1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![crate_name = "rustc_resolve"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "dylib"]
#![crate_type = "rlib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
      html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
      html_root_url = "https://doc.rust-lang.org/nightly/")]
#![deny(warnings)]

#![feature(associated_consts)]
#![feature(rustc_diagnostic_macros)]
#![feature(rustc_private)]
#![feature(staged_api)]

#[macro_use]
extern crate log;
#[macro_use]
extern crate syntax;
extern crate syntax_pos;
extern crate rustc_errors as errors;
extern crate arena;
#[macro_use]
extern crate rustc;

use self::Namespace::*;
use self::TypeParameters::*;
use self::RibKind::*;

use rustc::hir::map::{Definitions, DefCollector};
use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr};
use rustc::middle::cstore::CrateLoader;
use rustc::session::Session;
use rustc::lint;
use rustc::hir::def::*;
use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
use rustc::ty;
use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap};
use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap};

use syntax::ext::hygiene::{Mark, SyntaxContext};
use syntax::ast::{self, Name, NodeId, Ident, SpannedIdent, FloatTy, IntTy, UintTy};
use syntax::ext::base::SyntaxExtension;
use syntax::ext::base::Determinacy::{Determined, Undetermined};
use syntax::ext::base::MacroKind;
use syntax::symbol::{Symbol, keywords};
use syntax::util::lev_distance::find_best_match_for_name;

use syntax::visit::{self, FnKind, Visitor};
use syntax::attr;
use syntax::ast::{Arm, BindingMode, Block, Crate, Expr, ExprKind};
use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, Generics};
use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind};
use syntax::ast::{Local, Mutability, Pat, PatKind, Path};
use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind};
use syntax::feature_gate::{feature_err, emit_feature_err, GateIssue};

use syntax_pos::{Span, DUMMY_SP, MultiSpan};
use errors::DiagnosticBuilder;

use std::cell::{Cell, RefCell};
use std::cmp;
use std::collections::BTreeSet;
use std::fmt;
use std::mem::replace;
use std::rc::Rc;

use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver};
use macros::{InvocationData, LegacyBinding, LegacyScope};

// NB: This module needs to be declared first so diagnostics are
// registered before they are used.
mod diagnostics;

mod macros;
mod check_unused;
mod build_reduced_graph;
mod resolve_imports;

/// A free importable items suggested in case of resolution failure.
struct ImportSuggestion {
    path: Path,
}

/// A field or associated item from self type suggested in case of resolution failure.
enum AssocSuggestion {
    Field,
    MethodWithSelf,
    AssocItem,
}

#[derive(Eq)]
struct BindingError {
    name: Name,
    origin: BTreeSet<Span>,
    target: BTreeSet<Span>,
}

impl PartialOrd for BindingError {
    fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for BindingError {
    fn eq(&self, other: &BindingError) -> bool {
        self.name == other.name
    }
}

impl Ord for BindingError {
    fn cmp(&self, other: &BindingError) -> cmp::Ordering {
        self.name.cmp(&other.name)
    }
}

enum ResolutionError<'a> {
    /// error E0401: can't use type parameters from outer function
    TypeParametersFromOuterFunction,
    /// error E0402: cannot use an outer type parameter in this context
    OuterTypeParameterContext,
    /// error E0403: the name is already used for a type parameter in this type parameter list
    NameAlreadyUsedInTypeParameterList(Name, &'a Span),
    /// error E0407: method is not a member of trait
    MethodNotMemberOfTrait(Name, &'a str),
    /// error E0437: type is not a member of trait
    TypeNotMemberOfTrait(Name, &'a str),
    /// error E0438: const is not a member of trait
    ConstNotMemberOfTrait(Name, &'a str),
    /// error E0408: variable `{}` is not bound in all patterns
    VariableNotBoundInPattern(&'a BindingError),
    /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm
    VariableBoundWithDifferentMode(Name, Span),
    /// error E0415: identifier is bound more than once in this parameter list
    IdentifierBoundMoreThanOnceInParameterList(&'a str),
    /// error E0416: identifier is bound more than once in the same pattern
    IdentifierBoundMoreThanOnceInSamePattern(&'a str),
    /// error E0426: use of undeclared label
    UndeclaredLabel(&'a str),
    /// error E0429: `self` imports are only allowed within a { } list
    SelfImportsOnlyAllowedWithin,
    /// error E0430: `self` import can only appear once in the list
    SelfImportCanOnlyAppearOnceInTheList,
    /// error E0431: `self` import can only appear in an import list with a non-empty prefix
    SelfImportOnlyInImportListWithNonEmptyPrefix,
    /// error E0432: unresolved import
    UnresolvedImport(Option<(&'a str, &'a str)>),
    /// error E0433: failed to resolve
    FailedToResolve(&'a str),
    /// error E0434: can't capture dynamic environment in a fn item
    CannotCaptureDynamicEnvironmentInFnItem,
    /// error E0435: attempt to use a non-constant value in a constant
    AttemptToUseNonConstantValueInConstant,
    /// error E0530: X bindings cannot shadow Ys
    BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>),
    /// error E0128: type parameters with a default cannot use forward declared identifiers
    ForwardDeclaredTyParam,
}

fn resolve_error<'sess, 'a>(resolver: &'sess Resolver,
                            span: Span,
                            resolution_error: ResolutionError<'a>) {
    resolve_struct_error(resolver, span, resolution_error).emit();
}

fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver,
                                   span: Span,
                                   resolution_error: ResolutionError<'a>)
                                   -> DiagnosticBuilder<'sess> {
    match resolution_error {
        ResolutionError::TypeParametersFromOuterFunction => {
            let mut err = struct_span_err!(resolver.session,
                                           span,
                                           E0401,
                                           "can't use type parameters from outer function; \
                                           try using a local type parameter instead");
            err.span_label(span, &format!("use of type variable from outer function"));
            err
        }
        ResolutionError::OuterTypeParameterContext => {
            struct_span_err!(resolver.session,
                             span,
                             E0402,
                             "cannot use an outer type parameter in this context")
        }
        ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => {
             let mut err = struct_span_err!(resolver.session,
                                            span,
                                            E0403,
                                            "the name `{}` is already used for a type parameter \
                                            in this type parameter list",
                                            name);
             err.span_label(span, &format!("already used"));
             err.span_label(first_use_span.clone(), &format!("first use of `{}`", name));
             err
        }
        ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
            let mut err = struct_span_err!(resolver.session,
                                           span,
                                           E0407,
                                           "method `{}` is not a member of trait `{}`",
                                           method,
                                           trait_);
            err.span_label(span, &format!("not a member of trait `{}`", trait_));
            err
        }
        ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
            let mut err = struct_span_err!(resolver.session,
                             span,
                             E0437,
                             "type `{}` is not a member of trait `{}`",
                             type_,
                             trait_);
            err.span_label(span, &format!("not a member of trait `{}`", trait_));
            err
        }
        ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
            let mut err = struct_span_err!(resolver.session,
                             span,
                             E0438,
                             "const `{}` is not a member of trait `{}`",
                             const_,
                             trait_);
            err.span_label(span, &format!("not a member of trait `{}`", trait_));
            err
        }
        ResolutionError::VariableNotBoundInPattern(binding_error) => {
            let target_sp = binding_error.target.iter().map(|x| *x).collect::<Vec<_>>();
            let msp = MultiSpan::from_spans(target_sp.clone());
            let msg = format!("variable `{}` is not bound in all patterns", binding_error.name);
            let mut err = resolver.session.struct_span_err_with_code(msp, &msg, "E0408");
            for sp in target_sp {
                err.span_label(sp, &format!("pattern doesn't bind `{}`", binding_error.name));
            }
            let origin_sp = binding_error.origin.iter().map(|x| *x).collect::<Vec<_>>();
            for sp in origin_sp {
                err.span_label(sp, &"variable not in all patterns");
            }
            err
        }
        ResolutionError::VariableBoundWithDifferentMode(variable_name,
                                                        first_binding_span) => {
            let mut err = struct_span_err!(resolver.session,
                             span,
                             E0409,
                             "variable `{}` is bound in inconsistent \
                             ways within the same match arm",
                             variable_name);
            err.span_label(span, &format!("bound in different ways"));
            err.span_label(first_binding_span, &format!("first binding"));
            err
        }
        ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
            let mut err = struct_span_err!(resolver.session,
                             span,
                             E0415,
                             "identifier `{}` is bound more than once in this parameter list",
                             identifier);
            err.span_label(span, &format!("used as parameter more than once"));
            err
        }
        ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
            let mut err = struct_span_err!(resolver.session,
                             span,
                             E0416,
                             "identifier `{}` is bound more than once in the same pattern",
                             identifier);
            err.span_label(span, &format!("used in a pattern more than once"));
            err
        }
        ResolutionError::UndeclaredLabel(name) => {
            let mut err = struct_span_err!(resolver.session,
                                           span,
                                           E0426,
                                           "use of undeclared label `{}`",
                                           name);
            err.span_label(span, &format!("undeclared label `{}`",&name));
            err
        }
        ResolutionError::SelfImportsOnlyAllowedWithin => {
            struct_span_err!(resolver.session,
                             span,
                             E0429,
                             "{}",
                             "`self` imports are only allowed within a { } list")
        }
        ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
            struct_span_err!(resolver.session,
                             span,
                             E0430,
                             "`self` import can only appear once in the list")
        }
        ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
            struct_span_err!(resolver.session,
                             span,
                             E0431,
                             "`self` import can only appear in an import list with a \
                              non-empty prefix")
        }
        ResolutionError::UnresolvedImport(name) => {
            let msg = match name {
                Some((n, _)) => format!("unresolved import `{}`", n),
                None => "unresolved import".to_owned(),
            };
            let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg);
            if let Some((_, p)) = name {
                err.span_label(span, &p);
            }
            err
        }
        ResolutionError::FailedToResolve(msg) => {
            let mut err = struct_span_err!(resolver.session, span, E0433,
                                           "failed to resolve. {}", msg);
            err.span_label(span, &msg);
            err
        }
        ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
            struct_span_err!(resolver.session,
                             span,
                             E0434,
                             "{}",
                             "can't capture dynamic environment in a fn item; use the || { ... } \
                              closure form instead")
        }
        ResolutionError::AttemptToUseNonConstantValueInConstant => {
            let mut err = struct_span_err!(resolver.session,
                             span,
                             E0435,
                             "attempt to use a non-constant value in a constant");
            err.span_label(span, &format!("non-constant used with constant"));
            err
        }
        ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => {
            let shadows_what = PathResolution::new(binding.def()).kind_name();
            let mut err = struct_span_err!(resolver.session,
                                           span,
                                           E0530,
                                           "{}s cannot shadow {}s", what_binding, shadows_what);
            err.span_label(span, &format!("cannot be named the same as a {}", shadows_what));
            let participle = if binding.is_import() { "imported" } else { "defined" };
            let msg = &format!("a {} `{}` is {} here", shadows_what, name, participle);
            err.span_label(binding.span, msg);
            err
        }
        ResolutionError::ForwardDeclaredTyParam => {
            let mut err = struct_span_err!(resolver.session, span, E0128,
                                           "type parameters with a default cannot use \
                                            forward declared identifiers");
            err.span_label(span, &format!("defaulted type parameters \
                                           cannot be forward declared"));
            err
        }
    }
}

#[derive(Copy, Clone, Debug)]
struct BindingInfo {
    span: Span,
    binding_mode: BindingMode,
}

// Map from the name in a pattern to its binding mode.
type BindingMap = FxHashMap<Ident, BindingInfo>;

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum PatternSource {
    Match,
    IfLet,
    WhileLet,
    Let,
    For,
    FnParam,
}

impl PatternSource {
    fn is_refutable(self) -> bool {
        match self {
            PatternSource::Match | PatternSource::IfLet | PatternSource::WhileLet => true,
            PatternSource::Let | PatternSource::For | PatternSource::FnParam  => false,
        }
    }
    fn descr(self) -> &'static str {
        match self {
            PatternSource::Match => "match binding",
            PatternSource::IfLet => "if let binding",
            PatternSource::WhileLet => "while let binding",
            PatternSource::Let => "let binding",
            PatternSource::For => "for binding",
            PatternSource::FnParam => "function parameter",
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum PathSource<'a> {
    // Type paths `Path`.
    Type,
    // Trait paths in bounds or impls.
    Trait,
    // Expression paths `path`, with optional parent context.
    Expr(Option<&'a Expr>),
    // Paths in path patterns `Path`.
    Pat,
    // Paths in struct expressions and patterns `Path { .. }`.
    Struct,
    // Paths in tuple struct patterns `Path(..)`.
    TupleStruct,
    // `m::A::B` in `<T as m::A>::B::C`.
    TraitItem(Namespace),
    // Path in `pub(path)`
    Visibility,
    // Path in `use a::b::{...};`
    ImportPrefix,
}

impl<'a> PathSource<'a> {
    fn namespace(self) -> Namespace {
        match self {
            PathSource::Type | PathSource::Trait | PathSource::Struct |
            PathSource::Visibility | PathSource::ImportPrefix => TypeNS,
            PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
            PathSource::TraitItem(ns) => ns,
        }
    }

    fn global_by_default(self) -> bool {
        match self {
            PathSource::Visibility | PathSource::ImportPrefix => true,
            PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
            PathSource::Struct | PathSource::TupleStruct |
            PathSource::Trait | PathSource::TraitItem(..) => false,
        }
    }

    fn defer_to_typeck(self) -> bool {
        match self {
            PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
            PathSource::Struct | PathSource::TupleStruct => true,
            PathSource::Trait | PathSource::TraitItem(..) |
            PathSource::Visibility | PathSource::ImportPrefix => false,
        }
    }

