (class in mdp.nodes), 58
SFANode (class in mdp.nodes), 57
SGDClassifierScikitsLearnNode (class in mdp.nodes),

70
SGDRegressorScikitsLearnNode (class in mdp.nodes),

66
ShogunSVMClassifier (class in mdp.nodes), 66
SignumClassifier (class in mdp.nodes), 63
SimpleMarkovClassifier (class in mdp.nodes), 63
SparseBaseLibLinearScikitsLearnNode (class in

mdp.nodes), 77
SparseBaseLibSVMScikitsLearnNode (class in

mdp.nodes), 69
SVCScikitsLearnNode (class in mdp.nodes), 71
SVRScikitsLearnNode (class in mdp.nodes), 92

T
TDSEPNode (class in mdp.nodes), 57
TfidfTransformerScikitsLearnNode (class in

mdp.nodes), 82
TimeDelayNode (class in mdp.nodes), 65
TimeDelaySlidingWindowNode (class in mdp.nodes),

65
TimeFramesNode (class in mdp.nodes), 64

V
VectorizerScikitsLearnNode (class in mdp.nodes), 69

W
WardAgglomerationScikitsLearnNode (class in

mdp.nodes), 77
WhiteningNode (class in mdp.nodes), 55

X
XSFANode (class in mdp.nodes), 59

112 Index

	Quick Start
	Introduction
	Nodes
	Node Instantiation
	Node Training
	Node Execution
	Node Inversion
	Writing your own nodes: subclassing Node

	Flows
	Flow instantiation, training and execution
	Flow inversion
	Flows are container type objects
	Crash recovery

	Iterables
	Block-mode training
	One-shot training using one single set of data for both nodes

	Checkpoints
	Node Extensions
	Using Extensions
	Writing Extension Nodes
	Creating Extensions

	Hierarchical Networks
	Building blocks
	HTML representation
	Example application (2-D image data)

	Parallelization
	Basic Examples
	Scheduler
	Parallel Nodes

	Caching execution results
	Introduction
	Activating the caching extension

	Classifier nodes
	Interfacing with other libraries
	BiMDP
	Targets, id's and Messages
	BiFlow
	BiNode
	Inspection
	Extending BiNode and Message Handling
	HiNet in BiMDP
	Parallel in BiMDP
	Coroutine Decorator
	Classifiers in BiMDP

	Node List
	Additional utilities
	HTML Slideshows
	Graph module

	License
	Index

