1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv`.

use rustc_const_eval::eval_length;
use rustc_data_structures::accumulate_vec::AccumulateVec;
use hir;
use hir::def::Def;
use hir::def_id::DefId;
use middle::resolve_lifetime as rl;
use rustc::ty::subst::{Kind, Subst, Substs};
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, ToPredicate, TypeFoldable};
use rustc::ty::wf::object_region_bounds;
use rustc_back::slice;
use require_c_abi_if_variadic;
use util::common::{ErrorReported, FN_OUTPUT_NAME};
use util::nodemap::{NodeMap, FxHashSet};

use std::cell::RefCell;
use std::iter;
use syntax::{abi, ast};
use syntax::feature_gate::{GateIssue, emit_feature_err};
use syntax::symbol::Symbol;
use syntax_pos::Span;

pub trait AstConv<'gcx, 'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;

    /// A cache used for the result of `ast_ty_to_ty_cache`
    fn ast_ty_to_ty_cache(&self) -> &RefCell<NodeMap<Ty<'tcx>>>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
    fn get_type_parameter_bounds(&self, span: Span, def_id: DefId)
                                 -> ty::GenericPredicates<'tcx>;

    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
    fn get_free_substs(&self) -> Option<&Substs<'tcx>>;

    /// What lifetime should we use when a lifetime is omitted (and not elided)?
    fn re_infer(&self, span: Span, _def: Option<&ty::RegionParameterDef>)
                -> Option<&'tcx ty::Region>;

    /// What type should we use when a type is omitted?
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Same as ty_infer, but with a known type parameter definition.
    fn ty_infer_for_def(&self,
                        _def: &ty::TypeParameterDef,
                        _substs: &[Kind<'tcx>],
                        span: Span) -> Ty<'tcx> {
        self.ty_infer(span)
    }

    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>;

    /// Normalize an associated type coming from the user.
    fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;

    /// Invoked when we encounter an error from some prior pass
    /// (e.g. resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);
}

struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

/// Dummy type used for the `Self` of a `TraitRef` created for converting
/// a trait object, and which gets removed in `ExistentialTraitRef`.
/// This type must not appear anywhere in other converted types.
const TRAIT_OBJECT_DUMMY_SELF: ty::TypeVariants<'static> = ty::TyInfer(ty::FreshTy(0));

impl<'o, 'gcx: 'tcx, 'tcx> AstConv<'gcx, 'tcx>+'o {
    pub fn ast_region_to_region(&self,
        lifetime: &hir::Lifetime,
        def: Option<&ty::RegionParameterDef>)
        -> &'tcx ty::Region
    {
        let tcx = self.tcx();
        let r = match tcx.named_region_map.defs.get(&lifetime.id) {
            Some(&rl::Region::Static) => {
                tcx.mk_region(ty::ReStatic)
            }

            Some(&rl::Region::LateBound(debruijn, id)) => {
                let name = tcx.hir.name(id);
                tcx.mk_region(ty::ReLateBound(debruijn,
                    ty::BrNamed(tcx.hir.local_def_id(id), name)))
            }

            Some(&rl::Region::LateBoundAnon(debruijn, index)) => {
                tcx.mk_region(ty::ReLateBound(debruijn, ty::BrAnon(index)))
            }

            Some(&rl::Region::EarlyBound(index, id)) => {
                let name = tcx.hir.name(id);
                tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
                    index: index,
                    name: name
                }))
            }

            Some(&rl::Region::Free(scope, id)) => {
                let name = tcx.hir.name(id);
                tcx.mk_region(ty::ReFree(ty::FreeRegion {
                    scope: scope.to_code_extent(&tcx.region_maps),
                    bound_region: ty::BrNamed(tcx.hir.local_def_id(id), name)
                }))

                    // (*) -- not late-bound, won't change
            }

            None => {
                self.re_infer(lifetime.span, def).expect("unelided lifetime in signature")
            }
        };

        debug!("ast_region_to_region(lifetime={:?}) yields {:?}",
                lifetime,
                r);

        r
    }

    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(&self,
        span: Span,
        def_id: DefId,
        item_segment: &hir::PathSegment)
        -> &'tcx Substs<'tcx>
    {
        let tcx = self.tcx();

        match item_segment.parameters {
            hir::AngleBracketedParameters(_) => {}
            hir::ParenthesizedParameters(..) => {
                struct_span_err!(tcx.sess, span, E0214,
                          "parenthesized parameters may only be used with a trait")
                    .span_label(span, &format!("only traits may use parentheses"))
                    .emit();

                return Substs::for_item(tcx, def_id, |_, _| {
                    tcx.mk_region(ty::ReStatic)
                }, |_, _| {
                    tcx.types.err
                });
            }
        }

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_path(span,
                                            def_id,
                                            &item_segment.parameters,
                                            None);

        assoc_bindings.first().map(|b| self.prohibit_projection(b.span));

        substs
    }

    /// Given the type/region arguments provided to some path (along with
    /// an implicit Self, if this is a trait reference) returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    fn create_substs_for_ast_path(&self,
        span: Span,
        def_id: DefId,
        parameters: &hir::PathParameters,
        self_ty: Option<Ty<'tcx>>)
        -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        let tcx = self.tcx();

        debug!("create_substs_for_ast_path(def_id={:?}, self_ty={:?}, \
               parameters={:?})",
               def_id, self_ty, parameters);

        let (lifetimes, num_types_provided, infer_types) = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                (&data.lifetimes[..], data.types.len(), data.infer_types)
            }
            hir::ParenthesizedParameters(_) => (&[][..], 1, false)
        };

        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).
        let decl_generics = tcx.item_generics(def_id);
        let expected_num_region_params = decl_generics.regions.len();
        let supplied_num_region_params = lifetimes.len();
        if expected_num_region_params != supplied_num_region_params {
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
        }

        // If a self-type was declared, one should be provided.
        assert_eq!(decl_generics.has_self, self_ty.is_some());

