
OSS User’s Guide

Michael Schöttner, Marc-Florian Müller, Kim-Thomas Rehmann
(Universität Düsseldorf)

September 30, 2010

1 What is OSS
The Object Sharing Service (OSS) implements distributed objects for nodes par-
ticipating in an interactive multi-user grid application. OSS runs on each client
machine to enable sharing of objects residing in volatile memory. An object in
this context is a replicated volatile memory region, dynamically allocated by an
application or mapped into memory from a file.

Objects may contain scalars, references, and code. Therefore, OSS handles
concurrent read and write access to objects and maintains the consistency of repli-
cated objects. Persistence and security for objects stored in files are provided by
XtreemFS. Fault tolerance is provided by the grid checkpointing mechanisms de-
veloped in WP3.3. OSS is being developed for Linux on IA32 or AMD64/Intel64
compatible processors.

Please see our publications [MMSS08, MMSS09, RMS10] for further details on
design, implementation and evaluation of OSS.

2 Installation of OSS
You can install OSS either using the prebuild distribution packages which are
available on the XtreemOS release media, or you can build and install OSS from
source code. We suggest using the first method mentioned, unless you wish to
configure special build-time settings for OSS.

2.1 Installing OSS Using the Distribution Packages

The XtreemOS release contains the OSS library, as well as a raytracing demo
application to demonstrate object sharing. During the XtreemOS installation
procedure, simply select the checkbox Object Sharing Service release to install

1

the packaged version of OSS (Library and applications). If you have XtreemOS
already installed and wish to install OSS, select it in the package management
dialog, or run the following commands as root:

$> urpmi liboss0
$> urpmi oss

The first command installs the OSS library, the second command installs some
example applications.

Application development based on OSS need the following additional packages:

$> urpmi liboss0-devel
$> urpmi liboss0-static-devel

2.2 Building and Installing OSS from Source

By building and installing OSS from source, you have full control over the in-
stallation process. You can configure how OSS is installed, and fine-tune all OSS
features. The OSS sources can be installed from XtreemOS source repository:

$> urpmi oss-0.6-1xos2.0.src (OSS sources)

2.2.1 Prerequisites

If you wish to build and install OSS from the source code, you need to have some
additional development packages installed on your build system. The names of
these packages depend on which Linux distribution you are using. Although the
OSS build process includes diverse checks for these libraries, we cannot anticipate
the requirements for building OSS on all Linux distributions available. If in doubt,
please consult the package search of your distribution.

Under Mandriva or XtreemOS, the following packages are needed to build OSS
and the included demo applications:

• gcc ≥ 4.3

• binutils ≥ 2.18

• make

• glibc-devel

• libglib2.0-devel ≥ 2.18

• libreadline5-devel

2

Under Debian GNU/Linux, the following packages are needed to build OSS
and the included demo applications:

• gcc ≥ 4.3

• binutils ≥ 2.18

• make

• libc6-dev

• libglib2.0-dev ≥ 2.18

• libreadline5-dev

• libstdc++6-4.3-dev

In case your distribution does not include a recent GLib, the OSS installation
process helps you download and install GLib from source. Simply run the following
command, entering the root password when asked for:

$> make build/glib

For 32-bit OSS under Linux x86_64 you also need

• ia32-libs

• ia32-libs-gtk

• libc6-dev-i386

• lib32readline5

To compile 32-bit OSS under Linux x86_64, some distributions lack symbolic links
to 32-bit libraries (libgthread-2.0.so, libglib-2.0.so, libstdc++.so). When encoun-
tering error messages telling that libgthread-2.0, libglib-2.0 or libstdc++ cannot
be found, log in as user root and create the missing symlinks:

$> ln -s libgthread-2.0.so.0 /emul/ia32-linux/usr/lib/libgthread-2.0.so
$> ln -s libglib-2.0.so.0 /emul/ia32-linux/usr/lib/libglib-2.0.so
$> ln -s libstdc++.so.6 /emul/ia32-linux/usr/lib/libstdc++.so

The following packages are useful to generate documentation:

• doxygen

• graphviz

• texlive

Doxygen generates source code documentation, whereas graphviz and texlive en-
able dependency graph and PDF file output respectively.