    fn descr_expected(self) -> &'static str {
        match self {
            PathSource::Type => "type",
            PathSource::Trait => "trait",
            PathSource::Pat => "unit struct/variant or constant",
            PathSource::Struct => "struct, variant or union type",
            PathSource::TupleStruct => "tuple struct/variant",
            PathSource::Visibility => "module",
            PathSource::ImportPrefix => "module or enum",
            PathSource::TraitItem(ns) => match ns {
                TypeNS => "associated type",
                ValueNS => "method or associated constant",
                MacroNS => bug!("associated macro"),
            },
            PathSource::Expr(parent) => match parent.map(|p| &p.node) {
                // "function" here means "anything callable" rather than `Def::Fn`,
                // this is not precise but usually more helpful than just "value".
                Some(&ExprKind::Call(..)) => "function",
                _ => "value",
            },
        }
    }

    fn is_expected(self, def: Def) -> bool {
        match self {
            PathSource::Type => match def {
                Def::Struct(..) | Def::Union(..) | Def::Enum(..) |
                Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) |
                Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) => true,
                _ => false,
            },
            PathSource::Trait => match def {
                Def::Trait(..) => true,
                _ => false,
            },
            PathSource::Expr(..) => match def {
                Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) |
                Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) |
                Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) |
                Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true,
                _ => false,
            },
            PathSource::Pat => match def {
                Def::StructCtor(_, CtorKind::Const) |
                Def::VariantCtor(_, CtorKind::Const) |
                Def::Const(..) | Def::AssociatedConst(..) => true,
                _ => false,
            },
            PathSource::TupleStruct => match def {
                Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true,
                _ => false,
            },
            PathSource::Struct => match def {
                Def::Struct(..) | Def::Union(..) | Def::Variant(..) |
                Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true,
                _ => false,
            },
            PathSource::TraitItem(ns) => match def {
                Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true,
                Def::AssociatedTy(..) if ns == TypeNS => true,
                _ => false,
            },
            PathSource::ImportPrefix => match def {
                Def::Mod(..) | Def::Enum(..) => true,
                _ => false,
            },
            PathSource::Visibility => match def {
                Def::Mod(..) => true,
                _ => false,
            },
        }
    }

    fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
        __diagnostic_used!(E0404);
        __diagnostic_used!(E0405);
        __diagnostic_used!(E0412);
        __diagnostic_used!(E0422);
        __diagnostic_used!(E0423);
        __diagnostic_used!(E0425);
        __diagnostic_used!(E0531);
        __diagnostic_used!(E0532);
        __diagnostic_used!(E0573);
        __diagnostic_used!(E0574);
        __diagnostic_used!(E0575);
        __diagnostic_used!(E0576);
        __diagnostic_used!(E0577);
        __diagnostic_used!(E0578);
        match (self, has_unexpected_resolution) {
            (PathSource::Trait, true) => "E0404",
            (PathSource::Trait, false) => "E0405",
            (PathSource::Type, true) => "E0573",
            (PathSource::Type, false) => "E0412",
            (PathSource::Struct, true) => "E0574",
            (PathSource::Struct, false) => "E0422",
            (PathSource::Expr(..), true) => "E0423",
            (PathSource::Expr(..), false) => "E0425",
            (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
            (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
            (PathSource::TraitItem(..), true) => "E0575",
            (PathSource::TraitItem(..), false) => "E0576",
            (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577",
            (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578",
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum Namespace {
    TypeNS,
    ValueNS,
    MacroNS,
}

#[derive(Clone, Default, Debug)]
pub struct PerNS<T> {
    value_ns: T,
    type_ns: T,
    macro_ns: Option<T>,
}

impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
    type Output = T;
    fn index(&self, ns: Namespace) -> &T {
        match ns {
            ValueNS => &self.value_ns,
            TypeNS => &self.type_ns,
            MacroNS => self.macro_ns.as_ref().unwrap(),
        }
    }
}

impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
    fn index_mut(&mut self, ns: Namespace) -> &mut T {
        match ns {
            ValueNS => &mut self.value_ns,
            TypeNS => &mut self.type_ns,
            MacroNS => self.macro_ns.as_mut().unwrap(),
        }
    }
}

impl<'a, 'tcx> Visitor<'tcx> for Resolver<'a> {
    fn visit_item(&mut self, item: &'tcx Item) {
        self.resolve_item(item);
    }
    fn visit_arm(&mut self, arm: &'tcx Arm) {
        self.resolve_arm(arm);
    }
    fn visit_block(&mut self, block: &'tcx Block) {
        self.resolve_block(block);
    }
    fn visit_expr(&mut self, expr: &'tcx Expr) {
        self.resolve_expr(expr, None);
    }
    fn visit_local(&mut self, local: &'tcx Local) {
        self.resolve_local(local);
    }
    fn visit_ty(&mut self, ty: &'tcx Ty) {
        if let TyKind::Path(ref qself, ref path) = ty.node {
            self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
        } else if let TyKind::ImplicitSelf = ty.node {
            let self_ty = keywords::SelfType.ident();
            let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.span))
                          .map_or(Def::Err, |d| d.def());
            self.record_def(ty.id, PathResolution::new(def));
        } else if let TyKind::Array(ref element, ref length) = ty.node {
            self.visit_ty(element);
            self.with_constant_rib(|this| {
                this.visit_expr(length);
            });
            return;
        }
        visit::walk_ty(self, ty);
    }
    fn visit_poly_trait_ref(&mut self,
                            tref: &'tcx ast::PolyTraitRef,
                            m: &'tcx ast::TraitBoundModifier) {
        self.smart_resolve_path(tref.trait_ref.ref_id, None,
                                &tref.trait_ref.path, PathSource::Trait);
        visit::walk_poly_trait_ref(self, tref, m);
    }
    fn visit_variant(&mut self,
                     variant: &'tcx ast::Variant,
                     generics: &'tcx Generics,
                     item_id: ast::NodeId) {
        if let Some(ref dis_expr) = variant.node.disr_expr {
            // resolve the discriminator expr as a constant
            self.with_constant_rib(|this| {
                this.visit_expr(dis_expr);
            });
        }

        // `visit::walk_variant` without the discriminant expression.
        self.visit_variant_data(&variant.node.data,
                                variant.node.name,
                                generics,
                                item_id,
                                variant.span);
    }
    fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
        let type_parameters = match foreign_item.node {
            ForeignItemKind::Fn(_, ref generics) => {
                HasTypeParameters(generics, ItemRibKind)
            }
            ForeignItemKind::Static(..) => NoTypeParameters,
        };
        self.with_type_parameter_rib(type_parameters, |this| {
            visit::walk_foreign_item(this, foreign_item);
        });
    }
    fn visit_fn(&mut self,
                function_kind: FnKind<'tcx>,
                declaration: &'tcx FnDecl,
                _: Span,
                node_id: NodeId) {
        let rib_kind = match function_kind {
            FnKind::ItemFn(_, generics, ..) => {
                self.visit_generics(generics);
                ItemRibKind
            }
            FnKind::Method(_, sig, _, _) => {
                self.visit_generics(&sig.generics);
                MethodRibKind(!sig.decl.has_self())
            }
            FnKind::Closure(_) => ClosureRibKind(node_id),
        };

        // Create a value rib for the function.
        self.ribs[ValueNS].push(Rib::new(rib_kind));

        // Create a label rib for the function.
        self.label_ribs.push(Rib::new(rib_kind));

        // Add each argument to the rib.
        let mut bindings_list = FxHashMap();
        for argument in &declaration.inputs {
            self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list);

            self.visit_ty(&argument.ty);

            debug!("(resolving function) recorded argument");
        }
        visit::walk_fn_ret_ty(self, &declaration.output);

        // Resolve the function body.
        match function_kind {
            FnKind::ItemFn(.., body) |
            FnKind::Method(.., body) => {
                self.visit_block(body);
            }
            FnKind::Closure(body) => {
                self.visit_expr(body);
            }
        };

        debug!("(resolving function) leaving function");

        self.label_ribs.pop();
        self.ribs[ValueNS].pop();
    }
    fn visit_generics(&mut self, generics: &'tcx Generics) {
        // For type parameter defaults, we have to ban access
        // to following type parameters, as the Substs can only
        // provide previous type parameters as they're built.
        let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
        default_ban_rib.bindings.extend(generics.ty_params.iter()
            .skip_while(|p| p.default.is_none())
            .map(|p| (Ident::with_empty_ctxt(p.ident.name), Def::Err)));

        for param in &generics.ty_params {
            for bound in &param.bounds {
                self.visit_ty_param_bound(bound);
            }

            if let Some(ref ty) = param.default {
                self.ribs[TypeNS].push(default_ban_rib);
                self.visit_ty(ty);
                default_ban_rib = self.ribs[TypeNS].pop().unwrap();
            }

            // Allow all following defaults to refer to this type parameter.
            default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name));
        }
        for lt in &generics.lifetimes { self.visit_lifetime_def(lt); }
        for p in &generics.where_clause.predicates { self.visit_where_predicate(p); }
    }
}

pub type ErrorMessage = Option<(Span, String)>;

#[derive(Copy, Clone)]
enum TypeParameters<'a, 'b> {
    NoTypeParameters,
    HasTypeParameters(// Type parameters.
                      &'b Generics,

                      // The kind of the rib used for type parameters.
                      RibKind<'a>),
}

// The rib kind controls the translation of local
// definitions (`Def::Local`) to upvars (`Def::Upvar`).
#[derive(Copy, Clone, Debug)]
enum RibKind<'a> {
    // No translation needs to be applied.
    NormalRibKind,

    // We passed through a closure scope at the given node ID.
    // Translate upvars as appropriate.
    ClosureRibKind(NodeId /* func id */),

    // We passed through an impl or trait and are now in one of its
    // methods. Allow references to ty params that impl or trait
    // binds. Disallow any other upvars (including other ty params that are
    // upvars).
    //
    // The boolean value represents the fact that this method is static or not.
    MethodRibKind(bool),

    // We passed through an item scope. Disallow upvars.
    ItemRibKind,

    // We're in a constant item. Can't refer to dynamic stuff.
    ConstantItemRibKind,

    // We passed through a module.
    ModuleRibKind(Module<'a>),

    // We passed through a `macro_rules!` statement
    MacroDefinition(DefId),

    // All bindings in this rib are type parameters that can't be used
    // from the default of a type parameter because they're not declared
    // before said type parameter. Also see the `visit_generics` override.
    ForwardTyParamBanRibKind,
}

/// One local scope.
#[derive(Debug)]
struct Rib<'a> {
    bindings: FxHashMap<Ident, Def>,
    kind: RibKind<'a>,
}

impl<'a> Rib<'a> {
    fn new(kind: RibKind<'a>) -> Rib<'a> {
        Rib {
            bindings: FxHashMap(),
            kind: kind,
        }
    }
}

enum LexicalScopeBinding<'a> {
    Item(&'a NameBinding<'a>),
    Def(Def),
}

impl<'a> LexicalScopeBinding<'a> {
    fn item(self) -> Option<&'a NameBinding<'a>> {
        match self {
            LexicalScopeBinding::Item(binding) => Some(binding),
            _ => None,
        }
    }

    fn def(self) -> Def {
        match self {
            LexicalScopeBinding::Item(binding) => binding.def(),
            LexicalScopeBinding::Def(def) => def,
        }
    }
}

#[derive(Clone)]
enum PathResult<'a> {
    Module(Module<'a>),
    NonModule(PathResolution),
    Indeterminate,
    Failed(String, bool /* is the error from the last segment? */),
}

enum ModuleKind {
    Block(NodeId),
    Def(Def, Name),
}

/// One node in the tree of modules.
pub struct ModuleData<'a> {
    parent: Option<Module<'a>>,
    kind: ModuleKind,

    // The def id of the closest normal module (`mod`) ancestor (including this module).
    normal_ancestor_id: DefId,

    resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>,
    legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, Span, MacroKind)>>,
    macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>,

    // Macro invocations that can expand into items in this module.
    unresolved_invocations: RefCell<FxHashSet<Mark>>,

    no_implicit_prelude: bool,

    glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>,
    globs: RefCell<Vec<&'a ImportDirective<'a>>>,

    // Used to memoize the traits in this module for faster searches through all traits in scope.
    traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,

    // Whether this module is populated. If not populated, any attempt to
    // access the children must be preceded with a
    // `populate_module_if_necessary` call.
    populated: Cell<bool>,
}

pub type Module<'a> = &'a ModuleData<'a>;

impl<'a> ModuleData<'a> {
    fn new(parent: Option<Module<'a>>, kind: ModuleKind, normal_ancestor_id: DefId) -> Self {
        ModuleData {
            parent: parent,
            kind: kind,
            normal_ancestor_id: normal_ancestor_id,
            resolutions: RefCell::new(FxHashMap()),
            legacy_macro_resolutions: RefCell::new(Vec::new()),
            macro_resolutions: RefCell::new(Vec::new()),
            unresolved_invocations: RefCell::new(FxHashSet()),
            no_implicit_prelude: false,
            glob_importers: RefCell::new(Vec::new()),
            globs: RefCell::new((Vec::new())),
            traits: RefCell::new(None),
            populated: Cell::new(normal_ancestor_id.is_local()),
        }
    }

    fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) {
        for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() {
            name_resolution.borrow().binding.map(|binding| f(ident, ns, binding));
        }
    }

    fn def(&self) -> Option<Def> {
        match self.kind {
            ModuleKind::Def(def, _) => Some(def),
            _ => None,
        }
    }

    fn def_id(&self) -> Option<DefId> {
        self.def().as_ref().map(Def::def_id)
    }

    // `self` resolves to the first module ancestor that `is_normal`.
    fn is_normal(&self) -> bool {
        match self.kind {
            ModuleKind::Def(Def::Mod(_), _) => true,
            _ => false,
        }
    }

    fn is_trait(&self) -> bool {
        match self.kind {
            ModuleKind::Def(Def::Trait(_), _) => true,
            _ => false,
        }
    }

    fn is_local(&self) -> bool {
        self.normal_ancestor_id.is_local()
    }

    fn nearest_item_scope(&'a self) -> Module<'a> {
        if self.is_trait() { self.parent.unwrap() } else { self }
    }
}

impl<'a> fmt::Debug for ModuleData<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self.def())
    }
}