        // Check the number of type parameters supplied by the user.
        let ty_param_defs = &decl_generics.types[self_ty.is_some() as usize..];
        if !infer_types || num_types_provided > ty_param_defs.len() {
            check_type_argument_count(tcx, span, num_types_provided, ty_param_defs);
        }

        let is_object = self_ty.map_or(false, |ty| ty.sty == TRAIT_OBJECT_DUMMY_SELF);
        let default_needs_object_self = |p: &ty::TypeParameterDef| {
            if is_object && p.has_default {
                if ty::queries::ty::get(tcx, span, p.def_id).has_self_ty() {
                    // There is no suitable inference default for a type parameter
                    // that references self, in an object type.
                    return true;
                }
            }

            false
        };

        let mut output_assoc_binding = None;
        let substs = Substs::for_item(tcx, def_id, |def, _| {
            let i = def.index as usize - self_ty.is_some() as usize;
            if let Some(lifetime) = lifetimes.get(i) {
                self.ast_region_to_region(lifetime, Some(def))
            } else {
                tcx.mk_region(ty::ReStatic)
            }
        }, |def, substs| {
            let i = def.index as usize;

            // Handle Self first, so we can adjust the index to match the AST.
            if let (0, Some(ty)) = (i, self_ty) {
                return ty;
            }

            let i = i - self_ty.is_some() as usize - decl_generics.regions.len();
            if i < num_types_provided {
                // A provided type parameter.
                match *parameters {
                    hir::AngleBracketedParameters(ref data) => {
                        self.ast_ty_to_ty(&data.types[i])
                    }
                    hir::ParenthesizedParameters(ref data) => {
                        assert_eq!(i, 0);
                        let (ty, assoc) = self.convert_parenthesized_parameters(data);
                        output_assoc_binding = Some(assoc);
                        ty
                    }
                }
            } else if infer_types {
                // No type parameters were provided, we can infer all.
                let ty_var = if !default_needs_object_self(def) {
                    self.ty_infer_for_def(def, substs, span)
                } else {
                    self.ty_infer(span)
                };
                ty_var
            } else if def.has_default {
                // No type parameter provided, but a default exists.

                // If we are converting an object type, then the
                // `Self` parameter is unknown. However, some of the
                // other type parameters may reference `Self` in their
                // defaults. This will lead to an ICE if we are not
                // careful!
                if default_needs_object_self(def) {
                    struct_span_err!(tcx.sess, span, E0393,
                                     "the type parameter `{}` must be explicitly specified",
                                     def.name)
                        .span_label(span, &format!("missing reference to `{}`", def.name))
                        .note(&format!("because of the default `Self` reference, \
                                        type parameters must be specified on object types"))
                        .emit();
                    tcx.types.err
                } else {
                    // This is a default type parameter.
                    self.normalize_ty(
                        span,
                        ty::queries::ty::get(tcx, span, def.def_id)
                            .subst_spanned(tcx, substs, Some(span))
                    )
                }
            } else {
                // We've already errored above about the mismatch.
                tcx.types.err
            }
        });

        let assoc_bindings = match *parameters {
            hir::AngleBracketedParameters(ref data) => {
                data.bindings.iter().map(|b| {
                    ConvertedBinding {
                        item_name: b.name,
                        ty: self.ast_ty_to_ty(&b.ty),
                        span: b.span
                    }
                }).collect()
            }
            hir::ParenthesizedParameters(ref data) => {
                vec![output_assoc_binding.unwrap_or_else(|| {
                    // This is an error condition, but we should
                    // get the associated type binding anyway.
                    self.convert_parenthesized_parameters(data).1
                })]
            }
        };

        debug!("create_substs_for_ast_path(decl_generics={:?}, self_ty={:?}) -> {:?}",
               decl_generics, self_ty, substs);

        (substs, assoc_bindings)
    }

    fn convert_parenthesized_parameters(&self,
                                        data: &hir::ParenthesizedParameterData)
                                        -> (Ty<'tcx>, ConvertedBinding<'tcx>)
    {
        let inputs = self.tcx().mk_type_list(data.inputs.iter().map(|a_t| {
            self.ast_ty_to_ty(a_t)
        }));

        let (output, output_span) = match data.output {
            Some(ref output_ty) => {
                (self.ast_ty_to_ty(output_ty), output_ty.span)
            }
            None => {
                (self.tcx().mk_nil(), data.span)
            }
        };

        let output_binding = ConvertedBinding {
            item_name: Symbol::intern(FN_OUTPUT_NAME),
            ty: output,
            span: output_span
        };

        (self.tcx().mk_ty(ty::TyTuple(inputs, false)), output_binding)
    }

    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the def_id for the defining trait.
    /// Fails if the type is a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(&self,
        trait_ref: &hir::TraitRef,
        self_ty: Ty<'tcx>)
        -> ty::TraitRef<'tcx>
    {
        let trait_def_id = self.trait_def_id(trait_ref);
        self.ast_path_to_mono_trait_ref(trait_ref.path.span,
                                        trait_def_id,
                                        self_ty,
                                        trait_ref.path.segments.last().unwrap())
    }

    fn trait_def_id(&self, trait_ref: &hir::TraitRef) -> DefId {
        let path = &trait_ref.path;
        match path.def {
            Def::Trait(trait_def_id) => trait_def_id,
            Def::Err => {
                self.tcx().sess.fatal("cannot continue compilation due to previous error");
            }
            _ => {
                span_fatal!(self.tcx().sess, path.span, E0245, "`{}` is not a trait",
                            self.tcx().hir.node_to_pretty_string(trait_ref.ref_id));
            }
        }
    }

    pub fn instantiate_poly_trait_ref(&self,
        ast_trait_ref: &hir::PolyTraitRef,
        self_ty: Ty<'tcx>,
        poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
        -> ty::PolyTraitRef<'tcx>
    {
        let trait_ref = &ast_trait_ref.trait_ref;
        let trait_def_id = self.trait_def_id(trait_ref);

        debug!("ast_path_to_poly_trait_ref({:?}, def_id={:?})", trait_ref, trait_def_id);