3

2.2.2 Compilation

Unpack the OSS source code archive, change to the base directory that just has
been created. The following step allows altering the default configuration of OSS
(hardware architecture, features, . . .) if desired. If this step is omitted, OSS will
be built in its default configuration. A description of the configuration option can
be found in Appendix 4.

$> make menuconfig

The following command builds the OSS library:

$> make

The make system autodetects most tools used for building OSS. If you en-
counter any errors, please ensure you have a recent compiler and linker installed,
and that all developer packages mentioned above are installed correctly.

If you wish to pass configuration parameters via command line or to enable
non-standard features, you can directly supply the corresponding parameters to
make. For example, run make -B ARCH=I686 to build OSS for 32-Bit x86 machines
and make -B ARCH=X86_64 to build OSS for 64-Bit x86 machines respectively.

2.2.3 Installation

The following command installs the OSS library on the system, by default in
the /usr/local hierarchy. For write access to system directories, you need root
privileges.

$> make install

You can change the default installation hierarchy by specifying prefix=<pathname>,
e.g. to install OSS below /usr, run the command

$> make install prefix=/usr

Software distributors can specify an additional prefix for the actual installation
directory by defining DESTDIR=<additional-prefix> on the make command line.

2.3 Testing the OSS Installation

The OSS make system includes a command to verify that OSS has been installed
correctly, and that everything needed for running a program that uses OSS is set
up correctly:

$> make verify-install

4

The program should output the version and build information of the OSS library
found according to the example below:

Object Sharing Service version 0.6 architecture I686
subversion revision 5844 (2010-03-05 14:51:38)

build 1
Object Sharing Service has been installed correctly.

2.3.1 Simple test of Object Sharing

The simple test application (oss_simple) starts two instances of a program. The
first process creates a shared object and writes the string hello to it. The second
process waits until the object has been created, and as soon as it reads the expected
string, it overwrites it with the string world.

2.3.2 The Raytracer Application

The raytracer is based on a application developed for a course at the MIT and
has been ported to OSS with the focus on testing and demonstrating transac-
tional shared memory. All graphical objects and the image file are allocated in
transactional shared memory. Start the first node with

$> oss_raytracer --address <IP1>

and the subsequent nodes with

$> oss_raytracer --address <IPn> --bootstrap <IP1>

where IP1 is the IP address for the first node, and IPn is replaced by the IP address
of the respective node. To configure the tracing progress, the first node will ask
some parameters:

1. Consistency model: ’t’ for transactional consistency, ’s’ for strong consistency

2. Number of Nodes

3. Number of accesses (applies to transactional consistency only): number of
accesses between transaction boundaries

4. Pattern: specify one of ’l’, ’c’, ’p’, ’x’ or ’m’. ’l’ for line by line, ’c’ for column
by column, ’p’ for x partitions, ’x’ for every Xth dot, ’m’ for matching pages

5. Scene: 1, 2, or 3

6. Columns (e. g. 640)

5

7. Rows (e. g. 480)

After rendering is done, you can give new parameters and render another scene.
There are three predefined scenes in this project. Scene1 is very simple with one
sphere in the center, a few bowls around and only a few lights. Scene2 is very
complex with some arrangements of bowls and reflecting walls. Scene3 displays the
letters "‘OSS"’ consisting of bowls. You can write own scenes as C files analoguous
to SceneDemo1.c.

3 Developing Applications using OSS
The internal interface of the OSS library is implementation-dependent and may
be extended in the future, based on insights gained during the development of
OSS-based applications. In contrast, WP3.1 has defined an XOSAGA interface
for object sharing that represents the OSS interface in a portable way.