// Records a possibly-private value, type, or module definition.
#[derive(Clone, Debug)]
pub struct NameBinding<'a> {
    kind: NameBindingKind<'a>,
    expansion: Mark,
    span: Span,
    vis: ty::Visibility,
}

pub trait ToNameBinding<'a> {
    fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
}

impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
    fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
        self
    }
}

#[derive(Clone, Debug)]
enum NameBindingKind<'a> {
    Def(Def),
    Module(Module<'a>),
    Import {
        binding: &'a NameBinding<'a>,
        directive: &'a ImportDirective<'a>,
        used: Cell<bool>,
        legacy_self_import: bool,
    },
    Ambiguity {
        b1: &'a NameBinding<'a>,
        b2: &'a NameBinding<'a>,
        legacy: bool,
    }
}

struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>);

struct AmbiguityError<'a> {
    span: Span,
    name: Name,
    lexical: bool,
    b1: &'a NameBinding<'a>,
    b2: &'a NameBinding<'a>,
    legacy: bool,
}

impl<'a> NameBinding<'a> {
    fn module(&self) -> Option<Module<'a>> {
        match self.kind {
            NameBindingKind::Module(module) => Some(module),
            NameBindingKind::Import { binding, .. } => binding.module(),
            NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.module(),
            _ => None,
        }
    }

    fn def(&self) -> Def {
        match self.kind {
            NameBindingKind::Def(def) => def,
            NameBindingKind::Module(module) => module.def().unwrap(),
            NameBindingKind::Import { binding, .. } => binding.def(),
            NameBindingKind::Ambiguity { legacy: true, b1, .. } => b1.def(),
            NameBindingKind::Ambiguity { .. } => Def::Err,
        }
    }

    fn def_ignoring_ambiguity(&self) -> Def {
        match self.kind {
            NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(),
            NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(),
            _ => self.def(),
        }
    }

    fn get_macro(&self, resolver: &mut Resolver<'a>) -> Rc<SyntaxExtension> {
        resolver.get_macro(self.def_ignoring_ambiguity())
    }

    // We sometimes need to treat variants as `pub` for backwards compatibility
    fn pseudo_vis(&self) -> ty::Visibility {
        if self.is_variant() { ty::Visibility::Public } else { self.vis }
    }

    fn is_variant(&self) -> bool {
        match self.kind {
            NameBindingKind::Def(Def::Variant(..)) |
            NameBindingKind::Def(Def::VariantCtor(..)) => true,
            _ => false,
        }
    }

    fn is_extern_crate(&self) -> bool {
        match self.kind {
            NameBindingKind::Import {
                directive: &ImportDirective {
                    subclass: ImportDirectiveSubclass::ExternCrate, ..
                }, ..
            } => true,
            _ => false,
        }
    }

    fn is_import(&self) -> bool {
        match self.kind {
            NameBindingKind::Import { .. } => true,
            _ => false,
        }
    }

    fn is_glob_import(&self) -> bool {
        match self.kind {
            NameBindingKind::Import { directive, .. } => directive.is_glob(),
            NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(),
            _ => false,
        }
    }

    fn is_importable(&self) -> bool {
        match self.def() {
            Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false,
            _ => true,
        }
    }
}

/// Interns the names of the primitive types.
struct PrimitiveTypeTable {
    primitive_types: FxHashMap<Name, PrimTy>,
}

impl PrimitiveTypeTable {
    fn new() -> PrimitiveTypeTable {
        let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() };

        table.intern("bool", TyBool);
        table.intern("char", TyChar);
        table.intern("f32", TyFloat(FloatTy::F32));
        table.intern("f64", TyFloat(FloatTy::F64));
        table.intern("isize", TyInt(IntTy::Is));
        table.intern("i8", TyInt(IntTy::I8));
        table.intern("i16", TyInt(IntTy::I16));
        table.intern("i32", TyInt(IntTy::I32));
        table.intern("i64", TyInt(IntTy::I64));
        table.intern("i128", TyInt(IntTy::I128));
        table.intern("str", TyStr);
        table.intern("usize", TyUint(UintTy::Us));
        table.intern("u8", TyUint(UintTy::U8));
        table.intern("u16", TyUint(UintTy::U16));
        table.intern("u32", TyUint(UintTy::U32));
        table.intern("u64", TyUint(UintTy::U64));
        table.intern("u128", TyUint(UintTy::U128));
        table
    }

    fn intern(&mut self, string: &str, primitive_type: PrimTy) {
        self.primitive_types.insert(Symbol::intern(string), primitive_type);
    }
}

/// The main resolver class.
pub struct Resolver<'a> {
    session: &'a Session,

    pub definitions: Definitions,

    graph_root: Module<'a>,

    prelude: Option<Module<'a>>,

    trait_item_map: FxHashMap<(DefId, Name, Namespace), (Def, bool /* has self */)>,

    // Names of fields of an item `DefId` accessible with dot syntax.
    // Used for hints during error reporting.
    field_names: FxHashMap<DefId, Vec<Name>>,

    // All imports known to succeed or fail.
    determined_imports: Vec<&'a ImportDirective<'a>>,

    // All non-determined imports.
    indeterminate_imports: Vec<&'a ImportDirective<'a>>,

    // The module that represents the current item scope.
    current_module: Module<'a>,

    // The current set of local scopes for types and values.
    // FIXME #4948: Reuse ribs to avoid allocation.
    ribs: PerNS<Vec<Rib<'a>>>,

    // The current set of local scopes, for labels.
    label_ribs: Vec<Rib<'a>>,

    // The trait that the current context can refer to.
    current_trait_ref: Option<(DefId, TraitRef)>,

    // The current self type if inside an impl (used for better errors).
    current_self_type: Option<Ty>,

    // The idents for the primitive types.
    primitive_type_table: PrimitiveTypeTable,

    def_map: DefMap,
    pub freevars: FreevarMap,
    freevars_seen: NodeMap<NodeMap<usize>>,
    pub export_map: ExportMap,
    pub trait_map: TraitMap,

    // A map from nodes to anonymous modules.
    // Anonymous modules are pseudo-modules that are implicitly created around items
    // contained within blocks.
    //
    // For example, if we have this:
    //
    //  fn f() {
    //      fn g() {
    //          ...
    //      }
    //  }
    //
    // There will be an anonymous module created around `g` with the ID of the
    // entry block for `f`.
    block_map: NodeMap<Module<'a>>,
    module_map: FxHashMap<DefId, Module<'a>>,
    extern_crate_roots: FxHashMap<(CrateNum, bool /* MacrosOnly? */), Module<'a>>,

    pub make_glob_map: bool,
    // Maps imports to the names of items actually imported (this actually maps
    // all imports, but only glob imports are actually interesting).
    pub glob_map: GlobMap,

    used_imports: FxHashSet<(NodeId, Namespace)>,
    pub maybe_unused_trait_imports: NodeSet,

    privacy_errors: Vec<PrivacyError<'a>>,
    ambiguity_errors: Vec<AmbiguityError<'a>>,
    disallowed_shadowing: Vec<&'a LegacyBinding<'a>>,

    arenas: &'a ResolverArenas<'a>,
    dummy_binding: &'a NameBinding<'a>,
    use_extern_macros: bool, // true if `#![feature(use_extern_macros)]`

    crate_loader: &'a mut CrateLoader,
    macro_names: FxHashSet<Name>,
    builtin_macros: FxHashMap<Name, &'a NameBinding<'a>>,
    lexical_macro_resolutions: Vec<(Name, &'a Cell<LegacyScope<'a>>)>,
    macro_map: FxHashMap<DefId, Rc<SyntaxExtension>>,
    macro_defs: FxHashMap<Mark, DefId>,
    local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>,
    macro_exports: Vec<Export>,
    pub whitelisted_legacy_custom_derives: Vec<Name>,
    pub found_unresolved_macro: bool,

    // Maps the `Mark` of an expansion to its containing module or block.
    invocations: FxHashMap<Mark, &'a InvocationData<'a>>,

    // Avoid duplicated errors for "name already defined".
    name_already_seen: FxHashMap<Name, Span>,

    // If `#![feature(proc_macro)]` is set
    proc_macro_enabled: bool,

    // A set of procedural macros imported by `#[macro_use]` that have already been warned about
    warned_proc_macros: FxHashSet<Name>,

    potentially_unused_imports: Vec<&'a ImportDirective<'a>>,

    // This table maps struct IDs into struct constructor IDs,
    // it's not used during normal resolution, only for better error reporting.
    struct_constructors: DefIdMap<(Def, ty::Visibility)>,
}

pub struct ResolverArenas<'a> {
    modules: arena::TypedArena<ModuleData<'a>>,
    local_modules: RefCell<Vec<Module<'a>>>,
    name_bindings: arena::TypedArena<NameBinding<'a>>,
    import_directives: arena::TypedArena<ImportDirective<'a>>,
    name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>,
    invocation_data: arena::TypedArena<InvocationData<'a>>,
    legacy_bindings: arena::TypedArena<LegacyBinding<'a>>,
}

impl<'a> ResolverArenas<'a> {
    fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> {
        let module = self.modules.alloc(module);
        if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) {
            self.local_modules.borrow_mut().push(module);
        }
        module
    }
    fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> {
        self.local_modules.borrow()
    }
    fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
        self.name_bindings.alloc(name_binding)
    }
    fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>)
                              -> &'a ImportDirective {
        self.import_directives.alloc(import_directive)
    }
    fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
        self.name_resolutions.alloc(Default::default())
    }
    fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>)
                             -> &'a InvocationData<'a> {
        self.invocation_data.alloc(expansion_data)
    }
    fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> {
        self.legacy_bindings.alloc(binding)
    }
}

impl<'a, 'b: 'a> ty::DefIdTree for &'a Resolver<'b> {
    fn parent(self, id: DefId) -> Option<DefId> {
        match id.krate {
            LOCAL_CRATE => self.definitions.def_key(id.index).parent,
            _ => self.session.cstore.def_key(id).parent,
        }.map(|index| DefId { index: index, ..id })
    }
}

impl<'a> hir::lowering::Resolver for Resolver<'a> {
    fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) {
        let namespace = if is_value { ValueNS } else { TypeNS };
        let hir::Path { ref segments, span, ref mut def } = *path;
        let path: Vec<_> = segments.iter().map(|seg| Ident::with_empty_ctxt(seg.name)).collect();
        match self.resolve_path(&path, Some(namespace), Some(span)) {
            PathResult::Module(module) => *def = module.def().unwrap(),
            PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 =>
                *def = path_res.base_def(),
            PathResult::NonModule(..) => match self.resolve_path(&path, None, Some(span)) {
                PathResult::Failed(msg, _) => {
                    resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
                }
                _ => {}
            },
            PathResult::Indeterminate => unreachable!(),
            PathResult::Failed(msg, _) => {
                resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
            }
        }
    }

    fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> {
        self.def_map.get(&id).cloned()
    }

    fn definitions(&mut self) -> &mut Definitions {
        &mut self.definitions
    }
}

impl<'a> Resolver<'a> {
    pub fn new(session: &'a Session,
               krate: &Crate,
               make_glob_map: MakeGlobMap,
               crate_loader: &'a mut CrateLoader,
               arenas: &'a ResolverArenas<'a>)
               -> Resolver<'a> {
        let root_def_id = DefId::local(CRATE_DEF_INDEX);
        let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name());
        let graph_root = arenas.alloc_module(ModuleData {
            no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"),
            ..ModuleData::new(None, root_module_kind, root_def_id)
        });
        let mut module_map = FxHashMap();
        module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root);

        let mut definitions = Definitions::new();
        DefCollector::new(&mut definitions).collect_root();

        let mut invocations = FxHashMap();
        invocations.insert(Mark::root(),
                           arenas.alloc_invocation_data(InvocationData::root(graph_root)));

        let features = session.features.borrow();

        let mut macro_defs = FxHashMap();
        macro_defs.insert(Mark::root(), root_def_id);

        Resolver {
            session: session,

            definitions: definitions,

            // The outermost module has def ID 0; this is not reflected in the
            // AST.
            graph_root: graph_root,
            prelude: None,

            trait_item_map: FxHashMap(),
            field_names: FxHashMap(),

            determined_imports: Vec::new(),
            indeterminate_imports: Vec::new(),

            current_module: graph_root,
            ribs: PerNS {
                value_ns: vec![Rib::new(ModuleRibKind(graph_root))],
                type_ns: vec![Rib::new(ModuleRibKind(graph_root))],
                macro_ns: Some(vec![Rib::new(ModuleRibKind(graph_root))]),
            },
            label_ribs: Vec::new(),

            current_trait_ref: None,
            current_self_type: None,

            primitive_type_table: PrimitiveTypeTable::new(),

            def_map: NodeMap(),
            freevars: NodeMap(),
            freevars_seen: NodeMap(),
            export_map: NodeMap(),
            trait_map: NodeMap(),
            module_map: module_map,
            block_map: NodeMap(),
            extern_crate_roots: FxHashMap(),

            make_glob_map: make_glob_map == MakeGlobMap::Yes,
            glob_map: NodeMap(),

            used_imports: FxHashSet(),
            maybe_unused_trait_imports: NodeSet(),

            privacy_errors: Vec::new(),
            ambiguity_errors: Vec::new(),
            disallowed_shadowing: Vec::new(),

            arenas: arenas,
            dummy_binding: arenas.alloc_name_binding(NameBinding {
                kind: NameBindingKind::Def(Def::Err),
                expansion: Mark::root(),
                span: DUMMY_SP,
                vis: ty::Visibility::Public,
            }),