        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(trait_ref.path.span,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_ref.path.segments.last().unwrap());
        let poly_trait_ref = ty::Binder(ty::TraitRef::new(trait_def_id, substs));

        poly_projections.extend(assoc_bindings.iter().filter_map(|binding| {
            // specify type to assert that error was already reported in Err case:
            let predicate: Result<_, ErrorReported> =
                self.ast_type_binding_to_poly_projection_predicate(trait_ref.ref_id,
                                                                   poly_trait_ref,
                                                                   binding);
            predicate.ok() // ok to ignore Err() because ErrorReported (see above)
        }));

        debug!("ast_path_to_poly_trait_ref({:?}, projections={:?}) -> {:?}",
               trait_ref, poly_projections, poly_trait_ref);
        poly_trait_ref
    }

    fn ast_path_to_mono_trait_ref(&self,
                                  span: Span,
                                  trait_def_id: DefId,
                                  self_ty: Ty<'tcx>,
                                  trait_segment: &hir::PathSegment)
                                  -> ty::TraitRef<'tcx>
    {
        let (substs, assoc_bindings) =
            self.create_substs_for_ast_trait_ref(span,
                                                 trait_def_id,
                                                 self_ty,
                                                 trait_segment);
        assoc_bindings.first().map(|b| self.prohibit_projection(b.span));
        ty::TraitRef::new(trait_def_id, substs)
    }

    fn create_substs_for_ast_trait_ref(&self,
                                       span: Span,
                                       trait_def_id: DefId,
                                       self_ty: Ty<'tcx>,
                                       trait_segment: &hir::PathSegment)
                                       -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
    {
        debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
               trait_segment);

        let trait_def = self.tcx().lookup_trait_def(trait_def_id);

        match trait_segment.parameters {
            hir::AngleBracketedParameters(_) => {
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
                    emit_feature_err(&self.tcx().sess.parse_sess,
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        the precise format of `Fn`-family traits' \
                        type parameters is subject to change. \
                        Use parenthetical notation (Fn(Foo, Bar) -> Baz) instead");
                }
            }
            hir::ParenthesizedParameters(_) => {
                // For now, require that parenthetical notation be used
                // only with `Fn()` etc.
                if !self.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
                    emit_feature_err(&self.tcx().sess.parse_sess,
                                     "unboxed_closures", span, GateIssue::Language,
                                     "\
                        parenthetical notation is only stable when used with `Fn`-family traits");
                }
            }
        }

        self.create_substs_for_ast_path(span,
                                        trait_def_id,
                                        &trait_segment.parameters,
                                        Some(self_ty))
    }

    fn trait_defines_associated_type_named(&self,
                                           trait_def_id: DefId,
                                           assoc_name: ast::Name)
                                           -> bool
    {
        self.tcx().associated_items(trait_def_id).any(|item| {
            item.kind == ty::AssociatedKind::Type && item.name == assoc_name
        })
    }

    fn ast_type_binding_to_poly_projection_predicate(
        &self,
        _path_id: ast::NodeId,
        trait_ref: ty::PolyTraitRef<'tcx>,
        binding: &ConvertedBinding<'tcx>)
        -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        // Given something like `U : SomeTrait<T=X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait : SuperTrait<int> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B : SubTrait<T=foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<int>>::T == foo`.

        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref. These are not wellformed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_trait_ref = tcx.collect_constrained_late_bound_regions(&trait_ref);
        let late_bound_in_ty = tcx.collect_referenced_late_bound_regions(&ty::Binder(binding.ty));
        debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
        debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
        for br in late_bound_in_ty.difference(&late_bound_in_trait_ref) {
            let br_name = match *br {
                ty::BrNamed(_, name) => name,
                _ => {
                    span_bug!(
                        binding.span,
                        "anonymous bound region {:?} in binding but not trait ref",
                        br);
                }
            };
            struct_span_err!(tcx.sess,
                             binding.span,
                             E0582,
                             "binding for associated type `{}` references lifetime `{}`, \
                              which does not appear in the trait input types",
                             binding.item_name, br_name)
                .emit();
        }

        // Simple case: X is defined in the current trait.
        if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
            return Ok(trait_ref.map_bound(|trait_ref| {
                ty::ProjectionPredicate {
                    projection_ty: ty::ProjectionTy {
                        trait_ref: trait_ref,
                        item_name: binding.item_name,
                    },
                    ty: binding.ty,
                }
            }));
        }

        // Otherwise, we have to walk through the supertraits to find
        // those that do.
        let candidates =
            traits::supertraits(tcx, trait_ref.clone())
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), binding.item_name));

        let candidate = self.one_bound_for_assoc_type(candidates,
                                                      &trait_ref.to_string(),
                                                      &binding.item_name.as_str(),
                                                      binding.span)?;

        Ok(candidate.map_bound(|trait_ref| {
            ty::ProjectionPredicate {
                projection_ty: ty::ProjectionTy {
                    trait_ref: trait_ref,
                    item_name: binding.item_name,
                },
                ty: binding.ty,
            }
        }))
    }

    fn ast_path_to_ty(&self,
        span: Span,
        did: DefId,
        item_segment: &hir::PathSegment)
        -> Ty<'tcx>
    {
        let substs = self.ast_path_substs_for_ty(span, did, item_segment);
        self.normalize_ty(
            span,
            ty::queries::ty::get(self.tcx(), span, did).subst(self.tcx(), substs)
        )
    }

    /// Transform a PolyTraitRef into a PolyExistentialTraitRef by
    /// removing the dummy Self type (TRAIT_OBJECT_DUMMY_SELF).
    fn trait_ref_to_existential(&self, trait_ref: ty::TraitRef<'tcx>)
                                -> ty::ExistentialTraitRef<'tcx> {
        assert_eq!(trait_ref.self_ty().sty, TRAIT_OBJECT_DUMMY_SELF);
        ty::ExistentialTraitRef::erase_self_ty(self.tcx(), trait_ref)
    }

    fn conv_object_ty_poly_trait_ref(&self,
        span: Span,
        trait_bounds: &[hir::PolyTraitRef],
        lifetime: &hir::Lifetime)
        -> Ty<'tcx>
    {
        let tcx = self.tcx();

        if trait_bounds.is_empty() {
            span_err!(tcx.sess, span, E0224,
                      "at least one non-builtin trait is required for an object type");
            return tcx.types.err;
        }

        let mut projection_bounds = vec![];
        let dummy_self = tcx.mk_ty(TRAIT_OBJECT_DUMMY_SELF);
        let principal = self.instantiate_poly_trait_ref(&trait_bounds[0],
                                                        dummy_self,
                                                        &mut projection_bounds);

        let (auto_traits, trait_bounds) = split_auto_traits(tcx, &trait_bounds[1..]);

        if !trait_bounds.is_empty() {
            let b = &trait_bounds[0];
            let span = b.trait_ref.path.span;
            struct_span_err!(self.tcx().sess, span, E0225,
                "only Send/Sync traits can be used as additional traits in a trait object")
                .span_label(span, &format!("non-Send/Sync additional trait"))
                .emit();
        }