3.1 Internal Interface of the OSS Library

The interface of the OSS library is declared in the header file oss.h. The following
command generates an interface documentation in HTML and (if latex is available)
in PDF format:

$> make interface-doc

The documentation is stored in the build/doc/ subdirectory.
Let us quickly walk through the basic functionality of the OSS library. For a

more detailed and precise discussion of the internal library interface, please see the
Doxygen documentation generated directly from the source code. To get a deeper
understanding of how to design applications that access shared objects, we suggest
looking at the source code examples in the src/apps/ subdirectory.
int
oss_startup(

const char *addr,
const char *listen_port,
const char *bootstrap_addr,
const char *bootstrap_port
);

The oss_startup call starts the OSS system by joining a bootstrap peer. The
addr and listen_port parameters allow to bind the OSS instance to a specific
interface. If no bootstrap peer is specified (i. e. a NULL pointer is passed), a new
distributed object storage is created. A return value of zero indicates successful
startup.

6

void *
oss_alloc(

size_t size,
oss_consistency_model_t consistency_model,
oss_alloc_attributes_t *attributes
);

The oss_alloc call creates a shared object of specified size, initializes it with a
consistency model and further attributes (defined by the consistency model), and
returns an identifier for the object.

void
oss_free(

void *ptr
);

The oss_free call frees some memory which has previously been dynamically
allocated using oss_alloc.

oss_transaction_id_t
oss_bot(

oss_transaction_priority_t priority,
oss_transaction_attributes_t *attributes
);

The oss_bot call marks the begin of a transaction with given priority and at-
tributes. OSS guarantees that all accesses to distributed objects between oss_bot
and oss_eot perform atomically, consistent, isolated, and durable. The return
value references the transaction that has been started, or equals oss_undefined_transaction_id
which indicates that the transaction failed to start.

int
oss_eot(

oss_transaction_id_t taid
);

The oss_eot call denotes the end of the supplied transaction.

int
oss_abort(

oss_transaction_id_t taid
);

oss_permit_abort(
oss_transaction_id_t taid
);

7

Both calls handle voluntarily aborting a transaction. An application that somehow
finds out that it cannot commit, or that committing will have adverse effect, may
call oss_abort to unconditionally abort the supplied transaction. Depending on
the transaction attributes used, the transaction will restart or simply fail. An
application may optionally call oss_permit_abort to mark locations in the code
where it is safe to abort a transaction. If the transaction is already known to
fail on commit, OSS can restart the transaction and need not delay restarting the
transaction until oss_eot. If the success of the transaction is not yet determined,
the call to oss_permit_abort will simply appear as a void statement.

void *
oss_nameservice_get(

const char *id
);

void
oss_nameservice_set(

const char *id,
void *val
);

OSS contains a simple name service, which applications can use to store and re-
trieve object IDs. The name service has a tree structure, with slashes (/) separating
directory levels. Each entry begins with a slash. An application or OSS module
can set a value for a name by calling oss_nameservice_set and retrieve a value
by calling oss_nameservice_get. A value that has not yet been set is treated as
object ID NULL.

void
oss_wait(

void *addr,
unsigned char value
);

The barriers implementation allows applications to wait until the character object
pointed to by addr contains a target value. The character object may be subject
to transactional or strong consistency.

3.2 Linking against the OSS Library

The OSS library is built as a static shared library (liboss.a) and as a dynamic
shared library (liboss.so). Simply specify the option -loss to the compiler

8

driver or linker, which will link against the appropriate static or dynamic library.
If you did not install the library into a well-known location such as /usr/lib, you
will need to specify the path to the library via the option -L<path>.