            // `#![feature(proc_macro)]` implies `#[feature(extern_macros)]`
            use_extern_macros: features.use_extern_macros || features.proc_macro,

            crate_loader: crate_loader,
            macro_names: FxHashSet(),
            builtin_macros: FxHashMap(),
            lexical_macro_resolutions: Vec::new(),
            macro_map: FxHashMap(),
            macro_exports: Vec::new(),
            invocations: invocations,
            macro_defs: macro_defs,
            local_macro_def_scopes: FxHashMap(),
            name_already_seen: FxHashMap(),
            whitelisted_legacy_custom_derives: Vec::new(),
            proc_macro_enabled: features.proc_macro,
            warned_proc_macros: FxHashSet(),
            potentially_unused_imports: Vec::new(),
            struct_constructors: DefIdMap(),
            found_unresolved_macro: false,
        }
    }

    pub fn arenas() -> ResolverArenas<'a> {
        ResolverArenas {
            modules: arena::TypedArena::new(),
            local_modules: RefCell::new(Vec::new()),
            name_bindings: arena::TypedArena::new(),
            import_directives: arena::TypedArena::new(),
            name_resolutions: arena::TypedArena::new(),
            invocation_data: arena::TypedArena::new(),
            legacy_bindings: arena::TypedArena::new(),
        }
    }

    fn per_ns<T, F: FnMut(&mut Self, Namespace) -> T>(&mut self, mut f: F) -> PerNS<T> {
        PerNS {
            type_ns: f(self, TypeNS),
            value_ns: f(self, ValueNS),
            macro_ns: match self.use_extern_macros {
                true => Some(f(self, MacroNS)),
                false => None,
            },
        }
    }

    /// Entry point to crate resolution.
    pub fn resolve_crate(&mut self, krate: &Crate) {
        ImportResolver { resolver: self }.finalize_imports();
        self.current_module = self.graph_root;
        self.finalize_current_module_macro_resolutions();
        visit::walk_crate(self, krate);

        check_unused::check_crate(self, krate);
        self.report_errors();
        self.crate_loader.postprocess(krate);
    }

    fn new_module(&self, parent: Module<'a>, kind: ModuleKind, normal_ancestor_id: DefId)
                  -> Module<'a> {
        self.arenas.alloc_module(ModuleData::new(Some(parent), kind, normal_ancestor_id))
    }

    fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span)
                  -> bool /* true if an error was reported */ {
        match binding.kind {
            NameBindingKind::Import { directive, binding, ref used, legacy_self_import }
                    if !used.get() => {
                used.set(true);
                directive.used.set(true);
                if legacy_self_import {
                    self.warn_legacy_self_import(directive);
                    return false;
                }
                self.used_imports.insert((directive.id, ns));
                self.add_to_glob_map(directive.id, ident);
                self.record_use(ident, ns, binding, span)
            }
            NameBindingKind::Import { .. } => false,
            NameBindingKind::Ambiguity { b1, b2, legacy } => {
                self.ambiguity_errors.push(AmbiguityError {
                    span: span, name: ident.name, lexical: false, b1: b1, b2: b2, legacy: legacy,
                });
                if legacy {
                    self.record_use(ident, ns, b1, span);
                }
                !legacy
            }
            _ => false
        }
    }

    fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) {
        if self.make_glob_map {
            self.glob_map.entry(id).or_insert_with(FxHashSet).insert(ident.name);
        }
    }

    /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope.
    /// More specifically, we proceed up the hierarchy of scopes and return the binding for
    /// `ident` in the first scope that defines it (or None if no scopes define it).
    ///
    /// A block's items are above its local variables in the scope hierarchy, regardless of where
    /// the items are defined in the block. For example,
    /// ```rust
    /// fn f() {
    ///    g(); // Since there are no local variables in scope yet, this resolves to the item.
    ///    let g = || {};
    ///    fn g() {}
    ///    g(); // This resolves to the local variable `g` since it shadows the item.
    /// }
    /// ```
    ///
    /// Invariant: This must only be called during main resolution, not during
    /// import resolution.
    fn resolve_ident_in_lexical_scope(&mut self,
                                      mut ident: Ident,
                                      ns: Namespace,
                                      record_used: Option<Span>)
                                      -> Option<LexicalScopeBinding<'a>> {
        if ns == TypeNS {
            ident = ident.unhygienize();
        }

        // Walk backwards up the ribs in scope.
        for i in (0 .. self.ribs[ns].len()).rev() {
            if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() {
                // The ident resolves to a type parameter or local variable.
                return Some(LexicalScopeBinding::Def(
                    self.adjust_local_def(ns, i, def, record_used)
                ));
            }

            if let ModuleRibKind(module) = self.ribs[ns][i].kind {
                let item = self.resolve_ident_in_module(module, ident, ns, false, record_used);
                if let Ok(binding) = item {
                    // The ident resolves to an item.
                    return Some(LexicalScopeBinding::Item(binding));
                }

                if let ModuleKind::Block(..) = module.kind { // We can see through blocks
                } else if !module.no_implicit_prelude {
                    return self.prelude.and_then(|prelude| {
                        self.resolve_ident_in_module(prelude, ident, ns, false, None).ok()
                    }).map(LexicalScopeBinding::Item)
                } else {
                    return None;
                }
            }

            if let MacroDefinition(def) = self.ribs[ns][i].kind {
                // If an invocation of this macro created `ident`, give up on `ident`
                // and switch to `ident`'s source from the macro definition.
                let ctxt_data = ident.ctxt.data();
                if def == self.macro_defs[&ctxt_data.outer_mark] {
                    ident.ctxt = ctxt_data.prev_ctxt;
                }
            }
        }

        None
    }

    fn resolve_crate_var(&mut self, crate_var_ctxt: SyntaxContext) -> Module<'a> {
        let mut ctxt_data = crate_var_ctxt.data();
        while ctxt_data.prev_ctxt != SyntaxContext::empty() {
            ctxt_data = ctxt_data.prev_ctxt.data();
        }
        let module = self.macro_def_scope(ctxt_data.outer_mark);
        if module.is_local() { self.graph_root } else { module }
    }

    // AST resolution
    //
    // We maintain a list of value ribs and type ribs.
    //
    // Simultaneously, we keep track of the current position in the module
    // graph in the `current_module` pointer. When we go to resolve a name in
    // the value or type namespaces, we first look through all the ribs and
    // then query the module graph. When we resolve a name in the module
    // namespace, we can skip all the ribs (since nested modules are not
    // allowed within blocks in Rust) and jump straight to the current module
    // graph node.
    //
    // Named implementations are handled separately. When we find a method
    // call, we consult the module node to find all of the implementations in
    // scope. This information is lazily cached in the module node. We then
    // generate a fake "implementation scope" containing all the
    // implementations thus found, for compatibility with old resolve pass.

    fn with_scope<F>(&mut self, id: NodeId, f: F)
        where F: FnOnce(&mut Resolver)
    {
        let id = self.definitions.local_def_id(id);
        let module = self.module_map.get(&id).cloned(); // clones a reference
        if let Some(module) = module {
            // Move down in the graph.
            let orig_module = replace(&mut self.current_module, module);
            self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
            self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));

            self.finalize_current_module_macro_resolutions();
            f(self);

            self.current_module = orig_module;
            self.ribs[ValueNS].pop();
            self.ribs[TypeNS].pop();
        } else {
            f(self);
        }
    }

    /// Searches the current set of local scopes for labels.
    /// Stops after meeting a closure.
    fn search_label(&self, mut ident: Ident) -> Option<Def> {
        for rib in self.label_ribs.iter().rev() {
            match rib.kind {
                NormalRibKind => {
                    // Continue
                }
                MacroDefinition(def) => {
                    // If an invocation of this macro created `ident`, give up on `ident`
                    // and switch to `ident`'s source from the macro definition.
                    let ctxt_data = ident.ctxt.data();
                    if def == self.macro_defs[&ctxt_data.outer_mark] {
                        ident.ctxt = ctxt_data.prev_ctxt;
                    }
                }
                _ => {
                    // Do not resolve labels across function boundary
                    return None;
                }
            }
            let result = rib.bindings.get(&ident).cloned();
            if result.is_some() {
                return result;
            }
        }
        None
    }

    fn resolve_item(&mut self, item: &Item) {
        let name = item.ident.name;

        debug!("(resolving item) resolving {}", name);

        self.check_proc_macro_attrs(&item.attrs);

        match item.node {
            ItemKind::Enum(_, ref generics) |
            ItemKind::Ty(_, ref generics) |
            ItemKind::Struct(_, ref generics) |
            ItemKind::Union(_, ref generics) |
            ItemKind::Fn(.., ref generics, _) => {
                self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind),
                                             |this| visit::walk_item(this, item));
            }

            ItemKind::DefaultImpl(_, ref trait_ref) => {
                self.with_optional_trait_ref(Some(trait_ref), |this, _| {
                    // Resolve type arguments in trait path
                    visit::walk_trait_ref(this, trait_ref);
                });
            }
            ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
                self.resolve_implementation(generics,
                                            opt_trait_ref,
                                            &self_type,
                                            item.id,
                                            impl_items),

            ItemKind::Trait(_, ref generics, ref bounds, ref trait_items) => {
                // Create a new rib for the trait-wide type parameters.
                self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
                    let local_def_id = this.definitions.local_def_id(item.id);
                    this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| {
                        this.visit_generics(generics);
                        walk_list!(this, visit_ty_param_bound, bounds);

                        for trait_item in trait_items {
                            this.check_proc_macro_attrs(&trait_item.attrs);

                            match trait_item.node {
                                TraitItemKind::Const(_, ref default) => {
                                    // Only impose the restrictions of
                                    // ConstRibKind if there's an actual constant
                                    // expression in a provided default.
                                    if default.is_some() {
                                        this.with_constant_rib(|this| {
                                            visit::walk_trait_item(this, trait_item)
                                        });
                                    } else {
                                        visit::walk_trait_item(this, trait_item)
                                    }
                                }
                                TraitItemKind::Method(ref sig, _) => {
                                    let type_parameters =
                                        HasTypeParameters(&sig.generics,
                                                          MethodRibKind(!sig.decl.has_self()));
                                    this.with_type_parameter_rib(type_parameters, |this| {
                                        visit::walk_trait_item(this, trait_item)
                                    });
                                }
                                TraitItemKind::Type(..) => {
                                    this.with_type_parameter_rib(NoTypeParameters, |this| {
                                        visit::walk_trait_item(this, trait_item)
                                    });
                                }
                                TraitItemKind::Macro(_) => panic!("unexpanded macro in resolve!"),
                            };
                        }
                    });
                });
            }

            ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
                self.with_scope(item.id, |this| {
                    visit::walk_item(this, item);
                });
            }

            ItemKind::Const(..) | ItemKind::Static(..) => {
                self.with_constant_rib(|this| {
                    visit::walk_item(this, item);
                });
            }

            ItemKind::Use(ref view_path) => {
                match view_path.node {
                    ast::ViewPathList(ref prefix, ref items) if items.is_empty() => {
                        // Resolve prefix of an import with empty braces (issue #28388).
                        self.smart_resolve_path(item.id, None, prefix, PathSource::ImportPrefix);
                    }
                    _ => {}
                }
            }

            ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) => {
                // do nothing, these are just around to be encoded
            }

            ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
        }
    }

    fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F)
        where F: FnOnce(&mut Resolver)
    {
        match type_parameters {
            HasTypeParameters(generics, rib_kind) => {
                let mut function_type_rib = Rib::new(rib_kind);
                let mut seen_bindings = FxHashMap();
                for type_parameter in &generics.ty_params {
                    let name = type_parameter.ident.name;
                    debug!("with_type_parameter_rib: {}", type_parameter.id);

                    if seen_bindings.contains_key(&name) {
                        let span = seen_bindings.get(&name).unwrap();
                        resolve_error(self,
                                      type_parameter.span,
                                      ResolutionError::NameAlreadyUsedInTypeParameterList(name,
                                                                                          span));
                    }
                    seen_bindings.entry(name).or_insert(type_parameter.span);

                    // plain insert (no renaming)
                    let def_id = self.definitions.local_def_id(type_parameter.id);
                    let def = Def::TyParam(def_id);
                    function_type_rib.bindings.insert(Ident::with_empty_ctxt(name), def);
                    self.record_def(type_parameter.id, PathResolution::new(def));
                }
                self.ribs[TypeNS].push(function_type_rib);
            }

            NoTypeParameters => {
                // Nothing to do.
            }
        }

        f(self);

        if let HasTypeParameters(..) = type_parameters {
            self.ribs[TypeNS].pop();
        }
    }

    fn with_label_rib<F>(&mut self, f: F)
        where F: FnOnce(&mut Resolver)
    {
        self.label_ribs.push(Rib::new(NormalRibKind));
        f(self);
        self.label_ribs.pop();
    }

    fn with_constant_rib<F>(&mut self, f: F)
        where F: FnOnce(&mut Resolver)
    {
        self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind));
        self.ribs[TypeNS].push(Rib::new(ConstantItemRibKind));
        f(self);
        self.ribs[TypeNS].pop();
        self.ribs[ValueNS].pop();
    }

    fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
        where F: FnOnce(&mut Resolver) -> T
    {
        // Handle nested impls (inside fn bodies)
        let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
        let result = f(self);
        self.current_self_type = previous_value;
        result
    }

    fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
        where F: FnOnce(&mut Resolver, Option<DefId>) -> T
    {
        let mut new_val = None;
        let mut new_id = None;
        if let Some(trait_ref) = opt_trait_ref {
            let def = self.smart_resolve_path(trait_ref.ref_id, None,
                                              &trait_ref.path, PathSource::Trait).base_def();
            if def != Def::Err {
                new_val = Some((def.def_id(), trait_ref.clone()));
                new_id = Some(def.def_id());
            }
        }
        let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
        let result = f(self, new_id);
        self.current_trait_ref = original_trait_ref;
        result
    }

    fn with_self_rib<F>(&mut self, self_def: Def, f: F)
        where F: FnOnce(&mut Resolver)
    {
        let mut self_type_rib = Rib::new(NormalRibKind);