        // Erase the dummy_self (TRAIT_OBJECT_DUMMY_SELF) used above.
        let existential_principal = principal.map_bound(|trait_ref| {
            self.trait_ref_to_existential(trait_ref)
        });
        let existential_projections = projection_bounds.iter().map(|bound| {
            bound.map_bound(|b| {
                let p = b.projection_ty;
                ty::ExistentialProjection {
                    trait_ref: self.trait_ref_to_existential(p.trait_ref),
                    item_name: p.item_name,
                    ty: b.ty
                }
            })
        });

        // check that there are no gross object safety violations,
        // most importantly, that the supertraits don't contain Self,
        // to avoid ICE-s.
        let object_safety_violations =
            tcx.astconv_object_safety_violations(principal.def_id());
        if !object_safety_violations.is_empty() {
            tcx.report_object_safety_error(
                span, principal.def_id(), object_safety_violations)
                .emit();
            return tcx.types.err;
        }

        let mut associated_types = FxHashSet::default();
        for tr in traits::supertraits(tcx, principal) {
            associated_types.extend(tcx.associated_items(tr.def_id())
                .filter(|item| item.kind == ty::AssociatedKind::Type)
                .map(|item| (tr.def_id(), item.name)));
        }

        for projection_bound in &projection_bounds {
            let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                        projection_bound.0.projection_ty.item_name);
            associated_types.remove(&pair);
        }

        for (trait_def_id, name) in associated_types {
            struct_span_err!(tcx.sess, span, E0191,
                "the value of the associated type `{}` (from the trait `{}`) must be specified",
                        name,
                        tcx.item_path_str(trait_def_id))
                        .span_label(span, &format!(
                            "missing associated type `{}` value", name))
                        .emit();
        }

        let mut v =
            iter::once(ty::ExistentialPredicate::Trait(*existential_principal.skip_binder()))
            .chain(auto_traits.into_iter().map(ty::ExistentialPredicate::AutoTrait))
            .chain(existential_projections
                   .map(|x| ty::ExistentialPredicate::Projection(*x.skip_binder())))
            .collect::<AccumulateVec<[_; 8]>>();
        v.sort_by(|a, b| a.cmp(tcx, b));
        let existential_predicates = ty::Binder(tcx.mk_existential_predicates(v.into_iter()));


        // Explicitly specified region bound. Use that.
        let region_bound = if !lifetime.is_elided() {
            self.ast_region_to_region(lifetime, None)
        } else {
            self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
                if tcx.named_region_map.defs.contains_key(&lifetime.id) {
                    self.ast_region_to_region(lifetime, None)
                } else {
                    self.re_infer(span, None).unwrap_or_else(|| {
                        span_err!(tcx.sess, span, E0228,
                                  "the lifetime bound for this object type cannot be deduced \
                                   from context; please supply an explicit bound");
                        tcx.mk_region(ty::ReStatic)
                    })
                }
            })
        };

        debug!("region_bound: {:?}", region_bound);

        let ty = tcx.mk_dynamic(existential_predicates, region_bound);
        debug!("trait_object_type: {:?}", ty);
        ty
    }

    fn report_ambiguous_associated_type(&self,
                                        span: Span,
                                        type_str: &str,
                                        trait_str: &str,
                                        name: &str) {
        struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type")
            .span_label(span, &format!("ambiguous associated type"))
            .note(&format!("specify the type using the syntax `<{} as {}>::{}`",
                  type_str, trait_str, name))
            .emit();

    }

    // Search for a bound on a type parameter which includes the associated item
    // given by `assoc_name`. `ty_param_def_id` is the `DefId` for the type parameter
    // This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(&self,
                                 ty_param_def_id: DefId,
                                 assoc_name: ast::Name,
                                 span: Span)
                                 -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    {
        let tcx = self.tcx();

        let bounds: Vec<_> = self.get_type_parameter_bounds(span, ty_param_def_id)
            .predicates.into_iter().filter_map(|p| p.to_opt_poly_trait_ref()).collect();

        // Check that there is exactly one way to find an associated type with the
        // correct name.
        let suitable_bounds =
            traits::transitive_bounds(tcx, &bounds)
            .filter(|b| self.trait_defines_associated_type_named(b.def_id(), assoc_name));

        let param_node_id = tcx.hir.as_local_node_id(ty_param_def_id).unwrap();
        let param_name = tcx.hir.ty_param_name(param_node_id);
        self.one_bound_for_assoc_type(suitable_bounds,
                                      &param_name.as_str(),
                                      &assoc_name.as_str(),
                                      span)
    }


    // Checks that bounds contains exactly one element and reports appropriate
    // errors otherwise.
    fn one_bound_for_assoc_type<I>(&self,
                                mut bounds: I,
                                ty_param_name: &str,
                                assoc_name: &str,
                                span: Span)
        -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
        where I: Iterator<Item=ty::PolyTraitRef<'tcx>>
    {
        let bound = match bounds.next() {
            Some(bound) => bound,
            None => {
                struct_span_err!(self.tcx().sess, span, E0220,
                          "associated type `{}` not found for `{}`",
                          assoc_name,
                          ty_param_name)
                  .span_label(span, &format!("associated type `{}` not found", assoc_name))
                  .emit();
                return Err(ErrorReported);
            }
        };

        if let Some(bound2) = bounds.next() {
            let bounds = iter::once(bound).chain(iter::once(bound2)).chain(bounds);
            let mut err = struct_span_err!(
                self.tcx().sess, span, E0221,
                "ambiguous associated type `{}` in bounds of `{}`",
                assoc_name,
                ty_param_name);
            err.span_label(span, &format!("ambiguous associated type `{}`", assoc_name));

            for bound in bounds {
                let bound_span = self.tcx().associated_items(bound.def_id()).find(|item| {
                    item.kind == ty::AssociatedKind::Type && item.name == assoc_name
                })
                .and_then(|item| self.tcx().hir.span_if_local(item.def_id));

                if let Some(span) = bound_span {
                    err.span_label(span, &format!("ambiguous `{}` from `{}`",
                                                  assoc_name,
                                                  bound));
                } else {
                    span_note!(&mut err, span,
                               "associated type `{}` could derive from `{}`",
                               ty_param_name,
                               bound);
                }
            }
            err.emit();
        }

        return Ok(bound);
    }

    // Create a type from a path to an associated type.
    // For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
    // and item_segment is the path segment for D. We return a type and a def for
    // the whole path.
    // Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
    // parameter or Self.
    pub fn associated_path_def_to_ty(&self,
                                     ref_id: ast::NodeId,
                                     span: Span,
                                     ty: Ty<'tcx>,
                                     ty_path_def: Def,
                                     item_segment: &hir::PathSegment)
                                     -> (Ty<'tcx>, Def)
    {
        let tcx = self.tcx();
        let assoc_name = item_segment.name;

        debug!("associated_path_def_to_ty: {:?}::{}", ty, assoc_name);

        self.prohibit_type_params(slice::ref_slice(item_segment));