4 Performance Measurements

The Figure 1 shows performance measurements of the transactional memory pro-
vided by OSS. The results do not illustrate the overall performance of OSS rather
the conflict and network related penalties for a best and worst case scenario. There-
fore, measurements have been done with all optimizations (local commits, linked
transactions, consistency domains etc.) turned off. In the worst case scenario
all peers concurrently increment a common variable stored in the transactional
memory, in the best case scenario each peer increments its own variable. The best
case scenario (private variable) solely shows the network overhead produced by
the commit protocol. The worst case additionally causes penalties due to a high
conflict rate which results in transaction aborts and restarts.

For the measurements we have used our P2P commit protocol with two differ-
ent token mechanism for transaction serialization. The token was passed among
the peers either by a dedicated coordinator or P2P based approach. Further-
more, we have expanded the transaction duration and pause between to successive
transactions to simulate real live applications. The red and green lines show the
overall transaction thoughput by using the coordinated and p2p based token pass-
ing mechanism. The black line shows the maximum theoretical throughput based
on the transaction time and pause, presumed no conflicts occur.

The diagrams in the left column show the negative impact of network com-
munication, but nevertheless growing of overall transaction throughput. To im-
prove OSS’ performance the implemented optimizations aim at exploiting locality
to prevent unnecessary network communication (e. g. local commits) and linked
transactions to hide the network latency by acquiring the token in the background
while starting the next transaction. The right column shows, that the program-
mer must be aware transactional conflicts and performance issues. So he has to
optimize its program to get a low conflict rate.

OSS Appendix

A Support

Please visit the OSS website at the University of Duesseldorf for contact to the
developers and further information on OSS. The XtreemOS bugtracker is available
at SourceForge.

9

http://www.cs.uni-duesseldorf.de/AG/BS/english/Research/OSS/
https://sourceforge.net/apps/mantisbt/xtreemos

B OSS Configuration Options
This chapter describes all configuration options of OSS, which affect compilation
of OSS. The configuration dialog is accessible via

$> make menuconfig

The configuration dialog is modelled after the Linux kernel configuration dialog.
Press the enter key to select an item and press the space key to toggle a selection.
Use the cursor keys to navigate between items, to exit from a menu or to display
a help text for the selected item.

B.1 Debugging

Library developers can configure a number of debugging options.

B.1.1 debug level for whole build process

Selects a global level for debug output unless this value is overridden by a per-file
debug level.

B.1.2 debug glib

Enables debug output for glib related operations.

B.1.3 debug networking

Enables debug output for network related operations.

B.1.4 Per-file debug levels

Allows a fine granular debug level selection for specific source files.

B.2 Code generation

The binary code of the OSS library can be compiled for different processor archi-
tectures.

B.2.1 Processor Architecture

Defines the processor architecture for which OSS is compiled. OSS supports the
following architectures:

• AMD64/Intel64 architecture (64-bit operating system provided)

10

• I686 architecture (32-bit or 64-bit supported)

The usage of a 32-bit OSS version in an 64-bit XtreemOS system requires the
installation of a 32-bit compatibility layer (32-bit libraries).

B.3 Library Interface

In addition to the base functions which the OSS library always exports, a number
of functions are tagged as optional or experimental.

B.3.1 oss_mmap

Exports the command oss_mmap which creates an object from the content of a file,
and the commands oss_munmap and oss_msync, which will unmap and synchronize
object and file in a future version of OSS.

B.3.2 oss_sync/oss_push/oss_pull

Provides three additional calls for explicit synchronization of weakly consistent
objects. These calls have not yet been implemented in the current OSS release.

B.3.3 oss_nameservice_get/oss_nameservice_set

Exports the functions of the nameservice to the API. This allows applications to
use the internal nameservice of OSS.

B.3.4 nameservice consistency

Selects the consistency model of nameservice entries. Some internally defined
entries are always handled according to strong consistency.

B.3.5 miscellaneous debug functions

Exports further debugging functions to the API (see oss.h).