        // plain insert (no renaming, types are not currently hygienic....)
        self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def);
        self.ribs[TypeNS].push(self_type_rib);
        f(self);
        self.ribs[TypeNS].pop();
    }

    fn resolve_implementation(&mut self,
                              generics: &Generics,
                              opt_trait_reference: &Option<TraitRef>,
                              self_type: &Ty,
                              item_id: NodeId,
                              impl_items: &[ImplItem]) {
        // If applicable, create a rib for the type parameters.
        self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| {
            // Dummy self type for better errors if `Self` is used in the trait path.
            this.with_self_rib(Def::SelfTy(None, None), |this| {
                // Resolve the trait reference, if necessary.
                this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
                    let item_def_id = this.definitions.local_def_id(item_id);
                    this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| {
                        if let Some(trait_ref) = opt_trait_reference.as_ref() {
                            // Resolve type arguments in trait path
                            visit::walk_trait_ref(this, trait_ref);
                        }
                        // Resolve the self type.
                        this.visit_ty(self_type);
                        // Resolve the type parameters.
                        this.visit_generics(generics);
                        this.with_current_self_type(self_type, |this| {
                            for impl_item in impl_items {
                                this.check_proc_macro_attrs(&impl_item.attrs);
                                this.resolve_visibility(&impl_item.vis);
                                match impl_item.node {
                                    ImplItemKind::Const(..) => {
                                        // If this is a trait impl, ensure the const
                                        // exists in trait
                                        this.check_trait_item(impl_item.ident.name,
                                                            ValueNS,
                                                            impl_item.span,
                                            |n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
                                        visit::walk_impl_item(this, impl_item);
                                    }
                                    ImplItemKind::Method(ref sig, _) => {
                                        // If this is a trait impl, ensure the method
                                        // exists in trait
                                        this.check_trait_item(impl_item.ident.name,
                                                            ValueNS,
                                                            impl_item.span,
                                            |n, s| ResolutionError::MethodNotMemberOfTrait(n, s));

                                        // We also need a new scope for the method-
                                        // specific type parameters.
                                        let type_parameters =
                                            HasTypeParameters(&sig.generics,
                                                            MethodRibKind(!sig.decl.has_self()));
                                        this.with_type_parameter_rib(type_parameters, |this| {
                                            visit::walk_impl_item(this, impl_item);
                                        });
                                    }
                                    ImplItemKind::Type(ref ty) => {
                                        // If this is a trait impl, ensure the type
                                        // exists in trait
                                        this.check_trait_item(impl_item.ident.name,
                                                            TypeNS,
                                                            impl_item.span,
                                            |n, s| ResolutionError::TypeNotMemberOfTrait(n, s));

                                        this.visit_ty(ty);
                                    }
                                    ImplItemKind::Macro(_) =>
                                        panic!("unexpanded macro in resolve!"),
                                }
                            }
                        });
                    });
                });
            });
        });
    }

    fn check_trait_item<F>(&self, name: Name, ns: Namespace, span: Span, err: F)
        where F: FnOnce(Name, &str) -> ResolutionError
    {
        // If there is a TraitRef in scope for an impl, then the method must be in the
        // trait.
        if let Some((did, ref trait_ref)) = self.current_trait_ref {
            if !self.trait_item_map.contains_key(&(did, name, ns)) {
                let path_str = path_names_to_string(&trait_ref.path);
                resolve_error(self, span, err(name, &path_str));
            }
        }
    }

    fn resolve_local(&mut self, local: &Local) {
        // Resolve the type.
        walk_list!(self, visit_ty, &local.ty);

        // Resolve the initializer.
        walk_list!(self, visit_expr, &local.init);

        // Resolve the pattern.
        self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap());
    }

    // build a map from pattern identifiers to binding-info's.
    // this is done hygienically. This could arise for a macro
    // that expands into an or-pattern where one 'x' was from the
    // user and one 'x' came from the macro.
    fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
        let mut binding_map = FxHashMap();

        pat.walk(&mut |pat| {
            if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node {
                if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) {
                    Some(Def::Local(..)) => true,
                    _ => false,
                } {
                    let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode };
                    binding_map.insert(ident.node, binding_info);
                }
            }
            true
        });

        binding_map
    }

    // check that all of the arms in an or-pattern have exactly the
    // same set of bindings, with the same binding modes for each.
    fn check_consistent_bindings(&mut self, arm: &Arm) {
        if arm.pats.is_empty() {
            return;
        }

        let mut missing_vars = FxHashMap();
        let mut inconsistent_vars = FxHashMap();
        for (i, p) in arm.pats.iter().enumerate() {
            let map_i = self.binding_mode_map(&p);

            for (j, q) in arm.pats.iter().enumerate() {
                if i == j {
                    continue;
                }

                let map_j = self.binding_mode_map(&q);
                for (&key, &binding_i) in &map_i {
                    if map_j.len() == 0 {                   // Account for missing bindings when
                        let binding_error = missing_vars    // map_j has none.
                            .entry(key.name)
                            .or_insert(BindingError {
                                name: key.name,
                                origin: BTreeSet::new(),
                                target: BTreeSet::new(),
                            });
                        binding_error.origin.insert(binding_i.span);
                        binding_error.target.insert(q.span);
                    }
                    for (&key_j, &binding_j) in &map_j {
                        match map_i.get(&key_j) {
                            None => {  // missing binding
                                let binding_error = missing_vars
                                    .entry(key_j.name)
                                    .or_insert(BindingError {
                                        name: key_j.name,
                                        origin: BTreeSet::new(),
                                        target: BTreeSet::new(),
                                    });
                                binding_error.origin.insert(binding_j.span);
                                binding_error.target.insert(p.span);
                            }
                            Some(binding_i) => {  // check consistent binding
                                if binding_i.binding_mode != binding_j.binding_mode {
                                    inconsistent_vars
                                        .entry(key.name)
                                        .or_insert((binding_j.span, binding_i.span));
                                }
                            }
                        }
                    }
                }
            }
        }
        let mut missing_vars = missing_vars.iter().collect::<Vec<_>>();
        missing_vars.sort();
        for (_, v) in missing_vars {
            resolve_error(self,
                          *v.origin.iter().next().unwrap(),
                          ResolutionError::VariableNotBoundInPattern(v));
        }
        let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
        inconsistent_vars.sort();
        for (name, v) in inconsistent_vars {
            resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
        }
    }

    fn resolve_arm(&mut self, arm: &Arm) {
        self.ribs[ValueNS].push(Rib::new(NormalRibKind));

        let mut bindings_list = FxHashMap();
        for pattern in &arm.pats {
            self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list);
        }

        // This has to happen *after* we determine which
        // pat_idents are variants
        self.check_consistent_bindings(arm);

        walk_list!(self, visit_expr, &arm.guard);
        self.visit_expr(&arm.body);

        self.ribs[ValueNS].pop();
    }

    fn resolve_block(&mut self, block: &Block) {
        debug!("(resolving block) entering block");
        // Move down in the graph, if there's an anonymous module rooted here.
        let orig_module = self.current_module;
        let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference

        let mut num_macro_definition_ribs = 0;
        if let Some(anonymous_module) = anonymous_module {
            debug!("(resolving block) found anonymous module, moving down");
            self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
            self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
            self.current_module = anonymous_module;
            self.finalize_current_module_macro_resolutions();
        } else {
            self.ribs[ValueNS].push(Rib::new(NormalRibKind));
        }

        // Descend into the block.
        for stmt in &block.stmts {
            if let ast::StmtKind::Item(ref item) = stmt.node {
                if let ast::ItemKind::MacroDef(..) = item.node {
                    num_macro_definition_ribs += 1;
                    let def = self.definitions.local_def_id(item.id);
                    self.ribs[ValueNS].push(Rib::new(MacroDefinition(def)));
                    self.label_ribs.push(Rib::new(MacroDefinition(def)));
                }
            }

            self.visit_stmt(stmt);
        }

        // Move back up.
        self.current_module = orig_module;
        for _ in 0 .. num_macro_definition_ribs {
            self.ribs[ValueNS].pop();
            self.label_ribs.pop();
        }
        self.ribs[ValueNS].pop();
        if let Some(_) = anonymous_module {
            self.ribs[TypeNS].pop();
        }
        debug!("(resolving block) leaving block");
    }

    fn fresh_binding(&mut self,
                     ident: &SpannedIdent,
                     pat_id: NodeId,
                     outer_pat_id: NodeId,
                     pat_src: PatternSource,
                     bindings: &mut FxHashMap<Ident, NodeId>)
                     -> PathResolution {
        // Add the binding to the local ribs, if it
        // doesn't already exist in the bindings map. (We
        // must not add it if it's in the bindings map
        // because that breaks the assumptions later
        // passes make about or-patterns.)
        let mut def = Def::Local(self.definitions.local_def_id(pat_id));
        match bindings.get(&ident.node).cloned() {
            Some(id) if id == outer_pat_id => {
                // `Variant(a, a)`, error
                resolve_error(
                    self,
                    ident.span,
                    ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
                        &ident.node.name.as_str())
                );
            }
            Some(..) if pat_src == PatternSource::FnParam => {
                // `fn f(a: u8, a: u8)`, error
                resolve_error(
                    self,
                    ident.span,
                    ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
                        &ident.node.name.as_str())
                );
            }
            Some(..) if pat_src == PatternSource::Match => {
                // `Variant1(a) | Variant2(a)`, ok
                // Reuse definition from the first `a`.
                def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident.node];
            }
            Some(..) => {
                span_bug!(ident.span, "two bindings with the same name from \
                                       unexpected pattern source {:?}", pat_src);
            }
            None => {
                // A completely fresh binding, add to the lists if it's valid.
                if ident.node.name != keywords::Invalid.name() {
                    bindings.insert(ident.node, outer_pat_id);
                    self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident.node, def);
                }
            }
        }

        PathResolution::new(def)
    }

    fn resolve_pattern(&mut self,
                       pat: &Pat,
                       pat_src: PatternSource,
                       // Maps idents to the node ID for the
                       // outermost pattern that binds them.
                       bindings: &mut FxHashMap<Ident, NodeId>) {
        // Visit all direct subpatterns of this pattern.
        let outer_pat_id = pat.id;
        pat.walk(&mut |pat| {
            match pat.node {
                PatKind::Ident(bmode, ref ident, ref opt_pat) => {
                    // First try to resolve the identifier as some existing
                    // entity, then fall back to a fresh binding.
                    let binding = self.resolve_ident_in_lexical_scope(ident.node, ValueNS, None)
                                      .and_then(LexicalScopeBinding::item);
                    let resolution = binding.map(NameBinding::def).and_then(|def| {
                        let always_binding = !pat_src.is_refutable() || opt_pat.is_some() ||
                                             bmode != BindingMode::ByValue(Mutability::Immutable);
                        match def {
                            Def::StructCtor(_, CtorKind::Const) |
                            Def::VariantCtor(_, CtorKind::Const) |
                            Def::Const(..) if !always_binding => {
                                // A unit struct/variant or constant pattern.
                                self.record_use(ident.node, ValueNS, binding.unwrap(), ident.span);
                                Some(PathResolution::new(def))
                            }
                            Def::StructCtor(..) | Def::VariantCtor(..) |
                            Def::Const(..) | Def::Static(..) => {
                                // A fresh binding that shadows something unacceptable.
                                resolve_error(
                                    self,
                                    ident.span,
                                    ResolutionError::BindingShadowsSomethingUnacceptable(
                                        pat_src.descr(), ident.node.name, binding.unwrap())
                                );
                                None
                            }
                            Def::Local(..) | Def::Upvar(..) | Def::Fn(..) | Def::Err => {
                                // These entities are explicitly allowed
                                // to be shadowed by fresh bindings.
                                None
                            }
                            def => {
                                span_bug!(ident.span, "unexpected definition for an \
                                                       identifier in pattern: {:?}", def);
                            }
                        }
                    }).unwrap_or_else(|| {
                        self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings)
                    });

                    self.record_def(pat.id, resolution);
                }

                PatKind::TupleStruct(ref path, ..) => {
                    self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
                }

                PatKind::Path(ref qself, ref path) => {
                    self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
                }

                PatKind::Struct(ref path, ..) => {
                    self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
                }

                _ => {}
            }
            true
        });

        visit::walk_pat(self, pat);
    }

    // High-level and context dependent path resolution routine.
    // Resolves the path and records the resolution into definition map.
    // If resolution fails tries several techniques to find likely
    // resolution candidates, suggest imports or other help, and report
    // errors in user friendly way.
    fn smart_resolve_path(&mut self,
                          id: NodeId,
                          qself: Option<&QSelf>,
                          path: &Path,
                          source: PathSource)
                          -> PathResolution {
        let segments = &path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>();
        let ident_span = path.segments.last().map_or(path.span, |seg| seg.span);
        self.smart_resolve_path_fragment(id, qself, segments, path.span, ident_span, source)
    }

    fn smart_resolve_path_fragment(&mut self,
                                   id: NodeId,
                                   qself: Option<&QSelf>,
                                   path: &[Ident],
                                   span: Span,
                                   ident_span: Span,
                                   source: PathSource)
                                   -> PathResolution {
        let ns = source.namespace();
        let is_expected = &|def| source.is_expected(def);