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&ty.sty, ty_path_def) {
            (_, Def::SelfTy(Some(_), Some(impl_def_id))) => {
                // `Self` in an impl of a trait - we have a concrete self type and a
                // trait reference.
                let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
                    Some(trait_ref) => trait_ref,
                    None => {
                        // A cycle error occurred, most likely.
                        return (tcx.types.err, Def::Err);
                    }
                };

                let trait_ref = if let Some(free_substs) = self.get_free_substs() {
                    trait_ref.subst(tcx, free_substs)
                } else {
                    trait_ref
                };

                let candidates =
                    traits::supertraits(tcx, ty::Binder(trait_ref))
                    .filter(|r| self.trait_defines_associated_type_named(r.def_id(),
                                                                         assoc_name));

                match self.one_bound_for_assoc_type(candidates,
                                                    "Self",
                                                    &assoc_name.as_str(),
                                                    span) {
                    Ok(bound) => bound,
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
                }
            }
            (&ty::TyParam(_), Def::SelfTy(Some(param_did), None)) |
            (&ty::TyParam(_), Def::TyParam(param_did)) => {
                match self.find_bound_for_assoc_item(param_did, assoc_name, span) {
                    Ok(bound) => bound,
                    Err(ErrorReported) => return (tcx.types.err, Def::Err),
                }
            }
            _ => {
                // Don't print TyErr to the user.
                if !ty.references_error() {
                    self.report_ambiguous_associated_type(span,
                                                          &ty.to_string(),
                                                          "Trait",
                                                          &assoc_name.as_str());
                }
                return (tcx.types.err, Def::Err);
            }
        };

        let trait_did = bound.0.def_id;
        let ty = self.projected_ty_from_poly_trait_ref(span, bound, assoc_name);
        let ty = self.normalize_ty(span, ty);

        let item = tcx.associated_items(trait_did).find(|i| i.name == assoc_name);
        let def_id = item.expect("missing associated type").def_id;
        tcx.check_stability(def_id, ref_id, span);
        (ty, Def::AssociatedTy(def_id))
    }

    fn qpath_to_ty(&self,
                   span: Span,
                   opt_self_ty: Option<Ty<'tcx>>,
                   trait_def_id: DefId,
                   trait_segment: &hir::PathSegment,
                   item_segment: &hir::PathSegment)
                   -> Ty<'tcx>
    {
        let tcx = self.tcx();

        self.prohibit_type_params(slice::ref_slice(item_segment));

        let self_ty = if let Some(ty) = opt_self_ty {
            ty
        } else {
            let path_str = tcx.item_path_str(trait_def_id);
            self.report_ambiguous_associated_type(span,
                                                  "Type",
                                                  &path_str,
                                                  &item_segment.name.as_str());
            return tcx.types.err;
        };

        debug!("qpath_to_ty: self_type={:?}", self_ty);

        let trait_ref = self.ast_path_to_mono_trait_ref(span,
                                                        trait_def_id,
                                                        self_ty,
                                                        trait_segment);

        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);

        self.normalize_ty(span, tcx.mk_projection(trait_ref, item_segment.name))
    }

    pub fn prohibit_type_params(&self, segments: &[hir::PathSegment]) {
        for segment in segments {
            for typ in segment.parameters.types() {
                struct_span_err!(self.tcx().sess, typ.span, E0109,
                                 "type parameters are not allowed on this type")
                    .span_label(typ.span, &format!("type parameter not allowed"))
                    .emit();
                break;
            }
            for lifetime in segment.parameters.lifetimes() {
                struct_span_err!(self.tcx().sess, lifetime.span, E0110,
                                 "lifetime parameters are not allowed on this type")
                    .span_label(lifetime.span,
                                &format!("lifetime parameter not allowed on this type"))
                    .emit();
                break;
            }
            for binding in segment.parameters.bindings() {
                self.prohibit_projection(binding.span);
                break;
            }
        }
    }

    pub fn prohibit_projection(&self, span: Span) {
        let mut err = struct_span_err!(self.tcx().sess, span, E0229,
                                       "associated type bindings are not allowed here");
        err.span_label(span, &format!("associate type not allowed here")).emit();
    }

    // Check a type Path and convert it to a Ty.
    pub fn def_to_ty(&self,
                     opt_self_ty: Option<Ty<'tcx>>,
                     path: &hir::Path,
                     permit_variants: bool)
                     -> Ty<'tcx> {
        let tcx = self.tcx();

        debug!("base_def_to_ty(def={:?}, opt_self_ty={:?}, path_segments={:?})",
               path.def, opt_self_ty, path.segments);

        let span = path.span;
        match path.def {
            Def::Enum(did) | Def::TyAlias(did) | Def::Struct(did) | Def::Union(did) => {
                assert_eq!(opt_self_ty, None);
                self.prohibit_type_params(path.segments.split_last().unwrap().1);
                self.ast_path_to_ty(span, did, path.segments.last().unwrap())
            }
            Def::Variant(did) if permit_variants => {
                // Convert "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
                assert_eq!(opt_self_ty, None);
                self.prohibit_type_params(path.segments.split_last().unwrap().1);
                self.ast_path_to_ty(span,
                                    tcx.parent_def_id(did).unwrap(),
                                    path.segments.last().unwrap())
            }
            Def::TyParam(did) => {
                assert_eq!(opt_self_ty, None);
                self.prohibit_type_params(&path.segments);

                let node_id = tcx.hir.as_local_node_id(did).unwrap();
                let item_id = tcx.hir.get_parent_node(node_id);
                let item_def_id = tcx.hir.local_def_id(item_id);
                let generics = tcx.item_generics(item_def_id);
                let index = generics.type_param_to_index[&tcx.hir.local_def_id(node_id).index];
                tcx.mk_param(index, tcx.hir.name(node_id))
            }
            Def::SelfTy(_, Some(def_id)) => {
                // Self in impl (we know the concrete type).