B.3.6 unstable library interface

Exports functions for retrieving the own node id, the number of nodes, and setting
the number of nodes participating on transactional consistency to the API (see
oss.h). These functions are used for debugging purposes only. (Without claim to
be still available in future versions of OSS).

11

B.3.7 oss_wait

Enables distributed barriers for strong and transactional consistency.

B.3.8 hashmap

Exports the functions for managing a hashmap of shared objects. This allows
applications to use the internal hashmap implementation of OSS.

B.4 Communication

The OSS library interface deliberately does not specify how nodes are intercon-
nected. Internal to the OSS library, node interconnection can be implemented in
several ways.

B.4.1 Overlay Routing

Allows configuration of overlay network related options. Unless selected, the node
network is fully meshed; however, connections are established on demand.

B.4.2 Superpeer Network

Enables routing of OSS messages in the overlay network [Experimental].

B.5 Monitoring

For performance measurements as well as for automatic reconfiguration during
runtime, the library contains a monitoring subsystem. The subsystem allows the
library developer to intersperse monitoring events in the source code. Different
handlers can be attached to monitoring events by specifying their names in the
configuration dialog. The default no-op handler is called null. The count han-
dler simply counts the number of events. The printf handler prints the events
seen immediately, including the source code location and a custom pointer value.
The latency handler measures the duration of events, whereas the slist handler
accumulates the pointer values of all events seen in a singly-linked list.

B.5.1 monitoring

Enables monitoring of several OSS internal operations for statistics and dynamic
reconfiguration.

12

B.5.2 log monitor data to file

Enables logging the monitoring data to a file. Unless selected, the monitors print
statistics to standard output.

B.5.3 periodic dump

Time interval in seconds of periodic monitoring data dump.

B.5.4 short log

Reduces verbosity of logging information output.

B.5.5 clock

Selects the time source for the monitoring subsystem. Use clock_gettime to
measure elapsed time in micro-seconds, use rdtsc to measure CPU clock cycles,
or use gettimeofday to measure elapsed time in micro-seconds using a POSIX-
compliant call.

B.5.6 object_mmap

Monitors object mappings.

B.5.7 object_alloc

Monitors object allocations.

B.5.8 object_free

Monitors object deallocations.

B.5.9 read_fault

Monitors detected read accesses.

B.5.10 write_fault

Monitors detected write accesses.

B.5.11 read_access

Monitors read accesses evoked by a test application that has been prepared to
announce read accesses.

13

B.5.12 write_access

Monitors write accesses evoked by a test application that has been prepared to
announce write accesses.

B.6 Memory allocator

OSS supports different memory allocators.

B.6.1 mspace allocation from dlmalloc

Enables the mspaces memory allocator. The mspace allocator is a general-purpose
allocator, which is very reliable and versatile.

B.6.2 millipage implementation

Enables the millipage memory allocator. This allocator concentrates multiple ob-
jects allocated on different memory pages on one physical page frame. The mil-
lipage allocator is well suited for allocations of small objects if another allocator
might induce false sharing.

B.6.3 simple list allocator

Enables the simple first-fit memory allocator. The simple list allocator is very fast
for allocations, but frequent deallocations may induce external fragmentation.

B.6.4 replica management

Currently, replication is handled using invalidations and requests for invalid ob-
jects. A future release of the library will include a full-featured replica management
that handles a combination of object invalidations and updates.

B.6.5 diff computation and transfer

Diff computation and transfer will speed up object accesses, but it is still under
development and not included in the current release.

B.7 Applications

B.7.1 build raytracer

Builds the raytracer application, shipped with OSS.

14

B.7.2 build wissenheim

Builds the wissenheim application out of OSS. This option is only intended for
debugging purposes regarding Wissenheim over OSS. Wissenheim on XtreemOS
comes with its own build system.

B.8 Remote installation

UDUS infrastructure specific options (not for public usage).

References
[MMSS08] Marc-Florian Müller, Kim-Thomas Möller, Michael Sonnenfroh, and

Michael Schöttner. Transactional data sharing in grids. In PDCS 2008:
International Conference on Parallel and Distributed Computing and
Systems 2008, 2008.

[MMSS09] Kim-Thomas Möller, Marc-Florian Müller, Michael Sonnenfroh, and
Michael Schöttner. A software transactional memory service for grids.
In ICA3PP 2009: International Conference on Algorithms and Archi-
tectures for Parallel Processing, 2009.

[RMS10] Kim-Thomas Rehmann, Marc-Florian Müller, and Michael Schöt-
tner. Adaptive conflict unit size for distributed optimistic synchroniza-
tion. In The Sixteenth International Conference on Parallel Computing
(Euro-Par 2010), Ischia, Naples, Italy, 8 2010.

15

1 2 16 128

0,0

500,0

1000,0

1500,0

2000,0

2500,0

Transaction throughput (private variable)

(TA duration 50ms, TA pause 10ms)

Nodes

T
A

/s

1 2 16 128

15,0

15,5

16,0

16,5

17,0

17,5

18,0

18,5

19,0

19,5

20,0

Transaction throughput (shared variable)

(TA duration 50ms, TA pause 10ms)

Nodes

T
A

/s

1 2 16 128

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

Transaction throughput (private variable)

(TA duration 200ms, TA pause 20ms)

Nodes

T
A

/s

1 2 16 128

4,2

4,4

4,6

4,8

5,0

5,2

5,4

Transaction throughput (shared variable)

(TA duration 200ms, TA pause 20ms)

Nodes

T
A

/s

1 2 16 128

0,0

500,0

1000,0

1500,0

2000,0

2500,0

Transaction throughput (private variable)

(TA duration 50ms, TA pause 10ms, Latency 10ms)

Nodes

T
A

/s

1 2 16 128

12,5

13,0

13,5

14,0

14,5

15,0

15,5

16,0

16,5

17,0

Transaction throughput (shared variable)

(TA duration 50ms, TA pause 10ms, Latency 10ms)

Nodes

T
A

/s

1 2 16 128

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

Transaction throughput (private variable)

(TA duration 200ms, TA pause 20ms, Latency 10ms)

Nodes

T
A

/s

1 2 16 128

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Transaction throughput (shared variable)

(TA duration 200ms, TA pause 20ms, Latency 10ms)

Nodes

T
A

/s

(a) (b)

(c) (d)

(e) (f)

(g) (h)

― Coordinated Token ― Distributed Token ― Maximum Theoretical Throughput (Local Commits)

Figure 1: Performance measurements of conflicting and non-conflicting variable
incrementations

16

	What is OSS
	Installation of OSS
	Installing OSS Using the Distribution Packages
	Building and Installing OSS from Source
	Prerequisites
	Compilation
	Installation

	Testing the OSS Installation
	Simple test of Object Sharing
	The Raytracer Application

	Developing Applications using OSS
	Internal Interface of the OSS Library
	Linking against the OSS Library

	Performance Measurements
	Support
	OSS Configuration Options
	Debugging
	debug level for whole build process
	debug glib
	debug networking
	Per-file debug levels

	Code generation
	Processor Architecture

	Library Interface
	oss_mmap
	oss_sync/oss_push/oss_pull
	oss_nameservice_get/oss_nameservice_set
	nameservice consistency
	miscellaneous debug functions
	unstable library interface
	oss_wait
	hashmap

	Communication
	Overlay Routing
	Superpeer Network

	Monitoring
	monitoring
	log monitor data to file
	periodic dump
	short log
	clock
	object_mmap
	object_alloc
	object_free
	read_fault
	write_fault
	read_access
	write_access

	Memory allocator
	mspace allocation from dlmalloc
	millipage implementation
	simple list allocator
	replica management
	diff computation and transfer

	Applications
	build raytracer
	build wissenheim

	Remote installation