        // Base error is amended with one short label and possibly some longer helps/notes.
        let report_errors = |this: &mut Self, def: Option<Def>| {
            // Make the base error.
            let expected = source.descr_expected();
            let path_str = names_to_string(path);
            let code = source.error_code(def.is_some());
            let (base_msg, fallback_label, base_span) = if let Some(def) = def {
                (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str),
                 format!("not a {}", expected), span)
            } else {
                let item_str = path[path.len() - 1];
                let (mod_prefix, mod_str) = if path.len() == 1 {
                    (format!(""), format!("this scope"))
                } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() {
                    (format!(""), format!("the crate root"))
                } else {
                    let mod_path = &path[..path.len() - 1];
                    let mod_prefix = match this.resolve_path(mod_path, Some(TypeNS), None) {
                        PathResult::Module(module) => module.def(),
                        _ => None,
                    }.map_or(format!(""), |def| format!("{} ", def.kind_name()));
                    (mod_prefix, format!("`{}`", names_to_string(mod_path)))
                };
                (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str),
                 format!("not found in {}", mod_str), ident_span)
            };
            let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code);

            // Emit special messages for unresolved `Self` and `self`.
            if is_self_type(path, ns) {
                __diagnostic_used!(E0411);
                err.code("E0411".into());
                err.span_label(span, &format!("`Self` is only available in traits and impls"));
                return err;
            }
            if is_self_value(path, ns) {
                __diagnostic_used!(E0424);
                err.code("E0424".into());
                err.span_label(span, &format!("`self` value is only available in \
                                               methods with `self` parameter"));
                return err;
            }

            // Try to lookup the name in more relaxed fashion for better error reporting.
            let name = path.last().unwrap().name;
            let candidates = this.lookup_import_candidates(name, ns, is_expected);
            if !candidates.is_empty() {
                // Report import candidates as help and proceed searching for labels.
                show_candidates(&mut err, &candidates, def.is_some());
            }
            if path.len() == 1 && this.self_type_is_available() {
                if let Some(candidate) = this.lookup_assoc_candidate(name, ns, is_expected) {
                    let self_is_available = this.self_value_is_available(path[0].ctxt);
                    match candidate {
                        AssocSuggestion::Field => {
                            err.span_label(span, &format!("did you mean `self.{}`?", path_str));
                            if !self_is_available {
                                err.span_label(span, &format!("`self` value is only available in \
                                                               methods with `self` parameter"));
                            }
                        }
                        AssocSuggestion::MethodWithSelf if self_is_available => {
                            err.span_label(span, &format!("did you mean `self.{}(...)`?",
                                                           path_str));
                        }
                        AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => {
                            err.span_label(span, &format!("did you mean `Self::{}`?", path_str));
                        }
                    }
                    return err;
                }
            }

            // Try context dependent help if relaxed lookup didn't work.
            if let Some(def) = def {
                match (def, source) {
                    (Def::Macro(..), _) => {
                        err.span_label(span, &format!("did you mean `{}!(...)`?", path_str));
                        return err;
                    }
                    (Def::TyAlias(..), PathSource::Trait) => {
                        err.span_label(span, &format!("type aliases cannot be used for traits"));
                        return err;
                    }
                    (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node {
                        ExprKind::Field(_, ident) => {
                            err.span_label(parent.span, &format!("did you mean `{}::{}`?",
                                                                 path_str, ident.node));
                            return err;
                        }
                        ExprKind::MethodCall(ident, ..) => {
                            err.span_label(parent.span, &format!("did you mean `{}::{}(...)`?",
                                                                 path_str, ident.node));
                            return err;
                        }
                        _ => {}
                    },
                    _ if ns == ValueNS && is_struct_like(def) => {
                        if let Def::Struct(def_id) = def {
                            if let Some((ctor_def, ctor_vis))
                                    = this.struct_constructors.get(&def_id).cloned() {
                                if is_expected(ctor_def) && !this.is_accessible(ctor_vis) {
                                    err.span_label(span, &format!("constructor is not visible \
                                                                   here due to private fields"));
                                }
                            }
                        }
                        err.span_label(span, &format!("did you mean `{} {{ /* fields */ }}`?",
                                                       path_str));
                        return err;
                    }
                    _ => {}
                }
            }

            // Try Levenshtein if nothing else worked.
            if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected) {
                err.span_label(ident_span, &format!("did you mean `{}`?", candidate));
                return err;
            }

            // Fallback label.
            err.span_label(base_span, &fallback_label);
            err
        };
        let report_errors = |this: &mut Self, def: Option<Def>| {
            report_errors(this, def).emit();
            err_path_resolution()
        };

        let resolution = match self.resolve_qpath_anywhere(id, qself, path, ns, span,
                                                           source.defer_to_typeck(),
                                                           source.global_by_default()) {
            Some(resolution) if resolution.unresolved_segments() == 0 => {
                if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err {
                    resolution
                } else {
                    // Add a temporary hack to smooth the transition to new struct ctor
                    // visibility rules. See #38932 for more details.
                    let mut res = None;
                    if let Def::Struct(def_id) = resolution.base_def() {
                        if let Some((ctor_def, ctor_vis))
                                = self.struct_constructors.get(&def_id).cloned() {
                            if is_expected(ctor_def) && self.is_accessible(ctor_vis) {
                                let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY;
                                self.session.add_lint(lint, id, span,
                                    "private struct constructors are not usable through \
                                     reexports in outer modules".to_string());
                                res = Some(PathResolution::new(ctor_def));
                            }
                        }
                    }

                    res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def())))
                }
            }
            Some(resolution) if source.defer_to_typeck() => {
                // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
                // or `<T>::A::B`. If `B` should be resolved in value namespace then
                // it needs to be added to the trait map.
                if ns == ValueNS {
                    let item_name = path.last().unwrap().name;
                    let traits = self.get_traits_containing_item(item_name, ns);
                    self.trait_map.insert(id, traits);
                }
                resolution
            }
            _ => report_errors(self, None)
        };

        if let PathSource::TraitItem(..) = source {} else {
            // Avoid recording definition of `A::B` in `<T as A>::B::C`.
            self.record_def(id, resolution);
        }
        resolution
    }

    fn self_type_is_available(&mut self) -> bool {
        let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(), TypeNS, None);
        if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
    }

    fn self_value_is_available(&mut self, ctxt: SyntaxContext) -> bool {
        let ident = Ident { name: keywords::SelfValue.name(), ctxt: ctxt };
        let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None);
        if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false }
    }

    // Resolve in alternative namespaces if resolution in the primary namespace fails.
    fn resolve_qpath_anywhere(&mut self,
                              id: NodeId,
                              qself: Option<&QSelf>,
                              path: &[Ident],
                              primary_ns: Namespace,
                              span: Span,
                              defer_to_typeck: bool,
                              global_by_default: bool)
                              -> Option<PathResolution> {
        let mut fin_res = None;
        // FIXME: can't resolve paths in macro namespace yet, macros are
        // processed by the little special hack below.
        for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() {
            if i == 0 || ns != primary_ns {
                match self.resolve_qpath(id, qself, path, ns, span, global_by_default) {
                    // If defer_to_typeck, then resolution > no resolution,
                    // otherwise full resolution > partial resolution > no resolution.
                    Some(res) if res.unresolved_segments() == 0 || defer_to_typeck =>
                        return Some(res),
                    res => if fin_res.is_none() { fin_res = res },
                };
            }
        }
        let is_builtin = self.builtin_macros.get(&path[0].name).cloned()
            .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false);
        if primary_ns != MacroNS && (is_builtin || self.macro_names.contains(&path[0].name)) {
            // Return some dummy definition, it's enough for error reporting.
            return Some(
                PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang))
            );
        }
        fin_res
    }

    /// Handles paths that may refer to associated items.
    fn resolve_qpath(&mut self,
                     id: NodeId,
                     qself: Option<&QSelf>,
                     path: &[Ident],
                     ns: Namespace,
                     span: Span,
                     global_by_default: bool)
                     -> Option<PathResolution> {
        if let Some(qself) = qself {
            if qself.position == 0 {
                // FIXME: Create some fake resolution that can't possibly be a type.
                return Some(PathResolution::with_unresolved_segments(
                    Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len()
                ));
            }
            // Make sure `A::B` in `<T as A>::B::C` is a trait item.
            let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
            let res = self.smart_resolve_path_fragment(id, None, &path[..qself.position + 1],
                                                       span, span, PathSource::TraitItem(ns));
            return Some(PathResolution::with_unresolved_segments(
                res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1
            ));
        }

        let result = match self.resolve_path(&path, Some(ns), Some(span)) {
            PathResult::NonModule(path_res) => path_res,
            PathResult::Module(module) if !module.is_normal() => {
                PathResolution::new(module.def().unwrap())
            }
            // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
            // don't report an error right away, but try to fallback to a primitive type.
            // So, we are still able to successfully resolve something like
            //
            // use std::u8; // bring module u8 in scope
            // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
            //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
            //                     // not to non-existent std::u8::max_value
            // }
            //
            // Such behavior is required for backward compatibility.
            // The same fallback is used when `a` resolves to nothing.
            PathResult::Module(..) | PathResult::Failed(..)
                    if (ns == TypeNS || path.len() > 1) &&
                       self.primitive_type_table.primitive_types.contains_key(&path[0].name) => {
                let prim = self.primitive_type_table.primitive_types[&path[0].name];
                match prim {
                    TyUint(UintTy::U128) | TyInt(IntTy::I128) => {
                        if !self.session.features.borrow().i128_type {
                            emit_feature_err(&self.session.parse_sess,
                                                "i128_type", span, GateIssue::Language,
                                                "128-bit type is unstable");

                        }
                    }
                    _ => {}
                }
                PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1)
            }
            PathResult::Module(module) => PathResolution::new(module.def().unwrap()),
            PathResult::Failed(msg, false) => {
                resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
                err_path_resolution()
            }
            PathResult::Failed(..) => return None,
            PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
        };

        if path.len() > 1 && !global_by_default && result.base_def() != Def::Err &&
           path[0].name != keywords::CrateRoot.name() && path[0].name != "$crate" {
            let unqualified_result = {
                match self.resolve_path(&[*path.last().unwrap()], Some(ns), None) {
                    PathResult::NonModule(path_res) => path_res.base_def(),
                    PathResult::Module(module) => module.def().unwrap(),
                    _ => return Some(result),
                }
            };
            if result.base_def() == unqualified_result {
                let lint = lint::builtin::UNUSED_QUALIFICATIONS;
                self.session.add_lint(lint, id, span, "unnecessary qualification".to_string());
            }
        }

        Some(result)
    }

    fn resolve_path(&mut self,
                    path: &[Ident],
                    opt_ns: Option<Namespace>, // `None` indicates a module path
                    record_used: Option<Span>)
                    -> PathResult<'a> {
        let mut module = None;
        let mut allow_super = true;

        for (i, &ident) in path.iter().enumerate() {
            let is_last = i == path.len() - 1;
            let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS };

            if i == 0 && ns == TypeNS && ident.name == keywords::SelfValue.name() {
                module = Some(self.module_map[&self.current_module.normal_ancestor_id]);
                continue
            } else if allow_super && ns == TypeNS && ident.name == keywords::Super.name() {
                let current_module = if i == 0 { self.current_module } else { module.unwrap() };
                let self_module = self.module_map[&current_module.normal_ancestor_id];
                if let Some(parent) = self_module.parent {
                    module = Some(self.module_map[&parent.normal_ancestor_id]);
                    continue
                } else {
                    let msg = "There are too many initial `super`s.".to_string();
                    return PathResult::Failed(msg, false);
                }
            }
            allow_super = false;

            if i == 0 && ns == TypeNS && ident.name == keywords::CrateRoot.name() {
                module = Some(self.graph_root);
                continue
            } else if i == 0 && ns == TypeNS && ident.name == "$crate" {
                module = Some(self.resolve_crate_var(ident.ctxt));
                continue
            }

            let binding = if let Some(module) = module {
                self.resolve_ident_in_module(module, ident, ns, false, record_used)
            } else if opt_ns == Some(MacroNS) {
                self.resolve_lexical_macro_path_segment(ident, ns, record_used)
            } else {
                match self.resolve_ident_in_lexical_scope(ident, ns, record_used) {
                    Some(LexicalScopeBinding::Item(binding)) => Ok(binding),
                    Some(LexicalScopeBinding::Def(def))
                            if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => {
                        return PathResult::NonModule(PathResolution::with_unresolved_segments(
                            def, path.len() - 1
                        ));
                    }
                    _ => Err(if record_used.is_some() { Determined } else { Undetermined }),
                }
            };

            match binding {
                Ok(binding) => {
                    let def = binding.def();
                    let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def);
                    if let Some(next_module) = binding.module() {
                        module = Some(next_module);
                    } else if def == Def::Err {
                        return PathResult::NonModule(err_path_resolution());
                    } else if opt_ns.is_some() && (is_last || maybe_assoc) {
                        return PathResult::NonModule(PathResolution::with_unresolved_segments(
                            def, path.len() - i - 1
                        ));
                    } else {
                        return PathResult::Failed(format!("Not a module `{}`", ident), is_last);
                    }
                }
                Err(Undetermined) => return PathResult::Indeterminate,
                Err(Determined) => {
                    if let Some(module) = module {
                        if opt_ns.is_some() && !module.is_normal() {
                            return PathResult::NonModule(PathResolution::with_unresolved_segments(
                                module.def().unwrap(), path.len() - i
                            ));
                        }
                    }
                    let msg = if module.and_then(ModuleData::def) == self.graph_root.def() {
                        let is_mod = |def| match def { Def::Mod(..) => true, _ => false };
                        let mut candidates =
                            self.lookup_import_candidates(ident.name, TypeNS, is_mod);
                        candidates.sort_by_key(|c| (c.path.segments.len(), c.path.to_string()));
                        if let Some(candidate) = candidates.get(0) {
                            format!("Did you mean `{}`?", candidate.path)
                        } else {
                            format!("Maybe a missing `extern crate {};`?", ident)
                        }
                    } else if i == 0 {
                        format!("Use of undeclared type or module `{}`", ident)
                    } else {
                        format!("Could not find `{}` in `{}`", ident, path[i - 1])
                    };
                    return PathResult::Failed(msg, is_last);
                }
            }
        }