                assert_eq!(opt_self_ty, None);
                self.prohibit_type_params(&path.segments);

                let ty = ty::queries::ty::get(tcx, span, def_id);
                if let Some(free_substs) = self.get_free_substs() {
                    ty.subst(tcx, free_substs)
                } else {
                    ty
                }
            }
            Def::SelfTy(Some(_), None) => {
                // Self in trait.
                assert_eq!(opt_self_ty, None);
                self.prohibit_type_params(&path.segments);
                tcx.mk_self_type()
            }
            Def::AssociatedTy(def_id) => {
                self.prohibit_type_params(&path.segments[..path.segments.len()-2]);
                let trait_did = tcx.parent_def_id(def_id).unwrap();
                self.qpath_to_ty(span,
                                 opt_self_ty,
                                 trait_did,
                                 &path.segments[path.segments.len()-2],
                                 path.segments.last().unwrap())
            }
            Def::PrimTy(prim_ty) => {
                assert_eq!(opt_self_ty, None);
                self.prohibit_type_params(&path.segments);
                match prim_ty {
                    hir::TyBool => tcx.types.bool,
                    hir::TyChar => tcx.types.char,
                    hir::TyInt(it) => tcx.mk_mach_int(it),
                    hir::TyUint(uit) => tcx.mk_mach_uint(uit),
                    hir::TyFloat(ft) => tcx.mk_mach_float(ft),
                    hir::TyStr => tcx.mk_str()
                }
            }
            Def::Err => {
                self.set_tainted_by_errors();
                return self.tcx().types.err;
            }
            _ => span_bug!(span, "unexpected definition: {:?}", path.def)
        }
    }

    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty) -> Ty<'tcx> {
        debug!("ast_ty_to_ty(id={:?}, ast_ty={:?})",
               ast_ty.id, ast_ty);

        let tcx = self.tcx();

        let cache = self.ast_ty_to_ty_cache();
        if let Some(ty) = cache.borrow().get(&ast_ty.id) {
            return ty;
        }

        let result_ty = match ast_ty.node {
            hir::TySlice(ref ty) => {
                tcx.mk_slice(self.ast_ty_to_ty(&ty))
            }
            hir::TyPtr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut {
                    ty: self.ast_ty_to_ty(&mt.ty),
                    mutbl: mt.mutbl
                })
            }
            hir::TyRptr(ref region, ref mt) => {
                let r = self.ast_region_to_region(region, None);
                debug!("TyRef r={:?}", r);
                let t = self.ast_ty_to_ty(&mt.ty);
                tcx.mk_ref(r, ty::TypeAndMut {ty: t, mutbl: mt.mutbl})
            }
            hir::TyNever => {
                tcx.types.never
            },
            hir::TyTup(ref fields) => {
                tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)), false)
            }
            hir::TyBareFn(ref bf) => {
                require_c_abi_if_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
                let bare_fn_ty = self.ty_of_fn(bf.unsafety, bf.abi, &bf.decl);

                // Find any late-bound regions declared in return type that do
                // not appear in the arguments. These are not wellformed.
                //
                // Example:
                //
                //     for<'a> fn() -> &'a str <-- 'a is bad
                //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
                //
                // Note that we do this check **here** and not in
                // `ty_of_bare_fn` because the latter is also used to make
                // the types for fn items, and we do not want to issue a
                // warning then. (Once we fix #32330, the regions we are
                // checking for here would be considered early bound
                // anyway.)
                let inputs = bare_fn_ty.inputs();
                let late_bound_in_args = tcx.collect_constrained_late_bound_regions(
                    &inputs.map_bound(|i| i.to_owned()));
                let output = bare_fn_ty.output();
                let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
                for br in late_bound_in_ret.difference(&late_bound_in_args) {
                    let br_name = match *br {
                        ty::BrNamed(_, name) => name,
                        _ => {
                            span_bug!(
                                bf.decl.output.span(),
                                "anonymous bound region {:?} in return but not args",
                                br);
                        }
                    };
                    struct_span_err!(tcx.sess,
                                     ast_ty.span,
                                     E0581,
                                     "return type references lifetime `{}`, \
                                      which does not appear in the fn input types",
                                     br_name)
                        .emit();
                }
                tcx.mk_fn_ptr(bare_fn_ty)
            }
            hir::TyTraitObject(ref bounds, ref lifetime) => {
                self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime)
            }
            hir::TyImplTrait(_) => {
                // Figure out if we can allow an `impl Trait` here, by walking up
                // to a `fn` or inherent `impl` method, going only through `Ty`
                // or `TraitRef` nodes (as nothing else should be in types) and
                // ensuring that we reach the `fn`/method signature's return type.
                let mut node_id = ast_ty.id;
                let fn_decl = loop {
                    let parent = tcx.hir.get_parent_node(node_id);
                    match tcx.hir.get(parent) {
                        hir::map::NodeItem(&hir::Item {
                            node: hir::ItemFn(ref fn_decl, ..), ..
                        }) => break Some(fn_decl),

                        hir::map::NodeImplItem(&hir::ImplItem {
                            node: hir::ImplItemKind::Method(ref sig, _), ..
                        }) => {
                            match tcx.hir.expect_item(tcx.hir.get_parent(parent)).node {
                                hir::ItemImpl(.., None, _, _) => {
                                    break Some(&sig.decl)
                                }
                                _ => break None
                            }
                        }

                        hir::map::NodeTy(_) | hir::map::NodeTraitRef(_) => {}

                        _ => break None
                    }
                    node_id = parent;
                };
                let allow = fn_decl.map_or(false, |fd| {
                    match fd.output {
                        hir::DefaultReturn(_) => false,
                        hir::Return(ref ty) => ty.id == node_id
                    }
                });

                // Create the anonymized type.
                if allow {
                    let def_id = tcx.hir.local_def_id(ast_ty.id);
                    tcx.mk_anon(def_id, Substs::identity_for_item(tcx, def_id))
                } else {
                    span_err!(tcx.sess, ast_ty.span, E0562,
                              "`impl Trait` not allowed outside of function \
                               and inherent method return types");
                    tcx.types.err
                }
            }
            hir::TyPath(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
                debug!("ast_ty_to_ty: maybe_qself={:?} path={:?}", maybe_qself, path);
                let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                    self.ast_ty_to_ty(qself)
                });
                self.def_to_ty(opt_self_ty, path, false)
            }
            hir::TyPath(hir::QPath::TypeRelative(ref qself, ref segment)) => {
                debug!("ast_ty_to_ty: qself={:?} segment={:?}", qself, segment);
                let ty = self.ast_ty_to_ty(qself);

                let def = if let hir::TyPath(hir::QPath::Resolved(_, ref path)) = qself.node {
                    path.def
                } else {
                    Def::Err
                };
                self.associated_path_def_to_ty(ast_ty.id, ast_ty.span, ty, def, segment).0
            }
            hir::TyArray(ref ty, length) => {
                if let Ok(length) = eval_length(tcx.global_tcx(), length, "array length") {
                    tcx.mk_array(self.ast_ty_to_ty(&ty), length)
                } else {
                    self.tcx().types.err
                }
            }
            hir::TyTypeof(ref _e) => {
                struct_span_err!(tcx.sess, ast_ty.span, E0516,
                                 "`typeof` is a reserved keyword but unimplemented")
                    .span_label(ast_ty.span, &format!("reserved keyword"))
                    .emit();

                tcx.types.err
            }
            hir::TyInfer => {
                // TyInfer also appears as the type of arguments or return
                // values in a ExprClosure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
                self.ty_infer(ast_ty.span)
            }
        };

        cache.borrow_mut().insert(ast_ty.id, result_ty);

        result_ty
    }

    pub fn ty_of_arg(&self,
                     ty: &hir::Ty,
                     expected_ty: Option<Ty<'tcx>>)
                     -> Ty<'tcx>
    {
        match ty.node {
            hir::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
            hir::TyInfer => self.ty_infer(ty.span),
            _ => self.ast_ty_to_ty(ty),
        }
    }

    pub fn ty_of_fn(&self,
                    unsafety: hir::Unsafety,
                    abi: abi::Abi,
                    decl: &hir::FnDecl)
                    -> ty::PolyFnSig<'tcx> {
        debug!("ty_of_fn");

        let input_tys: Vec<Ty> =
            decl.inputs.iter().map(|a| self.ty_of_arg(a, None)).collect();

        let output_ty = match decl.output {
            hir::Return(ref output) => self.ast_ty_to_ty(output),
            hir::DefaultReturn(..) => self.tcx().mk_nil(),
        };

        debug!("ty_of_fn: output_ty={:?}", output_ty);

        ty::Binder(self.tcx().mk_fn_sig(
            input_tys.into_iter(),
            output_ty,
            decl.variadic,
            unsafety,
            abi
        ))
    }

    pub fn ty_of_closure(&self,
        unsafety: hir::Unsafety,
        decl: &hir::FnDecl,
        abi: abi::Abi,
        expected_sig: Option<ty::FnSig<'tcx>>)
        -> ty::PolyFnSig<'tcx>
    {
        debug!("ty_of_closure(expected_sig={:?})",
               expected_sig);

        let input_tys = decl.inputs.iter().enumerate().map(|(i, a)| {
            let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
                // no guarantee that the correct number of expected args
                // were supplied
                if i < e.inputs().len() {
                    Some(e.inputs()[i])
                } else {
                    None
                }
            });
            self.ty_of_arg(a, expected_arg_ty)
        });

        let expected_ret_ty = expected_sig.as_ref().map(|e| e.output());

        let is_infer = match decl.output {
            hir::Return(ref output) if output.node == hir::TyInfer => true,
            hir::DefaultReturn(..) => true,
            _ => false
        };

        let output_ty = match decl.output {
            _ if is_infer && expected_ret_ty.is_some() =>
                expected_ret_ty.unwrap(),
            _ if is_infer => self.ty_infer(decl.output.span()),
            hir::Return(ref output) =>
                self.ast_ty_to_ty(&output),
            hir::DefaultReturn(..) => bug!(),
        };

        debug!("ty_of_closure: output_ty={:?}", output_ty);

        ty::Binder(self.tcx().mk_fn_sig(
            input_tys,
            output_ty,
            decl.variadic,
            unsafety,
            abi
        ))
    }

    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(&self,
        span: Span,
        existential_predicates: ty::Binder<&'tcx ty::Slice<ty::ExistentialPredicate<'tcx>>>)
        -> Option<&'tcx ty::Region> // if None, use the default
    {
        let tcx = self.tcx();

        debug!("compute_opt_region_bound(existential_predicates={:?})",
               existential_predicates);

        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds =
            object_region_bounds(tcx, existential_predicates);

        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }

        // If any of the derived region bounds are 'static, that is always
        // the best choice.
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.mk_region(ty::ReStatic));
        }

        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            span_err!(tcx.sess, span, E0227,
                      "ambiguous lifetime bound, explicit lifetime bound required");
        }
        return Some(r);
    }
}

/// Divides a list of general trait bounds into two groups: builtin bounds (Sync/Send) and the
/// remaining general trait bounds.
fn split_auto_traits<'a, 'b, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                         trait_bounds: &'b [hir::PolyTraitRef])
    -> (Vec<DefId>, Vec<&'b hir::PolyTraitRef>)
{
    let (auto_traits, trait_bounds): (Vec<_>, _) = trait_bounds.iter().partition(|bound| {
        match bound.trait_ref.path.def {
            Def::Trait(trait_did) => {
                // Checks whether `trait_did` refers to one of the builtin
                // traits, like `Send`, and adds it to `auto_traits` if so.
                if Some(trait_did) == tcx.lang_items.send_trait() ||
                    Some(trait_did) == tcx.lang_items.sync_trait() {
                    let segments = &bound.trait_ref.path.segments;
                    let parameters = &segments[segments.len() - 1].parameters;
                    if !parameters.types().is_empty() {
                        check_type_argument_count(tcx, bound.trait_ref.path.span,
                                                  parameters.types().len(), &[]);
                    }
                    if !parameters.lifetimes().is_empty() {
                        report_lifetime_number_error(tcx, bound.trait_ref.path.span,
                                                     parameters.lifetimes().len(), 0);
                    }
                    true
                } else {
                    false
                }
            }
            _ => false
        }
    });

    let auto_traits = auto_traits.into_iter().map(|tr| {
        if let Def::Trait(trait_did) = tr.trait_ref.path.def {
            trait_did
        } else {
            unreachable!()
        }
    }).collect::<Vec<_>>();

    (auto_traits, trait_bounds)
}

fn check_type_argument_count(tcx: TyCtxt, span: Span, supplied: usize,
                             ty_param_defs: &[ty::TypeParameterDef]) {
    let accepted = ty_param_defs.len();
    let required = ty_param_defs.iter().take_while(|x| !x.has_default).count();
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        let arguments_plural = if required == 1 { "" } else { "s" };

        struct_span_err!(tcx.sess, span, E0243,
                "wrong number of type arguments: {} {}, found {}",
                expected, required, supplied)
            .span_label(span,
                &format!("{} {} type argument{}",
                    expected,
                    required,
                    arguments_plural))
            .emit();
    } else if supplied > accepted {
        let expected = if required < accepted {
            format!("expected at most {}", accepted)
        } else {
            format!("expected {}", accepted)
        };
        let arguments_plural = if accepted == 1 { "" } else { "s" };

        struct_span_err!(tcx.sess, span, E0244,
                "wrong number of type arguments: {}, found {}",
                expected, supplied)
            .span_label(
                span,
                &format!("{} type argument{}",
                    if accepted == 0 { "expected no" } else { &expected },
                    arguments_plural)
            )
            .emit();
    }
}

fn report_lifetime_number_error(tcx: TyCtxt, span: Span, number: usize, expected: usize) {
    let label = if number < expected {
        if expected == 1 {
            format!("expected {} lifetime parameter", expected)
        } else {
            format!("expected {} lifetime parameters", expected)
        }
    } else {
        let additional = number - expected;
        if additional == 1 {
            "unexpected lifetime parameter".to_string()
        } else {
            format!("{} unexpected lifetime parameters", additional)
        }
    };
    struct_span_err!(tcx.sess, span, E0107,
                     "wrong number of lifetime parameters: expected {}, found {}",
                     expected, number)
        .span_label(span, &label)
        .emit();
}

// A helper struct for conveniently grouping a set of bounds which we pass to
// and return from functions in multiple places.
#[derive(PartialEq, Eq, Clone, Debug)]
pub struct Bounds<'tcx> {
    pub region_bounds: Vec<&'tcx ty::Region>,
    pub implicitly_sized: bool,
    pub trait_bounds: Vec<ty::PolyTraitRef<'tcx>>,
    pub projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
}

impl<'a, 'gcx, 'tcx> Bounds<'tcx> {
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, param_ty: Ty<'tcx>)
                      -> Vec<ty::Predicate<'tcx>>
    {
        let mut vec = Vec::new();

        // If it could be sized, and is, add the sized predicate
        if self.implicitly_sized {
            if let Some(sized) = tcx.lang_items.sized_trait() {
                let trait_ref = ty::TraitRef {
                    def_id: sized,
                    substs: tcx.mk_substs_trait(param_ty, &[])
                };
                vec.push(trait_ref.to_predicate());
            }
        }

        for &region_bound in &self.region_bounds {
            // account for the binder being introduced below; no need to shift `param_ty`
            // because, at present at least, it can only refer to early-bound regions
            let region_bound = tcx.mk_region(ty::fold::shift_region(*region_bound, 1));
            vec.push(ty::Binder(ty::OutlivesPredicate(param_ty, region_bound)).to_predicate());
        }

        for bound_trait_ref in &self.trait_bounds {
            vec.push(bound_trait_ref.to_predicate());
        }

        for projection in &self.projection_bounds {
            vec.push(projection.to_predicate());
        }

        vec
    }
}

pub enum ExplicitSelf<'tcx> {
    ByValue,
    ByReference(&'tcx ty::Region, hir::Mutability),
    ByBox
}

impl<'tcx> ExplicitSelf<'tcx> {
    /// We wish to (for now) categorize an explicit self
    /// declaration like `self: SomeType` into either `self`,
    /// `&self`, `&mut self`, or `Box<self>`. We do this here
    /// by some simple pattern matching. A more precise check
    /// is done later in `check_method_self_type()`.
    ///
    /// Examples:
    ///
    /// ```
    /// impl Foo for &T {
    ///     // Legal declarations:
    ///     fn method1(self: &&T); // ExplicitSelf::ByReference
    ///     fn method2(self: &T); // ExplicitSelf::ByValue
    ///     fn method3(self: Box<&T>); // ExplicitSelf::ByBox
    ///
    ///     // Invalid cases will be caught later by `check_method_self_type`:
    ///     fn method_err1(self: &mut T); // ExplicitSelf::ByReference
    /// }
    /// ```
    ///
    /// To do the check we just count the number of "modifiers"
    /// on each type and compare them. If they are the same or
    /// the impl has more, we call it "by value". Otherwise, we
    /// look at the outermost modifier on the method decl and
    /// call it by-ref, by-box as appropriate. For method1, for
    /// example, the impl type has one modifier, but the method
    /// type has two, so we end up with
    /// ExplicitSelf::ByReference.
    pub fn determine(untransformed_self_ty: Ty<'tcx>,
                     self_arg_ty: Ty<'tcx>)
                     -> ExplicitSelf<'tcx> {
        fn count_modifiers(ty: Ty) -> usize {
            match ty.sty {
                ty::TyRef(_, mt) => count_modifiers(mt.ty) + 1,
                ty::TyAdt(def, _) if def.is_box() => count_modifiers(ty.boxed_ty()) + 1,
                _ => 0,
            }
        }

        let impl_modifiers = count_modifiers(untransformed_self_ty);
        let method_modifiers = count_modifiers(self_arg_ty);

        if impl_modifiers >= method_modifiers {
            ExplicitSelf::ByValue
        } else {
            match self_arg_ty.sty {
                ty::TyRef(r, mt) => ExplicitSelf::ByReference(r, mt.mutbl),
                ty::TyAdt(def, _) if def.is_box() => ExplicitSelf::ByBox,
                _ => ExplicitSelf::ByValue,
            }
        }
    }
}