        PathResult::Module(module.unwrap_or(self.graph_root))
    }

    // Resolve a local definition, potentially adjusting for closures.
    fn adjust_local_def(&mut self,
                        ns: Namespace,
                        rib_index: usize,
                        mut def: Def,
                        record_used: Option<Span>) -> Def {
        let ribs = &self.ribs[ns][rib_index + 1..];

        // An invalid forward use of a type parameter from a previous default.
        if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind {
            if let Some(span) = record_used {
                resolve_error(self, span,
                        ResolutionError::ForwardDeclaredTyParam);
            }
            assert_eq!(def, Def::Err);
            return Def::Err;
        }

        match def {
            Def::Upvar(..) => {
                span_bug!(record_used.unwrap_or(DUMMY_SP), "unexpected {:?} in bindings", def)
            }
            Def::Local(def_id) => {
                for rib in ribs {
                    match rib.kind {
                        NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) |
                        ForwardTyParamBanRibKind => {
                            // Nothing to do. Continue.
                        }
                        ClosureRibKind(function_id) => {
                            let prev_def = def;
                            let node_id = self.definitions.as_local_node_id(def_id).unwrap();

                            let seen = self.freevars_seen
                                           .entry(function_id)
                                           .or_insert_with(|| NodeMap());
                            if let Some(&index) = seen.get(&node_id) {
                                def = Def::Upvar(def_id, index, function_id);
                                continue;
                            }
                            let vec = self.freevars
                                          .entry(function_id)
                                          .or_insert_with(|| vec![]);
                            let depth = vec.len();
                            def = Def::Upvar(def_id, depth, function_id);

                            if let Some(span) = record_used {
                                vec.push(Freevar {
                                    def: prev_def,
                                    span: span,
                                });
                                seen.insert(node_id, depth);
                            }
                        }
                        ItemRibKind | MethodRibKind(_) => {
                            // This was an attempt to access an upvar inside a
                            // named function item. This is not allowed, so we
                            // report an error.
                            if let Some(span) = record_used {
                                resolve_error(self, span,
                                        ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
                            }
                            return Def::Err;
                        }
                        ConstantItemRibKind => {
                            // Still doesn't deal with upvars
                            if let Some(span) = record_used {
                                resolve_error(self, span,
                                        ResolutionError::AttemptToUseNonConstantValueInConstant);
                            }
                            return Def::Err;
                        }
                    }
                }
            }
            Def::TyParam(..) | Def::SelfTy(..) => {
                for rib in ribs {
                    match rib.kind {
                        NormalRibKind | MethodRibKind(_) | ClosureRibKind(..) |
                        ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind => {
                            // Nothing to do. Continue.
                        }
                        ItemRibKind => {
                            // This was an attempt to use a type parameter outside
                            // its scope.
                            if let Some(span) = record_used {
                                resolve_error(self, span,
                                              ResolutionError::TypeParametersFromOuterFunction);
                            }
                            return Def::Err;
                        }
                        ConstantItemRibKind => {
                            // see #9186
                            if let Some(span) = record_used {
                                resolve_error(self, span,
                                              ResolutionError::OuterTypeParameterContext);
                            }
                            return Def::Err;
                        }
                    }
                }
            }
            _ => {}
        }
        return def;
    }

    // Calls `f` with a `Resolver` whose current lexical scope is `module`'s lexical scope,
    // i.e. the module's items and the prelude (unless the module is `#[no_implicit_prelude]`).
    // FIXME #34673: This needs testing.
    pub fn with_module_lexical_scope<T, F>(&mut self, module: Module<'a>, f: F) -> T
        where F: FnOnce(&mut Resolver<'a>) -> T,
    {
        self.with_empty_ribs(|this| {
            this.ribs[ValueNS].push(Rib::new(ModuleRibKind(module)));
            this.ribs[TypeNS].push(Rib::new(ModuleRibKind(module)));
            f(this)
        })
    }

    fn with_empty_ribs<T, F>(&mut self, f: F) -> T
        where F: FnOnce(&mut Resolver<'a>) -> T,
    {
        let ribs = replace(&mut self.ribs, PerNS::<Vec<Rib>>::default());
        let label_ribs = replace(&mut self.label_ribs, Vec::new());

        let result = f(self);
        self.ribs = ribs;
        self.label_ribs = label_ribs;
        result
    }

    fn lookup_assoc_candidate<FilterFn>(&mut self,
                                        name: Name,
                                        ns: Namespace,
                                        filter_fn: FilterFn)
                                        -> Option<AssocSuggestion>
        where FilterFn: Fn(Def) -> bool
    {
        fn extract_node_id(t: &Ty) -> Option<NodeId> {
            match t.node {
                TyKind::Path(None, _) => Some(t.id),
                TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty),
                // This doesn't handle the remaining `Ty` variants as they are not
                // that commonly the self_type, it might be interesting to provide
                // support for those in future.
                _ => None,
            }
        }

        // Fields are generally expected in the same contexts as locals.
        if filter_fn(Def::Local(DefId::local(CRATE_DEF_INDEX))) {
            if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) {
                // Look for a field with the same name in the current self_type.
                if let Some(resolution) = self.def_map.get(&node_id) {
                    match resolution.base_def() {
                        Def::Struct(did) | Def::Union(did)
                                if resolution.unresolved_segments() == 0 => {
                            if let Some(field_names) = self.field_names.get(&did) {
                                if field_names.iter().any(|&field_name| name == field_name) {
                                    return Some(AssocSuggestion::Field);
                                }
                            }
                        }
                        _ => {}
                    }
                }
            }
        }

        // Look for associated items in the current trait.
        if let Some((trait_did, _)) = self.current_trait_ref {
            if let Some(&(def, has_self)) = self.trait_item_map.get(&(trait_did, name, ns)) {
                if filter_fn(def) {
                    return Some(if has_self {
                        AssocSuggestion::MethodWithSelf
                    } else {
                        AssocSuggestion::AssocItem
                    });
                }
            }
        }

        None
    }

    fn lookup_typo_candidate<FilterFn>(&mut self,
                                       path: &[Ident],
                                       ns: Namespace,
                                       filter_fn: FilterFn)
                                       -> Option<Symbol>
        where FilterFn: Fn(Def) -> bool
    {
        let add_module_candidates = |module: Module, names: &mut Vec<Name>| {
            for (&(ident, _), resolution) in module.resolutions.borrow().iter() {
                if let Some(binding) = resolution.borrow().binding {
                    if filter_fn(binding.def()) {
                        names.push(ident.name);
                    }
                }
            }
        };

        let mut names = Vec::new();
        if path.len() == 1 {
            // Search in lexical scope.
            // Walk backwards up the ribs in scope and collect candidates.
            for rib in self.ribs[ns].iter().rev() {
                // Locals and type parameters
                for (ident, def) in &rib.bindings {
                    if filter_fn(*def) {
                        names.push(ident.name);
                    }
                }
                // Items in scope
                if let ModuleRibKind(module) = rib.kind {
                    // Items from this module
                    add_module_candidates(module, &mut names);

                    if let ModuleKind::Block(..) = module.kind {
                        // We can see through blocks
                    } else {
                        // Items from the prelude
                        if let Some(prelude) = self.prelude {
                            if !module.no_implicit_prelude {
                                add_module_candidates(prelude, &mut names);
                            }
                        }
                        break;
                    }
                }
            }
            // Add primitive types to the mix
            if filter_fn(Def::PrimTy(TyBool)) {
                for (name, _) in &self.primitive_type_table.primitive_types {
                    names.push(*name);
                }
            }
        } else {
            // Search in module.
            let mod_path = &path[..path.len() - 1];
            if let PathResult::Module(module) = self.resolve_path(mod_path, Some(TypeNS), None) {
                add_module_candidates(module, &mut names);
            }
        }

        let name = path[path.len() - 1].name;
        // Make sure error reporting is deterministic.
        names.sort_by_key(|name| name.as_str());
        match find_best_match_for_name(names.iter(), &name.as_str(), None) {
            Some(found) if found != name => Some(found),
            _ => None,
        }
    }

    fn with_resolved_label<F>(&mut self, label: Option<SpannedIdent>, id: NodeId, f: F)
        where F: FnOnce(&mut Resolver)
    {
        if let Some(label) = label {
            let def = Def::Label(id);
            self.with_label_rib(|this| {
                this.label_ribs.last_mut().unwrap().bindings.insert(label.node, def);
                f(this);
            });
        } else {
            f(self);
        }
    }

    fn resolve_labeled_block(&mut self, label: Option<SpannedIdent>, id: NodeId, block: &Block) {
        self.with_resolved_label(label, id, |this| this.visit_block(block));
    }

    fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
        // First, record candidate traits for this expression if it could
        // result in the invocation of a method call.

        self.record_candidate_traits_for_expr_if_necessary(expr);

        // Next, resolve the node.
        match expr.node {
            ExprKind::Path(ref qself, ref path) => {
                self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
                visit::walk_expr(self, expr);
            }

            ExprKind::Struct(ref path, ..) => {
                self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
                visit::walk_expr(self, expr);
            }

            ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
                match self.search_label(label.node) {
                    None => {
                        self.record_def(expr.id, err_path_resolution());
                        resolve_error(self,
                                      label.span,
                                      ResolutionError::UndeclaredLabel(&label.node.name.as_str()));
                    }
                    Some(def @ Def::Label(_)) => {
                        // Since this def is a label, it is never read.
                        self.record_def(expr.id, PathResolution::new(def));
                    }
                    Some(_) => {
                        span_bug!(expr.span, "label wasn't mapped to a label def!");
                    }
                }

                // visit `break` argument if any
                visit::walk_expr(self, expr);
            }

            ExprKind::IfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
                self.visit_expr(subexpression);

                self.ribs[ValueNS].push(Rib::new(NormalRibKind));
                self.resolve_pattern(pattern, PatternSource::IfLet, &mut FxHashMap());
                self.visit_block(if_block);
                self.ribs[ValueNS].pop();

                optional_else.as_ref().map(|expr| self.visit_expr(expr));
            }

            ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),

            ExprKind::While(ref subexpression, ref block, label) => {
                self.with_resolved_label(label, expr.id, |this| {
                    this.visit_expr(subexpression);
                    this.visit_block(block);
                });
            }

            ExprKind::WhileLet(ref pattern, ref subexpression, ref block, label) => {
                self.with_resolved_label(label, expr.id, |this| {
                    this.visit_expr(subexpression);
                    this.ribs[ValueNS].push(Rib::new(NormalRibKind));
                    this.resolve_pattern(pattern, PatternSource::WhileLet, &mut FxHashMap());
                    this.visit_block(block);
                    this.ribs[ValueNS].pop();
                });
            }

            ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => {
                self.visit_expr(subexpression);
                self.ribs[ValueNS].push(Rib::new(NormalRibKind));
                self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap());

                self.resolve_labeled_block(label, expr.id, block);

                self.ribs[ValueNS].pop();
            }

            // Equivalent to `visit::walk_expr` + passing some context to children.
            ExprKind::Field(ref subexpression, _) => {
                self.resolve_expr(subexpression, Some(expr));
            }
            ExprKind::MethodCall(_, ref types, ref arguments) => {
                let mut arguments = arguments.iter();
                self.resolve_expr(arguments.next().unwrap(), Some(expr));
                for argument in arguments {
                    self.resolve_expr(argument, None);
                }
                for ty in types.iter() {
                    self.visit_ty(ty);
                }
            }

            ExprKind::Repeat(ref element, ref count) => {
                self.visit_expr(element);
                self.with_constant_rib(|this| {
                    this.visit_expr(count);
                });
            }
            ExprKind::Call(ref callee, ref arguments) => {
                self.resolve_expr(callee, Some(expr));
                for argument in arguments {
                    self.resolve_expr(argument, None);
                }
            }

            _ => {
                visit::walk_expr(self, expr);
            }
        }
    }

    fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
        match expr.node {
            ExprKind::Field(_, name) => {
                // FIXME(#6890): Even though you can't treat a method like a
                // field, we need to add any trait methods we find that match
                // the field name so that we can do some nice error reporting
                // later on in typeck.
                let traits = self.get_traits_containing_item(name.node.name, ValueNS);
                self.trait_map.insert(expr.id, traits);
            }
            ExprKind::MethodCall(name, ..) => {
                debug!("(recording candidate traits for expr) recording traits for {}",
                       expr.id);
                let traits = self.get_traits_containing_item(name.node.name, ValueNS);
                self.trait_map.insert(expr.id, traits);
            }
            _ => {
                // Nothing to do.
            }
        }
    }

    fn get_traits_containing_item(&mut self, name: Name, ns: Namespace) -> Vec<TraitCandidate> {
        debug!("(getting traits containing item) looking for '{}'", name);

        let mut found_traits = Vec::new();
        // Look for the current trait.
        if let Some((trait_def_id, _)) = self.current_trait_ref {
            if self.trait_item_map.contains_key(&(trait_def_id, name, ns)) {
                found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: None });
            }
        }

        let mut search_module = self.current_module;
        loop {
            self.get_traits_in_module_containing_item(name, ns, search_module, &mut found_traits);
            match search_module.kind {
                ModuleKind::Block(..) => search_module = search_module.parent.unwrap(),
                _ => break,
            }
        }

        if let Some(prelude) = self.prelude {
            if !search_module.no_implicit_prelude {
                self.get_traits_in_module_containing_item(name, ns, prelude, &mut found_traits);
            }
        }

        found_traits
    }

    fn get_traits_in_module_containing_item(&mut self,
                                            name: Name,
                                            ns: Namespace,
                                            module: Module,
                                            found_traits: &mut Vec<TraitCandidate>) {
        let mut traits = module.traits.borrow_mut();
        if traits.is_none() {
            let mut collected_traits = Vec::new();
            module.for_each_child(|name, ns, binding| {
                if ns != TypeNS { return }
                if let Def::Trait(_) = binding.def() {
                    collected_traits.push((name, binding));
                }
            });
            *traits = Some(collected_traits.into_boxed_slice());
        }

        for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
            let trait_def_id = binding.def().def_id();
            if self.trait_item_map.contains_key(&(trait_def_id, name, ns)) {
                let import_id = match binding.kind {
                    NameBindingKind::Import { directive, .. } => {
                        self.maybe_unused_trait_imports.insert(directive.id);
                        self.add_to_glob_map(directive.id, trait_name);
                        Some(directive.id)
                    }
                    _ => None,
                };
                found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id });
            }
        }
    }

    /// When name resolution fails, this method can be used to look up candidate
    /// entities with the expected name. It allows filtering them using the
    /// supplied predicate (which should be used to only accept the types of
    /// definitions expected e.g. traits). The lookup spans across all crates.
    ///
    /// NOTE: The method does not look into imports, but this is not a problem,
    /// since we report the definitions (thus, the de-aliased imports).
    fn lookup_import_candidates<FilterFn>(&mut self,
                                          lookup_name: Name,
                                          namespace: Namespace,
                                          filter_fn: FilterFn)
                                          -> Vec<ImportSuggestion>
        where FilterFn: Fn(Def) -> bool
    {
        let mut candidates = Vec::new();
        let mut worklist = Vec::new();
        let mut seen_modules = FxHashSet();
        worklist.push((self.graph_root, Vec::new(), false));

        while let Some((in_module,
                        path_segments,
                        in_module_is_extern)) = worklist.pop() {
            self.populate_module_if_necessary(in_module);

            in_module.for_each_child(|ident, ns, name_binding| {

                // avoid imports entirely
                if name_binding.is_import() && !name_binding.is_extern_crate() { return; }
                // avoid non-importable candidates as well
                if !name_binding.is_importable() { return; }

                // collect results based on the filter function
                if ident.name == lookup_name && ns == namespace {
                    if filter_fn(name_binding.def()) {
                        // create the path
                        let mut segms = path_segments.clone();
                        segms.push(ast::PathSegment::from_ident(ident, name_binding.span));
                        let path = Path {
                            span: name_binding.span,
                            segments: segms,
                        };
                        // the entity is accessible in the following cases:
                        // 1. if it's defined in the same crate, it's always
                        // accessible (since private entities can be made public)
                        // 2. if it's defined in another crate, it's accessible
                        // only if both the module is public and the entity is
                        // declared as public (due to pruning, we don't explore
                        // outside crate private modules => no need to check this)
                        if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
                            candidates.push(ImportSuggestion { path: path });
                        }
                    }
                }

                // collect submodules to explore
                if let Some(module) = name_binding.module() {
                    // form the path
                    let mut path_segments = path_segments.clone();
                    path_segments.push(ast::PathSegment::from_ident(ident, name_binding.span));

                    if !in_module_is_extern || name_binding.vis == ty::Visibility::Public {
                        // add the module to the lookup
                        let is_extern = in_module_is_extern || name_binding.is_extern_crate();
                        if seen_modules.insert(module.def_id().unwrap()) {
                            worklist.push((module, path_segments, is_extern));
                        }
                    }
                }
            })
        }

        candidates
    }

    fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
        debug!("(recording def) recording {:?} for {}", resolution, node_id);
        if let Some(prev_res) = self.def_map.insert(node_id, resolution) {
            panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
        }
    }

    fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
        match *vis {
            ast::Visibility::Public => ty::Visibility::Public,
            ast::Visibility::Crate(..) => ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            ast::Visibility::Inherited => {
                ty::Visibility::Restricted(self.current_module.normal_ancestor_id)
            }
            ast::Visibility::Restricted { ref path, id } => {
                let def = self.smart_resolve_path(id, None, path,
                                                  PathSource::Visibility).base_def();
                if def == Def::Err {
                    ty::Visibility::Public
                } else {
                    let vis = ty::Visibility::Restricted(def.def_id());
                    if self.is_accessible(vis) {
                        vis
                    } else {
                        self.session.span_err(path.span, "visibilities can only be restricted \
                                                          to ancestor modules");
                        ty::Visibility::Public
                    }
                }
            }
        }
    }

    fn is_accessible(&self, vis: ty::Visibility) -> bool {
        vis.is_accessible_from(self.current_module.normal_ancestor_id, self)
    }

    fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool {
        vis.is_accessible_from(module.normal_ancestor_id, self)
    }

    fn report_errors(&mut self) {
        self.report_shadowing_errors();
        let mut reported_spans = FxHashSet();

        for &AmbiguityError { span, name, b1, b2, lexical, legacy } in &self.ambiguity_errors {
            if !reported_spans.insert(span) { continue }
            let participle = |binding: &NameBinding| {
                if binding.is_import() { "imported" } else { "defined" }
            };
            let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1));
            let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2));
            let note = if !lexical && b1.is_glob_import() {
                format!("consider adding an explicit import of `{}` to disambiguate", name)
            } else if let Def::Macro(..) = b1.def() {
                format!("macro-expanded {} do not shadow",
                        if b1.is_import() { "macro imports" } else { "macros" })
            } else {
                format!("macro-expanded {} do not shadow when used in a macro invocation path",
                        if b1.is_import() { "imports" } else { "items" })
            };
            if legacy {
                let id = match b2.kind {
                    NameBindingKind::Import { directive, .. } => directive.id,
                    _ => unreachable!(),
                };
                let mut span = MultiSpan::from_span(span);
                span.push_span_label(b1.span, msg1);
                span.push_span_label(b2.span, msg2);
                let msg = format!("`{}` is ambiguous", name);
                self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
            } else {
                self.session.struct_span_err(span, &format!("`{}` is ambiguous", name))
                    .span_note(b1.span, &msg1)
                    .span_note(b2.span, &msg2)
                    .note(&note)
                    .emit();
            }
        }

        for &PrivacyError(span, name, binding) in &self.privacy_errors {
            if !reported_spans.insert(span) { continue }
            if binding.is_extern_crate() {
                // Warn when using an inaccessible extern crate.
                let node_id = match binding.kind {
                    NameBindingKind::Import { directive, .. } => directive.id,
                    _ => unreachable!(),
                };
                let msg = format!("extern crate `{}` is private", name);
                self.session.add_lint(lint::builtin::INACCESSIBLE_EXTERN_CRATE, node_id, span, msg);
            } else {
                let def = binding.def();
                self.session.span_err(span, &format!("{} `{}` is private", def.kind_name(), name));
            }
        }
    }

    fn report_shadowing_errors(&mut self) {
        for (name, scope) in replace(&mut self.lexical_macro_resolutions, Vec::new()) {
            self.resolve_legacy_scope(scope, name, true);
        }

        let mut reported_errors = FxHashSet();
        for binding in replace(&mut self.disallowed_shadowing, Vec::new()) {
            if self.resolve_legacy_scope(&binding.parent, binding.name, false).is_some() &&
               reported_errors.insert((binding.name, binding.span)) {
                let msg = format!("`{}` is already in scope", binding.name);
                self.session.struct_span_err(binding.span, &msg)
                    .note("macro-expanded `macro_rules!`s may not shadow \
                           existing macros (see RFC 1560)")
                    .emit();
            }
        }
    }

    fn report_conflict(&mut self,
                       parent: Module,
                       ident: Ident,
                       ns: Namespace,
                       binding: &NameBinding,
                       old_binding: &NameBinding) {
        // Error on the second of two conflicting names
        if old_binding.span.lo > binding.span.lo {
            return self.report_conflict(parent, ident, ns, old_binding, binding);
        }

        let container = match parent.kind {
            ModuleKind::Def(Def::Mod(_), _) => "module",
            ModuleKind::Def(Def::Trait(_), _) => "trait",
            ModuleKind::Block(..) => "block",
            _ => "enum",
        };

        let (participle, noun) = match old_binding.is_import() {
            true => ("imported", "import"),
            false => ("defined", "definition"),
        };

        let (name, span) = (ident.name, binding.span);

        if let Some(s) = self.name_already_seen.get(&name) {
            if s == &span {
                return;
            }
        }

        let msg = {
            let kind = match (ns, old_binding.module()) {
                (ValueNS, _) => "a value",
                (MacroNS, _) => "a macro",
                (TypeNS, _) if old_binding.is_extern_crate() => "an extern crate",
                (TypeNS, Some(module)) if module.is_normal() => "a module",
                (TypeNS, Some(module)) if module.is_trait() => "a trait",
                (TypeNS, _) => "a type",
            };
            format!("{} named `{}` has already been {} in this {}",
                    kind, name, participle, container)
        };

        let mut err = match (old_binding.is_extern_crate(), binding.is_extern_crate()) {
            (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg),
            (true, _) | (_, true) => match binding.is_import() && old_binding.is_import() {
                true => struct_span_err!(self.session, span, E0254, "{}", msg),
                false => struct_span_err!(self.session, span, E0260, "{}", msg),
            },
            _ => match (old_binding.is_import(), binding.is_import()) {
                (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg),
                (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg),
                _ => struct_span_err!(self.session, span, E0255, "{}", msg),
            },
        };

        err.span_label(span, &format!("`{}` already {}", name, participle));
        if old_binding.span != syntax_pos::DUMMY_SP {
            err.span_label(old_binding.span, &format!("previous {} of `{}` here", noun, name));
        }
        err.emit();
        self.name_already_seen.insert(name, span);
    }

    fn warn_legacy_self_import(&self, directive: &'a ImportDirective<'a>) {
        let (id, span) = (directive.id, directive.span);
        let msg = "`self` no longer imports values".to_string();
        self.session.add_lint(lint::builtin::LEGACY_IMPORTS, id, span, msg);
    }

    fn check_proc_macro_attrs(&mut self, attrs: &[ast::Attribute]) {
        if self.proc_macro_enabled { return; }

        for attr in attrs {
            let maybe_binding = self.builtin_macros.get(&attr.name()).cloned().or_else(|| {
                let ident = Ident::with_empty_ctxt(attr.name());
                self.resolve_lexical_macro_path_segment(ident, MacroNS, None).ok()
            });

            if let Some(binding) = maybe_binding {
                if let SyntaxExtension::AttrProcMacro(..) = *binding.get_macro(self) {
                    attr::mark_known(attr);

                    let msg = "attribute procedural macros are experimental";
                    let feature = "proc_macro";

                    feature_err(&self.session.parse_sess, feature,
                                attr.span, GateIssue::Language, msg)
                        .span_note(binding.span, "procedural macro imported here")
                        .emit();
                }
            }
        }
    }
}

fn is_struct_like(def: Def) -> bool {
    match def {
        Def::VariantCtor(_, CtorKind::Fictive) => true,
        _ => PathSource::Struct.is_expected(def),
    }
}

fn is_self_type(path: &[Ident], namespace: Namespace) -> bool {
    namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name()
}

fn is_self_value(path: &[Ident], namespace: Namespace) -> bool {
    namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name()
}

fn names_to_string(idents: &[Ident]) -> String {
    let mut result = String::new();
    for (i, ident) in idents.iter().filter(|i| i.name != keywords::CrateRoot.name()).enumerate() {
        if i > 0 {
            result.push_str("::");
        }
        result.push_str(&ident.name.as_str());
    }
    result
}

fn path_names_to_string(path: &Path) -> String {
    names_to_string(&path.segments.iter().map(|seg| seg.identifier).collect::<Vec<_>>())
}

/// When an entity with a given name is not available in scope, we search for
/// entities with that name in all crates. This method allows outputting the
/// results of this search in a programmer-friendly way
fn show_candidates(session: &mut DiagnosticBuilder,
                   candidates: &[ImportSuggestion],
                   better: bool) {
    // don't show more than MAX_CANDIDATES results, so
    // we're consistent with the trait suggestions
    const MAX_CANDIDATES: usize = 4;

    // we want consistent results across executions, but candidates are produced
    // by iterating through a hash map, so make sure they are ordered:
    let mut path_strings: Vec<_> =
        candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect();
    path_strings.sort();

    let better = if better { "better " } else { "" };
    let msg_diff = match path_strings.len() {
        1 => " is found in another module, you can import it",
        _ => "s are found in other modules, you can import them",
    };

    let end = cmp::min(MAX_CANDIDATES, path_strings.len());
    session.help(&format!("possible {}candidate{} into scope:{}{}",
                          better,
                          msg_diff,
                          &path_strings[0..end].iter().map(|candidate| {
                              format!("\n  `use {};`", candidate)
                          }).collect::<String>(),
                          if path_strings.len() > MAX_CANDIDATES {
                              format!("\nand {} other candidates",
                                      path_strings.len() - MAX_CANDIDATES)
                          } else {
                              "".to_owned()
                          }
                          ));
}

/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string(module: Module) -> String {
    let mut names = Vec::new();

    fn collect_mod(names: &mut Vec<Ident>, module: Module) {
        if let ModuleKind::Def(_, name) = module.kind {
            if let Some(parent) = module.parent {
                names.push(Ident::with_empty_ctxt(name));
                collect_mod(names, parent);
            }
        } else {
            // danger, shouldn't be ident?
            names.push(Ident::from_str("<opaque>"));
            collect_mod(names, module.parent.unwrap());
        }
    }
    collect_mod(&mut names, module);

    if names.is_empty() {
        return "???".to_string();
    }
    names_to_string(&names.into_iter().rev().collect::<Vec<_>>())
}

fn err_path_resolution() -> PathResolution {
    PathResolution::new(Def::Err)
}

#[derive(PartialEq,Copy, Clone)]
pub enum MakeGlobMap {
    Yes,
    No,
}

__build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }