1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
#![allow(non_snake_case)]
register_long_diagnostics! {
E0023: r##"
A pattern used to match against an enum variant must provide a sub-pattern for
each field of the enum variant. This error indicates that a pattern attempted to
extract an incorrect number of fields from a variant.
```
enum Fruit {
Apple(String, String),
Pear(u32),
}
```
Here the `Apple` variant has two fields, and should be matched against like so:
```
enum Fruit {
Apple(String, String),
Pear(u32),
}
let x = Fruit::Apple(String::new(), String::new());
// Correct.
match x {
Fruit::Apple(a, b) => {},
_ => {}
}
```
Matching with the wrong number of fields has no sensible interpretation:
```compile_fail,E0023
enum Fruit {
Apple(String, String),
Pear(u32),
}
let x = Fruit::Apple(String::new(), String::new());
// Incorrect.
match x {
Fruit::Apple(a) => {},
Fruit::Apple(a, b, c) => {},
}
```
Check how many fields the enum was declared with and ensure that your pattern
uses the same number.
"##,
E0025: r##"
Each field of a struct can only be bound once in a pattern. Erroneous code
example:
```compile_fail,E0025
struct Foo {
a: u8,
b: u8,
}
fn main(){
let x = Foo { a:1, b:2 };
let Foo { a: x, a: y } = x;
// error: field `a` bound multiple times in the pattern
}
```
Each occurrence of a field name binds the value of that field, so to fix this
error you will have to remove or alter the duplicate uses of the field name.
Perhaps you misspelled another field name? Example:
```
struct Foo {
a: u8,
b: u8,
}
fn main(){
let x = Foo { a:1, b:2 };
let Foo { a: x, b: y } = x; // ok!
}
```
"##,
E0026: r##"
This error indicates that a struct pattern attempted to extract a non-existent
field from a struct. Struct fields are identified by the name used before the
colon `:` so struct patterns should resemble the declaration of the struct type
being matched.
```
// Correct matching.
struct Thing {
x: u32,
y: u32
}
let thing = Thing { x: 1, y: 2 };
match thing {
Thing { x: xfield, y: yfield } => {}
}
```
If you are using shorthand field patterns but want to refer to the struct field
by a different name, you should rename it explicitly.
Change this:
```compile_fail,E0026
struct Thing {
x: u32,
y: u32
}
let thing = Thing { x: 0, y: 0 };
match thing {
Thing { x, z } => {}
}
```
To this:
```
struct Thing {
x: u32,
y: u32
}
let thing = Thing { x: 0, y: 0 };
match thing {
Thing { x, y: z } => {}
}
```
"##,
E0027: r##"
This error indicates that a pattern for a struct fails to specify a sub-pattern
for every one of the struct's fields. Ensure that each field from the struct's
definition is mentioned in the pattern, or use `..` to ignore unwanted fields.
For example:
```compile_fail,E0027
struct Dog {
name: String,
age: u32,
}
let d = Dog { name: "Rusty".to_string(), age: 8 };
// This is incorrect.
match d {
Dog { age: x } => {}
}
```
This is correct (explicit):
```
struct Dog {
name: String,
age: u32,
}
let d = Dog { name: "Rusty".to_string(), age: 8 };
match d {
Dog { name: ref n, age: x } => {}
}
// This is also correct (ignore unused fields).
match d {
Dog { age: x, .. } => {}
}
```
"##,
E0029: r##"
In a match expression, only numbers and characters can be matched against a
range. This is because the compiler checks that the range is non-empty at
compile-time, and is unable to evaluate arbitrary comparison functions. If you
want to capture values of an orderable type between two end-points, you can use
a guard.
```compile_fail,E0029
let string = "salutations !";
// The ordering relation for strings can't be evaluated at compile time,
// so this doesn't work:
match string {
"hello" ... "world" => {}
_ => {}
}
// This is a more general version, using a guard:
match string {
s if s >= "hello" && s <= "world" => {}
_ => {}
}
```
"##,
E0033: r##"
This error indicates that a pointer to a trait type cannot be implicitly
dereferenced by a pattern. Every trait defines a type, but because the
size of trait implementors isn't fixed, this type has no compile-time size.
Therefore, all accesses to trait types must be through pointers. If you
encounter this error you should try to avoid dereferencing the pointer.
```ignore
let trait_obj: &SomeTrait = ...;
// This tries to implicitly dereference to create an unsized local variable.
let &invalid = trait_obj;
// You can call methods without binding to the value being pointed at.
trait_obj.method_one();
trait_obj.method_two();
```
You can read more about trait objects in the Trait Object section of the
Reference:
https://doc.rust-lang.org/reference.html#trait-objects
"##,
E0034: r##"
The compiler doesn't know what method to call because more than one method
has the same prototype. Erroneous code example:
```compile_fail,E0034
struct Test;
trait Trait1 {
fn foo();
}
trait Trait2 {
fn foo();
}
impl Trait1 for Test { fn foo() {} }
impl Trait2 for Test { fn foo() {} }
fn main() {
Test::foo() // error, which foo() to call?
}
```
To avoid this error, you have to keep only one of them and remove the others.
So let's take our example and fix it:
```
struct Test;
trait Trait1 {
fn foo();
}
impl Trait1 for Test { fn foo() {} }
fn main() {
Test::foo() // and now that's good!
}
```
However, a better solution would be using fully explicit naming of type and
trait:
```
struct Test;
trait Trait1 {
fn foo();
}
trait Trait2 {
fn foo();
}
impl Trait1 for Test { fn foo() {} }
impl Trait2 for Test { fn foo() {} }
fn main() {
<Test as Trait1>::foo()
}
```
One last example:
```
trait F {
fn m(&self);
}
trait G {
fn m(&self);
}
struct X;
impl F for X { fn m(&self) { println!("I am F"); } }
impl G for X { fn m(&self) { println!("I am G"); } }
fn main() {
let f = X;
F::m(&f); // it displays "I am F"
G::m(&f); // it displays "I am G"
}
```
"##,
E0035: r##"
You tried to give a type parameter where it wasn't needed. Erroneous code
example:
```compile_fail,E0035
struct Test;
impl Test {
fn method(&self) {}
}
fn main() {
let x = Test;
x.method::<i32>(); // Error: Test::method doesn't need type parameter!
}
```
To fix this error, just remove the type parameter:
```
struct Test;
impl Test {
fn method(&self) {}
}
fn main() {
let x = Test;
x.method(); // OK, we're good!
}
```
"##,
E0036: r##"
This error occurrs when you pass too many or not enough type parameters to
a method. Erroneous code example:
```compile_fail,E0036
struct Test;
impl Test {
fn method<T>(&self, v: &[T]) -> usize {
v.len()
}
}
fn main() {
let x = Test;
let v = &[0];
x.method::<i32, i32>(v); // error: only one type parameter is expected!
}
```
To fix it, just specify a correct number of type parameters:
```
struct Test;
impl Test {
fn method<T>(&self, v: &[T]) -> usize {
v.len()
}
}
fn main() {
let x = Test;
let v = &[0];
x.method::<i32>(v); // OK, we're good!
}
```
Please note on the last example that we could have called `method` like this:
```ignore
x.method(v);
```
"##,
E0040: r##"
It is not allowed to manually call destructors in Rust. It is also not
necessary to do this since `drop` is called automatically whenever a value goes
out of scope.
Here's an example of this error:
```compile_fail,E0040
struct Foo {
x: i32,
}
impl Drop for Foo {
fn drop(&mut self) {
println!("kaboom");
}
}
fn main() {
let mut x = Foo { x: -7 };
x.drop(); // error: explicit use of destructor method
}
```
"##,
E0044: r##"
You can't use type parameters on foreign items. Example of erroneous code:
```compile_fail,E0044
extern { fn some_func<T>(x: T); }
```
To fix this, replace the type parameter with the specializations that you
need:
```
extern { fn some_func_i32(x: i32); }
extern { fn some_func_i64(x: i64); }
```
"##,
E0045: r##"
Rust only supports variadic parameters for interoperability with C code in its
FFI. As such, variadic parameters can only be used with functions which are
using the C ABI. Examples of erroneous code:
```compile_fail
#![feature(unboxed_closures)]
extern "rust-call" { fn foo(x: u8, ...); }
// or
fn foo(x: u8, ...) {}
```
To fix such code, put them in an extern "C" block:
```
extern "C" {
fn foo (x: u8, ...);
}
```
"##,
E0046: r##"
Items are missing in a trait implementation. Erroneous code example:
```compile_fail,E0046
trait Foo {
fn foo();
}
struct Bar;
impl Foo for Bar {}
// error: not all trait items implemented, missing: `foo`
```
When trying to make some type implement a trait `Foo`, you must, at minimum,
provide implementations for all of `Foo`'s required methods (meaning the
methods that do not have default implementations), as well as any required
trait items like associated types or constants. Example:
```
trait Foo {
fn foo();
}
struct Bar;
impl Foo for Bar {
fn foo() {} // ok!
}
```
"##,
E0049: r##"
This error indicates that an attempted implementation of a trait method
has the wrong number of type parameters.
For example, the trait below has a method `foo` with a type parameter `T`,
but the implementation of `foo` for the type `Bar` is missing this parameter:
```compile_fail,E0049
trait Foo {
fn foo<T: Default>(x: T) -> Self;
}
struct Bar;
// error: method `foo` has 0 type parameters but its trait declaration has 1
// type parameter
impl Foo for Bar {
fn foo(x: bool) -> Self { Bar }
}
```
"##,
E0050: r##"
This error indicates that an attempted implementation of a trait method
has the wrong number of function parameters.
For example, the trait below has a method `foo` with two function parameters
(`&self` and `u8`), but the implementation of `foo` for the type `Bar` omits
the `u8` parameter:
```compile_fail,E0050
trait Foo {
fn foo(&self, x: u8) -> bool;
}
struct Bar;
// error: method `foo` has 1 parameter but the declaration in trait `Foo::foo`
// has 2
impl Foo for Bar {
fn foo(&self) -> bool { true }
}
```
"##,
E0053: r##"
The parameters of any trait method must match between a trait implementation
and the trait definition.
Here are a couple examples of this error:
```compile_fail,E0053
trait Foo {
fn foo(x: u16);
fn bar(&self);
}
struct Bar;
impl Foo for Bar {
// error, expected u16, found i16
fn foo(x: i16) { }
// error, types differ in mutability
fn bar(&mut self) { }
}
```
"##,
E0054: r##"
It is not allowed to cast to a bool. If you are trying to cast a numeric type
to a bool, you can compare it with zero instead:
```compile_fail,E0054
let x = 5;
// Not allowed, won't compile
let x_is_nonzero = x as bool;
```
```
let x = 5;
// Ok
let x_is_nonzero = x != 0;
```
"##,
E0055: r##"
During a method call, a value is automatically dereferenced as many times as
needed to make the value's type match the method's receiver. The catch is that
the compiler will only attempt to dereference a number of times up to the
recursion limit (which can be set via the `recursion_limit` attribute).
For a somewhat artificial example:
```compile_fail,E0055
#![recursion_limit="2"]
struct Foo;
impl Foo {
fn foo(&self) {}
}
fn main() {
let foo = Foo;
let ref_foo = &&Foo;
// error, reached the recursion limit while auto-dereferencing &&Foo
ref_foo.foo();
}
```
One fix may be to increase the recursion limit. Note that it is possible to
create an infinite recursion of dereferencing, in which case the only fix is to
somehow break the recursion.
"##,
E0057: r##"
When invoking closures or other implementations of the function traits `Fn`,
`FnMut` or `FnOnce` using call notation, the number of parameters passed to the
function must match its definition.
An example using a closure:
```compile_fail,E0057
let f = |x| x * 3;
let a = f(); // invalid, too few parameters
let b = f(4); // this works!
let c = f(2, 3); // invalid, too many parameters
```
A generic function must be treated similarly:
```
fn foo<F: Fn()>(f: F) {
f(); // this is valid, but f(3) would not work
}
```
"##,
E0059: r##"
The built-in function traits are generic over a tuple of the function arguments.
If one uses angle-bracket notation (`Fn<(T,), Output=U>`) instead of parentheses
(`Fn(T) -> U`) to denote the function trait, the type parameter should be a
tuple. Otherwise function call notation cannot be used and the trait will not be
implemented by closures.
The most likely source of this error is using angle-bracket notation without
wrapping the function argument type into a tuple, for example:
```compile_fail,E0059
#![feature(unboxed_closures)]
fn foo<F: Fn<i32>>(f: F) -> F::Output { f(3) }
```
It can be fixed by adjusting the trait bound like this:
```
#![feature(unboxed_closures)]
fn foo<F: Fn<(i32,)>>(f: F) -> F::Output { f(3) }
```
Note that `(T,)` always denotes the type of a 1-tuple containing an element of
type `T`. The comma is necessary for syntactic disambiguation.
"##,
E0060: r##"
External C functions are allowed to be variadic. However, a variadic function
takes a minimum number of arguments. For example, consider C's variadic `printf`
function:
```ignore
extern crate libc;
use libc::{ c_char, c_int };
extern "C" {
fn printf(_: *const c_char, ...) -> c_int;
}
```
Using this declaration, it must be called with at least one argument, so
simply calling `printf()` is invalid. But the following uses are allowed:
```ignore
unsafe {
use std::ffi::CString;
printf(CString::new("test\n").unwrap().as_ptr());
printf(CString::new("number = %d\n").unwrap().as_ptr(), 3);
printf(CString::new("%d, %d\n").unwrap().as_ptr(), 10, 5);
}
```
"##,
E0061: r##"
The number of arguments passed to a function must match the number of arguments
specified in the function signature.
For example, a function like:
```
fn f(a: u16, b: &str) {}
```
Must always be called with exactly two arguments, e.g. `f(2, "test")`.
Note that Rust does not have a notion of optional function arguments or
variadic functions (except for its C-FFI).
"##,
E0062: r##"
This error indicates that during an attempt to build a struct or struct-like
enum variant, one of the fields was specified more than once. Erroneous code
example:
```compile_fail,E0062
struct Foo {
x: i32,
}
fn main() {
let x = Foo {
x: 0,
x: 0, // error: field `x` specified more than once
};
}
```
Each field should be specified exactly one time. Example:
```
struct Foo {
x: i32,
}
fn main() {
let x = Foo { x: 0 }; // ok!
}
```
"##,
E0063: r##"
This error indicates that during an attempt to build a struct or struct-like
enum variant, one of the fields was not provided. Erroneous code example:
```compile_fail,E0063
struct Foo {
x: i32,
y: i32,
}
fn main() {
let x = Foo { x: 0 }; // error: missing field: `y`
}
```
Each field should be specified exactly once. Example:
```
struct Foo {
x: i32,
y: i32,
}
fn main() {
let x = Foo { x: 0, y: 0 }; // ok!
}
```
"##,
E0066: r##"
Box placement expressions (like C++'s "placement new") do not yet support any
place expression except the exchange heap (i.e. `std::boxed::HEAP`).
Furthermore, the syntax is changing to use `in` instead of `box`. See [RFC 470]
and [RFC 809] for more details.
[RFC 470]: https://github.com/rust-lang/rfcs/pull/470
[RFC 809]: https://github.com/rust-lang/rfcs/pull/809
"##,
E0067: r##"
The left-hand side of a compound assignment expression must be an lvalue
expression. An lvalue expression represents a memory location and includes
item paths (ie, namespaced variables), dereferences, indexing expressions,
and field references.
Let's start with some erroneous code examples:
```compile_fail,E0067
use std::collections::LinkedList;
// Bad: assignment to non-lvalue expression
LinkedList::new() += 1;
// ...
fn some_func(i: &mut i32) {
i += 12; // Error : '+=' operation cannot be applied on a reference !
}
```
And now some working examples:
```
let mut i : i32 = 0;
i += 12; // Good !
// ...
fn some_func(i: &mut i32) {
*i += 12; // Good !
}
```
"##,
E0069: r##"
The compiler found a function whose body contains a `return;` statement but
whose return type is not `()`. An example of this is:
```compile_fail,E0069
// error
fn foo() -> u8 {
return;
}
```
Since `return;` is just like `return ();`, there is a mismatch between the
function's return type and the value being returned.
"##,
E0070: r##"
The left-hand side of an assignment operator must be an lvalue expression. An
lvalue expression represents a memory location and can be a variable (with
optional namespacing), a dereference, an indexing expression or a field
reference.
More details can be found here:
https://doc.rust-lang.org/reference.html#lvalues-rvalues-and-temporaries
Now, we can go further. Here are some erroneous code examples:
```compile_fail,E0070
struct SomeStruct {
x: i32,
y: i32
}
const SOME_CONST : i32 = 12;
fn some_other_func() {}
fn some_function() {
SOME_CONST = 14; // error : a constant value cannot be changed!
1 = 3; // error : 1 isn't a valid lvalue!
some_other_func() = 4; // error : we can't assign value to a function!
SomeStruct.x = 12; // error : SomeStruct a structure name but it is used
// like a variable!
}
```
And now let's give working examples:
```
struct SomeStruct {
x: i32,
y: i32
}
let mut s = SomeStruct {x: 0, y: 0};
s.x = 3; // that's good !
// ...
fn some_func(x: &mut i32) {
*x = 12; // that's good !
}
```
"##,
E0071: r##"
You tried to use structure-literal syntax to create an item that is
not a structure or enum variant.
Example of erroneous code:
```compile_fail,E0071
type U32 = u32;
let t = U32 { value: 4 }; // error: expected struct, variant or union type,
// found builtin type `u32`
```
To fix this, ensure that the name was correctly spelled, and that
the correct form of initializer was used.
For example, the code above can be fixed to:
```
enum Foo {
FirstValue(i32)
}
fn main() {
let u = Foo::FirstValue(0i32);
let t = 4;
}
```
"##,
E0073: r##"
You cannot define a struct (or enum) `Foo` that requires an instance of `Foo`
in order to make a new `Foo` value. This is because there would be no way a
first instance of `Foo` could be made to initialize another instance!
Here's an example of a struct that has this problem:
```ignore
struct Foo { x: Box<Foo> } // error
```
One fix is to use `Option`, like so:
```
struct Foo { x: Option<Box<Foo>> }
```
Now it's possible to create at least one instance of `Foo`: `Foo { x: None }`.
"##,
E0074: r##"
When using the `#[simd]` attribute on a tuple struct, the components of the
tuple struct must all be of a concrete, nongeneric type so the compiler can
reason about how to use SIMD with them. This error will occur if the types
are generic.
This will cause an error:
```ignore
#![feature(repr_simd)]
#[repr(simd)]
struct Bad<T>(T, T, T);
```
This will not:
```
#![feature(repr_simd)]
#[repr(simd)]
struct Good(u32, u32, u32);
```
"##,
E0075: r##"
The `#[simd]` attribute can only be applied to non empty tuple structs, because
it doesn't make sense to try to use SIMD operations when there are no values to
operate on.
This will cause an error:
```compile_fail,E0075
#![feature(repr_simd)]
#[repr(simd)]
struct Bad;
```
This will not:
```
#![feature(repr_simd)]
#[repr(simd)]
struct Good(u32);
```
"##,
E0076: r##"
When using the `#[simd]` attribute to automatically use SIMD operations in tuple
struct, the types in the struct must all be of the same type, or the compiler
will trigger this error.
This will cause an error:
```compile_fail,E0076
#![feature(repr_simd)]
#[repr(simd)]
struct Bad(u16, u32, u32);
```
This will not:
```
#![feature(repr_simd)]
#[repr(simd)]
struct Good(u32, u32, u32);
```
"##,
E0077: r##"
When using the `#[simd]` attribute on a tuple struct, the elements in the tuple
must be machine types so SIMD operations can be applied to them.
This will cause an error:
```compile_fail,E0077
#![feature(repr_simd)]
#[repr(simd)]
struct Bad(String);
```
This will not:
```
#![feature(repr_simd)]
#[repr(simd)]
struct Good(u32, u32, u32);
```
"##,
E0081: r##"
Enum discriminants are used to differentiate enum variants stored in memory.
This error indicates that the same value was used for two or more variants,
making them impossible to tell apart.
```compile_fail,E0081
// Bad.
enum Enum {
P = 3,
X = 3,
Y = 5,
}
```
```
// Good.
enum Enum {
P,
X = 3,
Y = 5,
}
```
Note that variants without a manually specified discriminant are numbered from
top to bottom starting from 0, so clashes can occur with seemingly unrelated
variants.
```compile_fail,E0081
enum Bad {
X,
Y = 0
}
```
Here `X` will have already been specified the discriminant 0 by the time `Y` is
encountered, so a conflict occurs.
"##,
E0082: r##"
When you specify enum discriminants with `=`, the compiler expects `isize`
values by default. Or you can add the `repr` attibute to the enum declaration
for an explicit choice of the discriminant type. In either cases, the
discriminant values must fall within a valid range for the expected type;
otherwise this error is raised. For example:
```ignore
#[repr(u8)]
enum Thing {
A = 1024,
B = 5,
}
```
Here, 1024 lies outside the valid range for `u8`, so the discriminant for `A` is
invalid. Here is another, more subtle example which depends on target word size:
```ignore
enum DependsOnPointerSize {
A = 1 << 32,
}
```
Here, `1 << 32` is interpreted as an `isize` value. So it is invalid for 32 bit
target (`target_pointer_width = "32"`) but valid for 64 bit target.
You may want to change representation types to fix this, or else change invalid
discriminant values so that they fit within the existing type.
"##,
E0084: r##"
An unsupported representation was attempted on a zero-variant enum.
Erroneous code example:
```compile_fail,E0084
#[repr(i32)]
enum NightsWatch {} // error: unsupported representation for zero-variant enum
```
It is impossible to define an integer type to be used to represent zero-variant
enum values because there are no zero-variant enum values. There is no way to
construct an instance of the following type using only safe code. So you have
two solutions. Either you add variants in your enum:
```
#[repr(i32)]
enum NightsWatch {
JonSnow,
Commander,
}
```
or you remove the integer represention of your enum:
```
enum NightsWatch {}
```
"##,
E0087: r##"
Too many type parameters were supplied for a function. For example:
```compile_fail,E0087
fn foo<T>() {}
fn main() {
foo::<f64, bool>(); // error, expected 1 parameter, found 2 parameters
}
```
The number of supplied parameters must exactly match the number of defined type
parameters.
"##,
E0088: r##"
You gave too many lifetime parameters. Erroneous code example:
```compile_fail,E0088
fn f() {}
fn main() {
f::<'static>() // error: too many lifetime parameters provided
}
```
Please check you give the right number of lifetime parameters. Example:
```
fn f() {}
fn main() {
f() // ok!
}
```
It's also important to note that the Rust compiler can generally
determine the lifetime by itself. Example:
```
struct Foo {
value: String
}
impl Foo {
// it can be written like this
fn get_value<'a>(&'a self) -> &'a str { &self.value }
// but the compiler works fine with this too:
fn without_lifetime(&self) -> &str { &self.value }
}
fn main() {
let f = Foo { value: "hello".to_owned() };
println!("{}", f.get_value());
println!("{}", f.without_lifetime());
}
```
"##,
E0089: r##"
Not enough type parameters were supplied for a function. For example:
```compile_fail,E0089
fn foo<T, U>() {}
fn main() {
foo::<f64>(); // error, expected 2 parameters, found 1 parameter
}
```
Note that if a function takes multiple type parameters but you want the compiler
to infer some of them, you can use type placeholders:
```compile_fail,E0089
fn foo<T, U>(x: T) {}
fn main() {
let x: bool = true;
foo::<f64>(x); // error, expected 2 parameters, found 1 parameter
foo::<_, f64>(x); // same as `foo::<bool, f64>(x)`
}
```
"##,
E0091: r##"
You gave an unnecessary type parameter in a type alias. Erroneous code
example:
```compile_fail,E0091
type Foo<T> = u32; // error: type parameter `T` is unused
// or:
type Foo<A,B> = Box<A>; // error: type parameter `B` is unused
```
Please check you didn't write too many type parameters. Example:
```
type Foo = u32; // ok!
type Foo2<A> = Box<A>; // ok!
```
"##,
E0092: r##"
You tried to declare an undefined atomic operation function.
Erroneous code example:
```compile_fail,E0092
#![feature(intrinsics)]
extern "rust-intrinsic" {
fn atomic_foo(); // error: unrecognized atomic operation
// function
}
```
Please check you didn't make a mistake in the function's name. All intrinsic
functions are defined in librustc_trans/trans/intrinsic.rs and in
libcore/intrinsics.rs in the Rust source code. Example:
```
#![feature(intrinsics)]
extern "rust-intrinsic" {
fn atomic_fence(); // ok!
}
```
"##,
E0093: r##"
You declared an unknown intrinsic function. Erroneous code example:
```compile_fail,E0093
#![feature(intrinsics)]
extern "rust-intrinsic" {
fn foo(); // error: unrecognized intrinsic function: `foo`
}
fn main() {
unsafe {
foo();
}
}
```
Please check you didn't make a mistake in the function's name. All intrinsic
functions are defined in librustc_trans/trans/intrinsic.rs and in
libcore/intrinsics.rs in the Rust source code. Example:
```
#![feature(intrinsics)]
extern "rust-intrinsic" {
fn atomic_fence(); // ok!
}
fn main() {
unsafe {
atomic_fence();
}
}
```
"##,
E0094: r##"
You gave an invalid number of type parameters to an intrinsic function.
Erroneous code example:
```compile_fail,E0094
#![feature(intrinsics)]
extern "rust-intrinsic" {
fn size_of<T, U>() -> usize; // error: intrinsic has wrong number
// of type parameters
}
```
Please check that you provided the right number of type parameters
and verify with the function declaration in the Rust source code.
Example:
```
#![feature(intrinsics)]
extern "rust-intrinsic" {
fn size_of<T>() -> usize; // ok!
}
```
"##,
E0101: r##"
You hit this error because the compiler lacks the information to
determine a type for this expression. Erroneous code example:
```compile_fail,E0101
let x = |_| {}; // error: cannot determine a type for this expression
```
You have two possibilities to solve this situation:
* Give an explicit definition of the expression
* Infer the expression
Examples:
```
let x = |_ : u32| {}; // ok!
// or:
let x = |_| {};
x(0u32);
```
"##,
E0102: r##"
You hit this error because the compiler lacks the information to
determine the type of this variable. Erroneous code example:
```compile_fail,E0102
// could be an array of anything
let x = []; // error: cannot determine a type for this local variable
```
To solve this situation, constrain the type of the variable.
Examples:
```
#![allow(unused_variables)]
fn main() {
let x: [u8; 0] = [];
}
```
"##,
E0107: r##"
This error means that an incorrect number of lifetime parameters were provided
for a type (like a struct or enum) or trait:
```compile_fail,E0107
struct Foo<'a, 'b>(&'a str, &'b str);
enum Bar { A, B, C }
struct Baz<'a> {
foo: Foo<'a>, // error: expected 2, found 1
bar: Bar<'a>, // error: expected 0, found 1
}
```
"##,
E0109: r##"
You tried to give a type parameter to a type which doesn't need it. Erroneous
code example:
```compile_fail,E0109
type X = u32<i32>; // error: type parameters are not allowed on this type
```
Please check that you used the correct type and recheck its definition. Perhaps
it doesn't need the type parameter.
Example:
```
type X = u32; // this compiles
```
Note that type parameters for enum-variant constructors go after the variant,
not after the enum (Option::None::<u32>, not Option::<u32>::None).
"##,
E0110: r##"
You tried to give a lifetime parameter to a type which doesn't need it.
Erroneous code example:
```compile_fail,E0110
type X = u32<'static>; // error: lifetime parameters are not allowed on
// this type
```
Please check that the correct type was used and recheck its definition; perhaps
it doesn't need the lifetime parameter. Example:
```
type X = u32; // ok!
```
"##,
E0116: r##"
You can only define an inherent implementation for a type in the same crate
where the type was defined. For example, an `impl` block as below is not allowed
since `Vec` is defined in the standard library:
```compile_fail,E0116
impl Vec<u8> { } // error
```
To fix this problem, you can do either of these things:
- define a trait that has the desired associated functions/types/constants and
implement the trait for the type in question
- define a new type wrapping the type and define an implementation on the new
type
Note that using the `type` keyword does not work here because `type` only
introduces a type alias:
```compile_fail,E0116
type Bytes = Vec<u8>;
impl Bytes { } // error, same as above
```
"##,
E0117: r##"
This error indicates a violation of one of Rust's orphan rules for trait
implementations. The rule prohibits any implementation of a foreign trait (a
trait defined in another crate) where
- the type that is implementing the trait is foreign
- all of the parameters being passed to the trait (if there are any) are also
foreign.
Here's one example of this error:
```compile_fail,E0117
impl Drop for u32 {}
```
To avoid this kind of error, ensure that at least one local type is referenced
by the `impl`:
```ignore
pub struct Foo; // you define your type in your crate
impl Drop for Foo { // and you can implement the trait on it!
// code of trait implementation here
}
impl From<Foo> for i32 { // or you use a type from your crate as
// a type parameter
fn from(i: Foo) -> i32 {
0
}
}
```
Alternatively, define a trait locally and implement that instead:
```
trait Bar {
fn get(&self) -> usize;
}
impl Bar for u32 {
fn get(&self) -> usize { 0 }
}
```
For information on the design of the orphan rules, see [RFC 1023].
[RFC 1023]: https://github.com/rust-lang/rfcs/pull/1023
"##,
E0118: r##"
You're trying to write an inherent implementation for something which isn't a
struct nor an enum. Erroneous code example:
```compile_fail,E0118
impl (u8, u8) { // error: no base type found for inherent implementation
fn get_state(&self) -> String {
// ...
}
}
```
To fix this error, please implement a trait on the type or wrap it in a struct.
Example:
```
// we create a trait here
trait LiveLongAndProsper {
fn get_state(&self) -> String;
}
// and now you can implement it on (u8, u8)
impl LiveLongAndProsper for (u8, u8) {
fn get_state(&self) -> String {
"He's dead, Jim!".to_owned()
}
}
```
Alternatively, you can create a newtype. A newtype is a wrapping tuple-struct.
For example, `NewType` is a newtype over `Foo` in `struct NewType(Foo)`.
Example:
```
struct TypeWrapper((u8, u8));
impl TypeWrapper {
fn get_state(&self) -> String {
"Fascinating!".to_owned()
}
}
```
"##,
E0119: r##"
There are conflicting trait implementations for the same type.
Example of erroneous code:
```compile_fail,E0119
trait MyTrait {
fn get(&self) -> usize;
}
impl<T> MyTrait for T {
fn get(&self) -> usize { 0 }
}
struct Foo {
value: usize
}
impl MyTrait for Foo { // error: conflicting implementations of trait
// `MyTrait` for type `Foo`
fn get(&self) -> usize { self.value }
}
```
When looking for the implementation for the trait, the compiler finds
both the `impl<T> MyTrait for T` where T is all types and the `impl
MyTrait for Foo`. Since a trait cannot be implemented multiple times,
this is an error. So, when you write:
```
trait MyTrait {
fn get(&self) -> usize;
}
impl<T> MyTrait for T {
fn get(&self) -> usize { 0 }
}
```
This makes the trait implemented on all types in the scope. So if you
try to implement it on another one after that, the implementations will
conflict. Example:
```
trait MyTrait {
fn get(&self) -> usize;
}
impl<T> MyTrait for T {
fn get(&self) -> usize { 0 }
}
struct Foo;
fn main() {
let f = Foo;
f.get(); // the trait is implemented so we can use it
}
```
"##,
E0120: r##"
An attempt was made to implement Drop on a trait, which is not allowed: only
structs and enums can implement Drop. An example causing this error:
```compile_fail,E0120
trait MyTrait {}
impl Drop for MyTrait {
fn drop(&mut self) {}
}
```
A workaround for this problem is to wrap the trait up in a struct, and implement
Drop on that. An example is shown below:
```
trait MyTrait {}
struct MyWrapper<T: MyTrait> { foo: T }
impl <T: MyTrait> Drop for MyWrapper<T> {
fn drop(&mut self) {}
}
```
Alternatively, wrapping trait objects requires something like the following:
```
trait MyTrait {}
//or Box<MyTrait>, if you wanted an owned trait object
struct MyWrapper<'a> { foo: &'a MyTrait }
impl <'a> Drop for MyWrapper<'a> {
fn drop(&mut self) {}
}
```
"##,
E0121: r##"
In order to be consistent with Rust's lack of global type inference, type
placeholders are disallowed by design in item signatures.
Examples of this error include:
```compile_fail,E0121
fn foo() -> _ { 5 } // error, explicitly write out the return type instead
static BAR: _ = "test"; // error, explicitly write out the type instead
```
"##,
E0122: r##"
An attempt was made to add a generic constraint to a type alias. While Rust will
allow this with a warning, it will not currently enforce the constraint.
Consider the example below:
```
trait Foo{}
type MyType<R: Foo> = (R, ());
fn main() {
let t: MyType<u32>;
}
```
We're able to declare a variable of type `MyType<u32>`, despite the fact that
`u32` does not implement `Foo`. As a result, one should avoid using generic
constraints in concert with type aliases.
"##,
E0124: r##"
You declared two fields of a struct with the same name. Erroneous code
example:
```compile_fail,E0124
struct Foo {
field1: i32,
field1: i32, // error: field is already declared
}
```
Please verify that the field names have been correctly spelled. Example:
```
struct Foo {
field1: i32,
field2: i32, // ok!
}
```
"##,
E0131: r##"
It is not possible to define `main` with type parameters, or even with function
parameters. When `main` is present, it must take no arguments and return `()`.
Erroneous code example:
```compile_fail,E0131
fn main<T>() { // error: main function is not allowed to have type parameters
}
```
"##,
E0132: r##"
A function with the `start` attribute was declared with type parameters.
Erroneous code example:
```compile_fail,E0132
#![feature(start)]
#[start]
fn f<T>() {}
```
It is not possible to declare type parameters on a function that has the `start`
attribute. Such a function must have the following type signature (for more
information: http://doc.rust-lang.org/stable/book/no-stdlib.html):
```ignore
fn(isize, *const *const u8) -> isize;
```
Example:
```
#![feature(start)]
#[start]
fn my_start(argc: isize, argv: *const *const u8) -> isize {
0
}
```
"##,
E0164: r##"
This error means that an attempt was made to match a struct type enum
variant as a non-struct type:
```compile_fail,E0164
enum Foo { B { i: u32 } }
fn bar(foo: Foo) -> u32 {
match foo {
Foo::B(i) => i, // error E0164
}
}
```
Try using `{}` instead:
```
enum Foo { B { i: u32 } }
fn bar(foo: Foo) -> u32 {
match foo {
Foo::B{i} => i,
}
}
```
"##,
E0182: r##"
You bound an associated type in an expression path which is not
allowed.
Erroneous code example:
```compile_fail,E0182
trait Foo {
type A;
fn bar() -> isize;
}
impl Foo for isize {
type A = usize;
fn bar() -> isize { 42 }
}
// error: unexpected binding of associated item in expression path
let x: isize = Foo::<A=usize>::bar();
```
To give a concrete type when using the Universal Function Call Syntax,
use "Type as Trait". Example:
```
trait Foo {
type A;
fn bar() -> isize;
}
impl Foo for isize {
type A = usize;
fn bar() -> isize { 42 }
}
let x: isize = <isize as Foo>::bar(); // ok!
```
"##,
E0184: r##"
Explicitly implementing both Drop and Copy for a type is currently disallowed.
This feature can make some sense in theory, but the current implementation is
incorrect and can lead to memory unsafety (see [issue #20126][iss20126]), so
it has been disabled for now.
[iss20126]: https://github.com/rust-lang/rust/issues/20126
"##,
E0185: r##"
An associated function for a trait was defined to be static, but an
implementation of the trait declared the same function to be a method (i.e. to
take a `self` parameter).
Here's an example of this error:
```compile_fail,E0185
trait Foo {
fn foo();
}
struct Bar;
impl Foo for Bar {
// error, method `foo` has a `&self` declaration in the impl, but not in
// the trait
fn foo(&self) {}
}
```
"##,
E0186: r##"
An associated function for a trait was defined to be a method (i.e. to take a
`self` parameter), but an implementation of the trait declared the same function
to be static.
Here's an example of this error:
```compile_fail,E0186
trait Foo {
fn foo(&self);
}
struct Bar;
impl Foo for Bar {
// error, method `foo` has a `&self` declaration in the trait, but not in
// the impl
fn foo() {}
}
```
"##,
E0191: r##"
Trait objects need to have all associated types specified. Erroneous code
example:
```compile_fail,E0191
trait Trait {
type Bar;
}
type Foo = Trait; // error: the value of the associated type `Bar` (from
// the trait `Trait`) must be specified
```
Please verify you specified all associated types of the trait and that you
used the right trait. Example:
```
trait Trait {
type Bar;
}
type Foo = Trait<Bar=i32>; // ok!
```
"##,
E0192: r##"
Negative impls are only allowed for traits with default impls. For more
information see the [opt-in builtin traits RFC](https://github.com/rust-lang/
rfcs/blob/master/text/0019-opt-in-builtin-traits.md).
"##,
E0193: r##"
`where` clauses must use generic type parameters: it does not make sense to use
them otherwise. An example causing this error:
```ignore
trait Foo {
fn bar(&self);
}
#[derive(Copy,Clone)]
struct Wrapper<T> {
Wrapped: T
}
impl Foo for Wrapper<u32> where Wrapper<u32>: Clone {
fn bar(&self) { }
}
```
This use of a `where` clause is strange - a more common usage would look
something like the following:
```
trait Foo {
fn bar(&self);
}
#[derive(Copy,Clone)]
struct Wrapper<T> {
Wrapped: T
}
impl <T> Foo for Wrapper<T> where Wrapper<T>: Clone {
fn bar(&self) { }
}
```
Here, we're saying that the implementation exists on Wrapper only when the
wrapped type `T` implements `Clone`. The `where` clause is important because
some types will not implement `Clone`, and thus will not get this method.
In our erroneous example, however, we're referencing a single concrete type.
Since we know for certain that `Wrapper<u32>` implements `Clone`, there's no
reason to also specify it in a `where` clause.
"##,
E0194: r##"
A type parameter was declared which shadows an existing one. An example of this
error:
```compile_fail,E0194
trait Foo<T> {
fn do_something(&self) -> T;
fn do_something_else<T: Clone>(&self, bar: T);
}
```
In this example, the trait `Foo` and the trait method `do_something_else` both
define a type parameter `T`. This is not allowed: if the method wishes to
define a type parameter, it must use a different name for it.
"##,
E0195: r##"
Your method's lifetime parameters do not match the trait declaration.
Erroneous code example:
```compile_fail,E0195
trait Trait {
fn bar<'a,'b:'a>(x: &'a str, y: &'b str);
}
struct Foo;
impl Trait for Foo {
fn bar<'a,'b>(x: &'a str, y: &'b str) {
// error: lifetime parameters or bounds on method `bar`
// do not match the trait declaration
}
}
```
The lifetime constraint `'b` for bar() implementation does not match the
trait declaration. Ensure lifetime declarations match exactly in both trait
declaration and implementation. Example:
```
trait Trait {
fn t<'a,'b:'a>(x: &'a str, y: &'b str);
}
struct Foo;
impl Trait for Foo {
fn t<'a,'b:'a>(x: &'a str, y: &'b str) { // ok!
}
}
```
"##,
E0197: r##"
Inherent implementations (one that do not implement a trait but provide
methods associated with a type) are always safe because they are not
implementing an unsafe trait. Removing the `unsafe` keyword from the inherent
implementation will resolve this error.
```compile_fail,E0197
struct Foo;
// this will cause this error
unsafe impl Foo { }
// converting it to this will fix it
impl Foo { }
```
"##,
E0198: r##"
A negative implementation is one that excludes a type from implementing a
particular trait. Not being able to use a trait is always a safe operation,
so negative implementations are always safe and never need to be marked as
unsafe.
```compile_fail
#![feature(optin_builtin_traits)]
struct Foo;
// unsafe is unnecessary
unsafe impl !Clone for Foo { }
```
This will compile:
```
#![feature(optin_builtin_traits)]
struct Foo;
trait Enterprise {}
impl Enterprise for .. { }
impl !Enterprise for Foo { }
```
Please note that negative impls are only allowed for traits with default impls.
"##,
E0199: r##"
Safe traits should not have unsafe implementations, therefore marking an
implementation for a safe trait unsafe will cause a compiler error. Removing
the unsafe marker on the trait noted in the error will resolve this problem.
```compile_fail,E0199
struct Foo;
trait Bar { }
// this won't compile because Bar is safe
unsafe impl Bar for Foo { }
// this will compile
impl Bar for Foo { }
```
"##,
E0200: r##"
Unsafe traits must have unsafe implementations. This error occurs when an
implementation for an unsafe trait isn't marked as unsafe. This may be resolved
by marking the unsafe implementation as unsafe.
```compile_fail,E0200
struct Foo;
unsafe trait Bar { }
// this won't compile because Bar is unsafe and impl isn't unsafe
impl Bar for Foo { }
// this will compile
unsafe impl Bar for Foo { }
```
"##,
E0201: r##"
It is an error to define two associated items (like methods, associated types,
associated functions, etc.) with the same identifier.
For example:
```compile_fail,E0201
struct Foo(u8);
impl Foo {
fn bar(&self) -> bool { self.0 > 5 }
fn bar() {} // error: duplicate associated function
}
trait Baz {
type Quux;
fn baz(&self) -> bool;
}
impl Baz for Foo {
type Quux = u32;
fn baz(&self) -> bool { true }
// error: duplicate method
fn baz(&self) -> bool { self.0 > 5 }
// error: duplicate associated type
type Quux = u32;
}
```
Note, however, that items with the same name are allowed for inherent `impl`
blocks that don't overlap:
```
struct Foo<T>(T);
impl Foo<u8> {
fn bar(&self) -> bool { self.0 > 5 }
}
impl Foo<bool> {
fn bar(&self) -> bool { self.0 }
}
```
"##,
E0202: r##"
Inherent associated types were part of [RFC 195] but are not yet implemented.
See [the tracking issue][iss8995] for the status of this implementation.
[RFC 195]: https://github.com/rust-lang/rfcs/pull/195
[iss8995]: https://github.com/rust-lang/rust/issues/8995
"##,
E0204: r##"
An attempt to implement the `Copy` trait for a struct failed because one of the
fields does not implement `Copy`. To fix this, you must implement `Copy` for the
mentioned field. Note that this may not be possible, as in the example of
```compile_fail,E0204
struct Foo {
foo : Vec<u32>,
}
impl Copy for Foo { }
```
This fails because `Vec<T>` does not implement `Copy` for any `T`.
Here's another example that will fail:
```compile_fail,E0204
#[derive(Copy)]
struct Foo<'a> {
ty: &'a mut bool,
}
```
This fails because `&mut T` is not `Copy`, even when `T` is `Copy` (this
differs from the behavior for `&T`, which is always `Copy`).
"##,
E0206: r##"
You can only implement `Copy` for a struct or enum. Both of the following
examples will fail, because neither `i32` (primitive type) nor `&'static Bar`
(reference to `Bar`) is a struct or enum:
```compile_fail,E0206
type Foo = i32;
impl Copy for Foo { } // error
#[derive(Copy, Clone)]
struct Bar;
impl Copy for &'static Bar { } // error
```
"##,
E0207: r##"
Any type parameter or lifetime parameter of an `impl` must meet at least one of
the following criteria:
- it appears in the self type of the impl
- for a trait impl, it appears in the trait reference
- it is bound as an associated type
### Error example 1
Suppose we have a struct `Foo` and we would like to define some methods for it.
The following definition leads to a compiler error:
```compile_fail,E0207
struct Foo;
impl<T: Default> Foo {
// error: the type parameter `T` is not constrained by the impl trait, self
// type, or predicates [E0207]
fn get(&self) -> T {
<T as Default>::default()
}
}
```
The problem is that the parameter `T` does not appear in the self type (`Foo`)
of the impl. In this case, we can fix the error by moving the type parameter
from the `impl` to the method `get`:
```
struct Foo;
// Move the type parameter from the impl to the method
impl Foo {
fn get<T: Default>(&self) -> T {
<T as Default>::default()
}
}
```
### Error example 2
As another example, suppose we have a `Maker` trait and want to establish a
type `FooMaker` that makes `Foo`s:
```compile_fail,E0207
trait Maker {
type Item;
fn make(&mut self) -> Self::Item;
}
struct Foo<T> {
foo: T
}
struct FooMaker;
impl<T: Default> Maker for FooMaker {
// error: the type parameter `T` is not constrained by the impl trait, self
// type, or predicates [E0207]
type Item = Foo<T>;
fn make(&mut self) -> Foo<T> {
Foo { foo: <T as Default>::default() }
}
}
```
This fails to compile because `T` does not appear in the trait or in the
implementing type.
One way to work around this is to introduce a phantom type parameter into
`FooMaker`, like so:
```
use std::marker::PhantomData;
trait Maker {
type Item;
fn make(&mut self) -> Self::Item;
}
struct Foo<T> {
foo: T
}
// Add a type parameter to `FooMaker`
struct FooMaker<T> {
phantom: PhantomData<T>,
}
impl<T: Default> Maker for FooMaker<T> {
type Item = Foo<T>;
fn make(&mut self) -> Foo<T> {
Foo {
foo: <T as Default>::default(),
}
}
}
```
Another way is to do away with the associated type in `Maker` and use an input
type parameter instead:
```
// Use a type parameter instead of an associated type here
trait Maker<Item> {
fn make(&mut self) -> Item;
}
struct Foo<T> {
foo: T
}
struct FooMaker;
impl<T: Default> Maker<Foo<T>> for FooMaker {
fn make(&mut self) -> Foo<T> {
Foo { foo: <T as Default>::default() }
}
}
```
### Additional information
For more information, please see [RFC 447].
[RFC 447]: https://github.com/rust-lang/rfcs/blob/master/text/0447-no-unused-impl-parameters.md
"##,
E0210: r##"
This error indicates a violation of one of Rust's orphan rules for trait
implementations. The rule concerns the use of type parameters in an
implementation of a foreign trait (a trait defined in another crate), and
states that type parameters must be "covered" by a local type. To understand
what this means, it is perhaps easiest to consider a few examples.
If `ForeignTrait` is a trait defined in some external crate `foo`, then the
following trait `impl` is an error:
```compile_fail,E0210
extern crate collections;
use collections::range::RangeArgument;
impl<T> RangeArgument<T> for T { } // error
fn main() {}
```
To work around this, it can be covered with a local type, `MyType`:
```ignore
struct MyType<T>(T);
impl<T> ForeignTrait for MyType<T> { } // Ok
```
Please note that a type alias is not sufficient.
For another example of an error, suppose there's another trait defined in `foo`
named `ForeignTrait2` that takes two type parameters. Then this `impl` results
in the same rule violation:
```compile_fail
struct MyType2;
impl<T> ForeignTrait2<T, MyType<T>> for MyType2 { } // error
```
The reason for this is that there are two appearances of type parameter `T` in
the `impl` header, both as parameters for `ForeignTrait2`. The first appearance
is uncovered, and so runs afoul of the orphan rule.
Consider one more example:
```ignore
impl<T> ForeignTrait2<MyType<T>, T> for MyType2 { } // Ok
```
This only differs from the previous `impl` in that the parameters `T` and
`MyType<T>` for `ForeignTrait2` have been swapped. This example does *not*
violate the orphan rule; it is permitted.
To see why that last example was allowed, you need to understand the general
rule. Unfortunately this rule is a bit tricky to state. Consider an `impl`:
```ignore
impl<P1, ..., Pm> ForeignTrait<T1, ..., Tn> for T0 { ... }
```
where `P1, ..., Pm` are the type parameters of the `impl` and `T0, ..., Tn`
are types. One of the types `T0, ..., Tn` must be a local type (this is another
orphan rule, see the explanation for E0117). Let `i` be the smallest integer
such that `Ti` is a local type. Then no type parameter can appear in any of the
`Tj` for `j < i`.
For information on the design of the orphan rules, see [RFC 1023].
[RFC 1023]: https://github.com/rust-lang/rfcs/pull/1023
"##,
E0214: r##"
A generic type was described using parentheses rather than angle brackets. For
example:
```compile_fail,E0214
fn main() {
let v: Vec(&str) = vec!["foo"];
}
```
This is not currently supported: `v` should be defined as `Vec<&str>`.
Parentheses are currently only used with generic types when defining parameters
for `Fn`-family traits.
"##,
E0220: r##"
You used an associated type which isn't defined in the trait.
Erroneous code example:
```compile_fail,E0220
trait T1 {
type Bar;
}
type Foo = T1<F=i32>; // error: associated type `F` not found for `T1`
// or:
trait T2 {
type Bar;
// error: Baz is used but not declared
fn return_bool(&self, &Self::Bar, &Self::Baz) -> bool;
}
```
Make sure that you have defined the associated type in the trait body.
Also, verify that you used the right trait or you didn't misspell the
associated type name. Example:
```
trait T1 {
type Bar;
}
type Foo = T1<Bar=i32>; // ok!
// or:
trait T2 {
type Bar;
type Baz; // we declare `Baz` in our trait.
// and now we can use it here:
fn return_bool(&self, &Self::Bar, &Self::Baz) -> bool;
}
```
"##,
E0221: r##"
An attempt was made to retrieve an associated type, but the type was ambiguous.
For example:
```compile_fail,E0221
trait T1 {}
trait T2 {}
trait Foo {
type A: T1;
}
trait Bar : Foo {
type A: T2;
fn do_something() {
let _: Self::A;
}
}
```
In this example, `Foo` defines an associated type `A`. `Bar` inherits that type
from `Foo`, and defines another associated type of the same name. As a result,
when we attempt to use `Self::A`, it's ambiguous whether we mean the `A` defined
by `Foo` or the one defined by `Bar`.
There are two options to work around this issue. The first is simply to rename
one of the types. Alternatively, one can specify the intended type using the
following syntax:
```
trait T1 {}
trait T2 {}
trait Foo {
type A: T1;
}
trait Bar : Foo {
type A: T2;
fn do_something() {
let _: <Self as Bar>::A;
}
}
```
"##,
E0223: r##"
An attempt was made to retrieve an associated type, but the type was ambiguous.
For example:
```compile_fail,E0223
trait MyTrait {type X; }
fn main() {
let foo: MyTrait::X;
}
```
The problem here is that we're attempting to take the type of X from MyTrait.
Unfortunately, the type of X is not defined, because it's only made concrete in
implementations of the trait. A working version of this code might look like:
```
trait MyTrait {type X; }
struct MyStruct;
impl MyTrait for MyStruct {
type X = u32;
}
fn main() {
let foo: <MyStruct as MyTrait>::X;
}
```
This syntax specifies that we want the X type from MyTrait, as made concrete in
MyStruct. The reason that we cannot simply use `MyStruct::X` is that MyStruct
might implement two different traits with identically-named associated types.
This syntax allows disambiguation between the two.
"##,
E0225: r##"
You attempted to use multiple types as bounds for a closure or trait object.
Rust does not currently support this. A simple example that causes this error:
```compile_fail,E0225
fn main() {
let _: Box<std::io::Read + std::io::Write>;
}
```
Send and Sync are an exception to this rule: it's possible to have bounds of
one non-builtin trait, plus either or both of Send and Sync. For example, the
following compiles correctly:
```
fn main() {
let _: Box<std::io::Read + Send + Sync>;
}
```
"##,
E0229: r##"
An associated type binding was done outside of the type parameter declaration
and `where` clause. Erroneous code example:
```compile_fail,E0229
pub trait Foo {
type A;
fn boo(&self) -> <Self as Foo>::A;
}
struct Bar;
impl Foo for isize {
type A = usize;
fn boo(&self) -> usize { 42 }
}
fn baz<I>(x: &<I as Foo<A=Bar>>::A) {}
// error: associated type bindings are not allowed here
```
To solve this error, please move the type bindings in the type parameter
declaration:
```ignore
fn baz<I: Foo<A=Bar>>(x: &<I as Foo>::A) {} // ok!
```
Or in the `where` clause:
```ignore
fn baz<I>(x: &<I as Foo>::A) where I: Foo<A=Bar> {}
```
"##,
E0230: r##"
The trait has more type parameters specified than appear in its definition.
Erroneous example code:
```compile_fail,E0230
#![feature(on_unimplemented)]
#[rustc_on_unimplemented = "Trait error on `{Self}` with `<{A},{B},{C}>`"]
// error: there is no type parameter C on trait TraitWithThreeParams
trait TraitWithThreeParams<A,B>
{}
```
Include the correct number of type parameters and the compilation should
proceed:
```
#![feature(on_unimplemented)]
#[rustc_on_unimplemented = "Trait error on `{Self}` with `<{A},{B},{C}>`"]
trait TraitWithThreeParams<A,B,C> // ok!
{}
```
"##,
E0232: r##"
The attribute must have a value. Erroneous code example:
```compile_fail,E0232
#![feature(on_unimplemented)]
#[rustc_on_unimplemented] // error: this attribute must have a value
trait Bar {}
```
Please supply the missing value of the attribute. Example:
```
#![feature(on_unimplemented)]
#[rustc_on_unimplemented = "foo"] // ok!
trait Bar {}
```
"##,
E0243: r##"
This error indicates that not enough type parameters were found in a type or
trait.
For example, the `Foo` struct below is defined to be generic in `T`, but the
type parameter is missing in the definition of `Bar`:
```compile_fail,E0243
struct Foo<T> { x: T }
struct Bar { x: Foo }
```
"##,
E0244: r##"
This error indicates that too many type parameters were found in a type or
trait.
For example, the `Foo` struct below has no type parameters, but is supplied
with two in the definition of `Bar`:
```compile_fail,E0244
struct Foo { x: bool }
struct Bar<S, T> { x: Foo<S, T> }
```
"##,
E0569: r##"
If an impl has a generic parameter with the `#[may_dangle]` attribute, then
that impl must be declared as an `unsafe impl. For example:
```compile_fail,E0569
#![feature(generic_param_attrs)]
#![feature(dropck_eyepatch)]
struct Foo<X>(X);
impl<#[may_dangle] X> Drop for Foo<X> {
fn drop(&mut self) { }
}
```
In this example, we are asserting that the destructor for `Foo` will not
access any data of type `X`, and require this assertion to be true for
overall safety in our program. The compiler does not currently attempt to
verify this assertion; therefore we must tag this `impl` as unsafe.
"##,
E0318: r##"
Default impls for a trait must be located in the same crate where the trait was
defined. For more information see the [opt-in builtin traits RFC](https://github
.com/rust-lang/rfcs/blob/master/text/0019-opt-in-builtin-traits.md).
"##,
E0321: r##"
A cross-crate opt-out trait was implemented on something which wasn't a struct
or enum type. Erroneous code example:
```compile_fail,E0321
#![feature(optin_builtin_traits)]
struct Foo;
impl !Sync for Foo {}
unsafe impl Send for &'static Foo {}
// error: cross-crate traits with a default impl, like `core::marker::Send`,
// can only be implemented for a struct/enum type, not
// `&'static Foo`
```
Only structs and enums are permitted to impl Send, Sync, and other opt-out
trait, and the struct or enum must be local to the current crate. So, for
example, `unsafe impl Send for Rc<Foo>` is not allowed.
"##,
E0322: r##"
The `Sized` trait is a special trait built-in to the compiler for types with a
constant size known at compile-time. This trait is automatically implemented
for types as needed by the compiler, and it is currently disallowed to
explicitly implement it for a type.
"##,
E0323: r##"
An associated const was implemented when another trait item was expected.
Erroneous code example:
```compile_fail,E0323
#![feature(associated_consts)]
trait Foo {
type N;
}
struct Bar;
impl Foo for Bar {
const N : u32 = 0;
// error: item `N` is an associated const, which doesn't match its
// trait `<Bar as Foo>`
}
```
Please verify that the associated const wasn't misspelled and the correct trait
was implemented. Example:
```
struct Bar;
trait Foo {
type N;
}
impl Foo for Bar {
type N = u32; // ok!
}
```
Or:
```
#![feature(associated_consts)]
struct Bar;
trait Foo {
const N : u32;
}
impl Foo for Bar {
const N : u32 = 0; // ok!
}
```
"##,
E0324: r##"
A method was implemented when another trait item was expected. Erroneous
code example:
```compile_fail,E0324
#![feature(associated_consts)]
struct Bar;
trait Foo {
const N : u32;
fn M();
}
impl Foo for Bar {
fn N() {}
// error: item `N` is an associated method, which doesn't match its
// trait `<Bar as Foo>`
}
```
To fix this error, please verify that the method name wasn't misspelled and
verify that you are indeed implementing the correct trait items. Example:
```
#![feature(associated_consts)]
struct Bar;
trait Foo {
const N : u32;
fn M();
}
impl Foo for Bar {
const N : u32 = 0;
fn M() {} // ok!
}
```
"##,
E0325: r##"
An associated type was implemented when another trait item was expected.
Erroneous code example:
```compile_fail,E0325
#![feature(associated_consts)]
struct Bar;
trait Foo {
const N : u32;
}
impl Foo for Bar {
type N = u32;
// error: item `N` is an associated type, which doesn't match its
// trait `<Bar as Foo>`
}
```
Please verify that the associated type name wasn't misspelled and your
implementation corresponds to the trait definition. Example:
```
struct Bar;
trait Foo {
type N;
}
impl Foo for Bar {
type N = u32; // ok!
}
```
Or:
```
#![feature(associated_consts)]
struct Bar;
trait Foo {
const N : u32;
}
impl Foo for Bar {
const N : u32 = 0; // ok!
}
```
"##,
E0326: r##"
The types of any associated constants in a trait implementation must match the
types in the trait definition. This error indicates that there was a mismatch.
Here's an example of this error:
```compile_fail,E0326
#![feature(associated_consts)]
trait Foo {
const BAR: bool;
}
struct Bar;
impl Foo for Bar {
const BAR: u32 = 5; // error, expected bool, found u32
}
```
"##,
E0328: r##"
The Unsize trait should not be implemented directly. All implementations of
Unsize are provided automatically by the compiler.
Erroneous code example:
```compile_fail,E0328
#![feature(unsize)]
use std::marker::Unsize;
pub struct MyType;
impl<T> Unsize<T> for MyType {}
```
If you are defining your own smart pointer type and would like to enable
conversion from a sized to an unsized type with the [DST coercion system]
(https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md), use
[`CoerceUnsized`](https://doc.rust-lang.org/std/ops/trait.CoerceUnsized.html)
instead.
```
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
pub struct MyType<T: ?Sized> {
field_with_unsized_type: T,
}
impl<T, U> CoerceUnsized<MyType<U>> for MyType<T>
where T: CoerceUnsized<U> {}
```
"##,
E0329: r##"
An attempt was made to access an associated constant through either a generic
type parameter or `Self`. This is not supported yet. An example causing this
error is shown below:
```ignore
#![feature(associated_consts)]
trait Foo {
const BAR: f64;
}
struct MyStruct;
impl Foo for MyStruct {
const BAR: f64 = 0f64;
}
fn get_bar_bad<F: Foo>(t: F) -> f64 {
F::BAR
}
```
Currently, the value of `BAR` for a particular type can only be accessed
through a concrete type, as shown below:
```ignore
#![feature(associated_consts)]
trait Foo {
const BAR: f64;
}
struct MyStruct;
fn get_bar_good() -> f64 {
<MyStruct as Foo>::BAR
}
```
"##,
E0366: r##"
An attempt was made to implement `Drop` on a concrete specialization of a
generic type. An example is shown below:
```compile_fail,E0366
struct Foo<T> {
t: T
}
impl Drop for Foo<u32> {
fn drop(&mut self) {}
}
```
This code is not legal: it is not possible to specialize `Drop` to a subset of
implementations of a generic type. One workaround for this is to wrap the
generic type, as shown below:
```
struct Foo<T> {
t: T
}
struct Bar {
t: Foo<u32>
}
impl Drop for Bar {
fn drop(&mut self) {}
}
```
"##,
E0367: r##"
An attempt was made to implement `Drop` on a specialization of a generic type.
An example is shown below:
```compile_fail,E0367
trait Foo{}
struct MyStruct<T> {
t: T
}
impl<T: Foo> Drop for MyStruct<T> {
fn drop(&mut self) {}
}
```
This code is not legal: it is not possible to specialize `Drop` to a subset of
implementations of a generic type. In order for this code to work, `MyStruct`
must also require that `T` implements `Foo`. Alternatively, another option is
to wrap the generic type in another that specializes appropriately:
```
trait Foo{}
struct MyStruct<T> {
t: T
}
struct MyStructWrapper<T: Foo> {
t: MyStruct<T>
}
impl <T: Foo> Drop for MyStructWrapper<T> {
fn drop(&mut self) {}
}
```
"##,
E0368: r##"
This error indicates that a binary assignment operator like `+=` or `^=` was
applied to a type that doesn't support it. For example:
```compile_fail,E0368
let mut x = 12f32; // error: binary operation `<<` cannot be applied to
// type `f32`
x <<= 2;
```
To fix this error, please check that this type implements this binary
operation. Example:
```
let mut x = 12u32; // the `u32` type does implement the `ShlAssign` trait
x <<= 2; // ok!
```
It is also possible to overload most operators for your own type by
implementing the `[OP]Assign` traits from `std::ops`.
Another problem you might be facing is this: suppose you've overloaded the `+`
operator for some type `Foo` by implementing the `std::ops::Add` trait for
`Foo`, but you find that using `+=` does not work, as in this example:
```compile_fail,E0368
use std::ops::Add;
struct Foo(u32);
impl Add for Foo {
type Output = Foo;
fn add(self, rhs: Foo) -> Foo {
Foo(self.0 + rhs.0)
}
}
fn main() {
let mut x: Foo = Foo(5);
x += Foo(7); // error, `+= cannot be applied to the type `Foo`
}
```
This is because `AddAssign` is not automatically implemented, so you need to
manually implement it for your type.
"##,
E0369: r##"
A binary operation was attempted on a type which doesn't support it.
Erroneous code example:
```compile_fail,E0369
let x = 12f32; // error: binary operation `<<` cannot be applied to
// type `f32`
x << 2;
```
To fix this error, please check that this type implements this binary
operation. Example:
```
let x = 12u32; // the `u32` type does implement it:
// https://doc.rust-lang.org/stable/std/ops/trait.Shl.html
x << 2; // ok!
```
It is also possible to overload most operators for your own type by
implementing traits from `std::ops`.
"##,
E0370: r##"
The maximum value of an enum was reached, so it cannot be automatically
set in the next enum value. Erroneous code example:
```compile_fail
#[deny(overflowing_literals)]
enum Foo {
X = 0x7fffffffffffffff,
Y, // error: enum discriminant overflowed on value after
// 9223372036854775807: i64; set explicitly via
// Y = -9223372036854775808 if that is desired outcome
}
```
To fix this, please set manually the next enum value or put the enum variant
with the maximum value at the end of the enum. Examples:
```
enum Foo {
X = 0x7fffffffffffffff,
Y = 0, // ok!
}
```
Or:
```
enum Foo {
Y = 0, // ok!
X = 0x7fffffffffffffff,
}
```
"##,
E0371: r##"
When `Trait2` is a subtrait of `Trait1` (for example, when `Trait2` has a
definition like `trait Trait2: Trait1 { ... }`), it is not allowed to implement
`Trait1` for `Trait2`. This is because `Trait2` already implements `Trait1` by
definition, so it is not useful to do this.
Example:
```compile_fail,E0371
trait Foo { fn foo(&self) { } }
trait Bar: Foo { }
trait Baz: Bar { }
impl Bar for Baz { } // error, `Baz` implements `Bar` by definition
impl Foo for Baz { } // error, `Baz` implements `Bar` which implements `Foo`
impl Baz for Baz { } // error, `Baz` (trivially) implements `Baz`
impl Baz for Bar { } // Note: This is OK
```
"##,
E0374: r##"
A struct without a field containing an unsized type cannot implement
`CoerceUnsized`. An
[unsized type](https://doc.rust-lang.org/book/unsized-types.html)
is any type that the compiler doesn't know the length or alignment of at
compile time. Any struct containing an unsized type is also unsized.
Example of erroneous code:
```compile_fail,E0374
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
struct Foo<T: ?Sized> {
a: i32,
}
// error: Struct `Foo` has no unsized fields that need `CoerceUnsized`.
impl<T, U> CoerceUnsized<Foo<U>> for Foo<T>
where T: CoerceUnsized<U> {}
```
`CoerceUnsized` is used to coerce one struct containing an unsized type
into another struct containing a different unsized type. If the struct
doesn't have any fields of unsized types then you don't need explicit
coercion to get the types you want. To fix this you can either
not try to implement `CoerceUnsized` or you can add a field that is
unsized to the struct.
Example:
```
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
// We don't need to impl `CoerceUnsized` here.
struct Foo {
a: i32,
}
// We add the unsized type field to the struct.
struct Bar<T: ?Sized> {
a: i32,
b: T,
}
// The struct has an unsized field so we can implement
// `CoerceUnsized` for it.
impl<T, U> CoerceUnsized<Bar<U>> for Bar<T>
where T: CoerceUnsized<U> {}
```
Note that `CoerceUnsized` is mainly used by smart pointers like `Box`, `Rc`
and `Arc` to be able to mark that they can coerce unsized types that they
are pointing at.
"##,
E0375: r##"
A struct with more than one field containing an unsized type cannot implement
`CoerceUnsized`. This only occurs when you are trying to coerce one of the
types in your struct to another type in the struct. In this case we try to
impl `CoerceUnsized` from `T` to `U` which are both types that the struct
takes. An [unsized type](https://doc.rust-lang.org/book/unsized-types.html)
is any type that the compiler doesn't know the length or alignment of at
compile time. Any struct containing an unsized type is also unsized.
Example of erroneous code:
```compile_fail,E0375
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
struct Foo<T: ?Sized, U: ?Sized> {
a: i32,
b: T,
c: U,
}
// error: Struct `Foo` has more than one unsized field.
impl<T, U> CoerceUnsized<Foo<U, T>> for Foo<T, U> {}
```
`CoerceUnsized` only allows for coercion from a structure with a single
unsized type field to another struct with a single unsized type field.
In fact Rust only allows for a struct to have one unsized type in a struct
and that unsized type must be the last field in the struct. So having two
unsized types in a single struct is not allowed by the compiler. To fix this
use only one field containing an unsized type in the struct and then use
multiple structs to manage each unsized type field you need.
Example:
```
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
struct Foo<T: ?Sized> {
a: i32,
b: T,
}
impl <T, U> CoerceUnsized<Foo<U>> for Foo<T>
where T: CoerceUnsized<U> {}
fn coerce_foo<T: CoerceUnsized<U>, U>(t: T) -> Foo<U> {
Foo { a: 12i32, b: t } // we use coercion to get the `Foo<U>` type we need
}
```
"##,
E0376: r##"
The type you are trying to impl `CoerceUnsized` for is not a struct.
`CoerceUnsized` can only be implemented for a struct. Unsized types are
already able to be coerced without an implementation of `CoerceUnsized`
whereas a struct containing an unsized type needs to know the unsized type
field it's containing is able to be coerced. An
[unsized type](https://doc.rust-lang.org/book/unsized-types.html)
is any type that the compiler doesn't know the length or alignment of at
compile time. Any struct containing an unsized type is also unsized.
Example of erroneous code:
```compile_fail,E0376
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
struct Foo<T: ?Sized> {
a: T,
}
// error: The type `U` is not a struct
impl<T, U> CoerceUnsized<U> for Foo<T> {}
```
The `CoerceUnsized` trait takes a struct type. Make sure the type you are
providing to `CoerceUnsized` is a struct with only the last field containing an
unsized type.
Example:
```
#![feature(coerce_unsized)]
use std::ops::CoerceUnsized;
struct Foo<T> {
a: T,
}
// The `Foo<U>` is a struct so `CoerceUnsized` can be implemented
impl<T, U> CoerceUnsized<Foo<U>> for Foo<T> where T: CoerceUnsized<U> {}
```
Note that in Rust, structs can only contain an unsized type if the field
containing the unsized type is the last and only unsized type field in the
struct.
"##,
E0380: r##"
Default impls are only allowed for traits with no methods or associated items.
For more information see the [opt-in builtin traits RFC](https://github.com/rust
-lang/rfcs/blob/master/text/0019-opt-in-builtin-traits.md).
"##,
E0390: r##"
You tried to implement methods for a primitive type. Erroneous code example:
```compile_fail,E0390
struct Foo {
x: i32
}
impl *mut Foo {}
// error: only a single inherent implementation marked with
// `#[lang = "mut_ptr"]` is allowed for the `*mut T` primitive
```
This isn't allowed, but using a trait to implement a method is a good solution.
Example:
```
struct Foo {
x: i32
}
trait Bar {
fn bar();
}
impl Bar for *mut Foo {
fn bar() {} // ok!
}
```
"##,
E0392: r##"
This error indicates that a type or lifetime parameter has been declared
but not actually used. Here is an example that demonstrates the error:
```compile_fail,E0392
enum Foo<T> {
Bar,
}
```
If the type parameter was included by mistake, this error can be fixed
by simply removing the type parameter, as shown below:
```
enum Foo {
Bar,
}
```
Alternatively, if the type parameter was intentionally inserted, it must be
used. A simple fix is shown below:
```
enum Foo<T> {
Bar(T),
}
```
This error may also commonly be found when working with unsafe code. For
example, when using raw pointers one may wish to specify the lifetime for
which the pointed-at data is valid. An initial attempt (below) causes this
error:
```compile_fail,E0392
struct Foo<'a, T> {
x: *const T,
}
```
We want to express the constraint that Foo should not outlive `'a`, because
the data pointed to by `T` is only valid for that lifetime. The problem is
that there are no actual uses of `'a`. It's possible to work around this
by adding a PhantomData type to the struct, using it to tell the compiler
to act as if the struct contained a borrowed reference `&'a T`:
```
use std::marker::PhantomData;
struct Foo<'a, T: 'a> {
x: *const T,
phantom: PhantomData<&'a T>
}
```
PhantomData can also be used to express information about unused type
parameters. You can read more about it in the API documentation:
https://doc.rust-lang.org/std/marker/struct.PhantomData.html
"##,
E0393: r##"
A type parameter which references `Self` in its default value was not specified.
Example of erroneous code:
```compile_fail,E0393
trait A<T=Self> {}
fn together_we_will_rule_the_galaxy(son: &A) {}
// error: the type parameter `T` must be explicitly specified in an
// object type because its default value `Self` references the
// type `Self`
```
A trait object is defined over a single, fully-defined trait. With a regular
default parameter, this parameter can just be substituted in. However, if the
default parameter is `Self`, the trait changes for each concrete type; i.e.
`i32` will be expected to implement `A<i32>`, `bool` will be expected to
implement `A<bool>`, etc... These types will not share an implementation of a
fully-defined trait; instead they share implementations of a trait with
different parameters substituted in for each implementation. This is
irreconcilable with what we need to make a trait object work, and is thus
disallowed. Making the trait concrete by explicitly specifying the value of the
defaulted parameter will fix this issue. Fixed example:
```
trait A<T=Self> {}
fn together_we_will_rule_the_galaxy(son: &A<i32>) {} // Ok!
```
"##,
E0399: r##"
You implemented a trait, overriding one or more of its associated types but did
not reimplement its default methods.
Example of erroneous code:
```compile_fail,E0399
#![feature(associated_type_defaults)]
pub trait Foo {
type Assoc = u8;
fn bar(&self) {}
}
impl Foo for i32 {
// error - the following trait items need to be reimplemented as
// `Assoc` was overridden: `bar`
type Assoc = i32;
}
```
To fix this, add an implementation for each default method from the trait:
```
#![feature(associated_type_defaults)]
pub trait Foo {
type Assoc = u8;
fn bar(&self) {}
}
impl Foo for i32 {
type Assoc = i32;
fn bar(&self) {} // ok!
}
```
"##,
E0439: r##"
The length of the platform-intrinsic function `simd_shuffle`
wasn't specified. Erroneous code example:
```compile_fail,E0439
#![feature(platform_intrinsics)]
extern "platform-intrinsic" {
fn simd_shuffle<A,B>(a: A, b: A, c: [u32; 8]) -> B;
// error: invalid `simd_shuffle`, needs length: `simd_shuffle`
}
```
The `simd_shuffle` function needs the length of the array passed as
last parameter in its name. Example:
```
#![feature(platform_intrinsics)]
extern "platform-intrinsic" {
fn simd_shuffle8<A,B>(a: A, b: A, c: [u32; 8]) -> B;
}
```
"##,
E0440: r##"
A platform-specific intrinsic function has the wrong number of type
parameters. Erroneous code example:
```compile_fail,E0440
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct f64x2(f64, f64);
extern "platform-intrinsic" {
fn x86_mm_movemask_pd<T>(x: f64x2) -> i32;
// error: platform-specific intrinsic has wrong number of type
// parameters
}
```
Please refer to the function declaration to see if it corresponds
with yours. Example:
```
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct f64x2(f64, f64);
extern "platform-intrinsic" {
fn x86_mm_movemask_pd(x: f64x2) -> i32;
}
```
"##,
E0441: r##"
An unknown platform-specific intrinsic function was used. Erroneous
code example:
```compile_fail,E0441
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16);
extern "platform-intrinsic" {
fn x86_mm_adds_ep16(x: i16x8, y: i16x8) -> i16x8;
// error: unrecognized platform-specific intrinsic function
}
```
Please verify that the function name wasn't misspelled, and ensure
that it is declared in the rust source code (in the file
src/librustc_platform_intrinsics/x86.rs). Example:
```
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16);
extern "platform-intrinsic" {
fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i16x8; // ok!
}
```
"##,
E0442: r##"
Intrinsic argument(s) and/or return value have the wrong type.
Erroneous code example:
```compile_fail,E0442
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct i8x16(i8, i8, i8, i8, i8, i8, i8, i8,
i8, i8, i8, i8, i8, i8, i8, i8);
#[repr(simd)]
struct i32x4(i32, i32, i32, i32);
#[repr(simd)]
struct i64x2(i64, i64);
extern "platform-intrinsic" {
fn x86_mm_adds_epi16(x: i8x16, y: i32x4) -> i64x2;
// error: intrinsic arguments/return value have wrong type
}
```
To fix this error, please refer to the function declaration to give
it the awaited types. Example:
```
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16);
extern "platform-intrinsic" {
fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i16x8; // ok!
}
```
"##,
E0443: r##"
Intrinsic argument(s) and/or return value have the wrong type.
Erroneous code example:
```compile_fail,E0443
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16);
#[repr(simd)]
struct i64x8(i64, i64, i64, i64, i64, i64, i64, i64);
extern "platform-intrinsic" {
fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i64x8;
// error: intrinsic argument/return value has wrong type
}
```
To fix this error, please refer to the function declaration to give
it the awaited types. Example:
```
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct i16x8(i16, i16, i16, i16, i16, i16, i16, i16);
extern "platform-intrinsic" {
fn x86_mm_adds_epi16(x: i16x8, y: i16x8) -> i16x8; // ok!
}
```
"##,
E0444: r##"
A platform-specific intrinsic function has wrong number of arguments.
Erroneous code example:
```compile_fail,E0444
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct f64x2(f64, f64);
extern "platform-intrinsic" {
fn x86_mm_movemask_pd(x: f64x2, y: f64x2, z: f64x2) -> i32;
// error: platform-specific intrinsic has invalid number of arguments
}
```
Please refer to the function declaration to see if it corresponds
with yours. Example:
```
#![feature(repr_simd)]
#![feature(platform_intrinsics)]
#[repr(simd)]
struct f64x2(f64, f64);
extern "platform-intrinsic" {
fn x86_mm_movemask_pd(x: f64x2) -> i32; // ok!
}
```
"##,
E0516: r##"
The `typeof` keyword is currently reserved but unimplemented.
Erroneous code example:
```compile_fail,E0516
fn main() {
let x: typeof(92) = 92;
}
```
Try using type inference instead. Example:
```
fn main() {
let x = 92;
}
```
"##,
E0520: r##"
A non-default implementation was already made on this type so it cannot be
specialized further. Erroneous code example:
```compile_fail,E0520
#![feature(specialization)]
trait SpaceLlama {
fn fly(&self);
}
// applies to all T
impl<T> SpaceLlama for T {
default fn fly(&self) {}
}
// non-default impl
// applies to all `Clone` T and overrides the previous impl
impl<T: Clone> SpaceLlama for T {
fn fly(&self) {}
}
// since `i32` is clone, this conflicts with the previous implementation
impl SpaceLlama for i32 {
default fn fly(&self) {}
// error: item `fly` is provided by an `impl` that specializes
// another, but the item in the parent `impl` is not marked
// `default` and so it cannot be specialized.
}
```
Specialization only allows you to override `default` functions in
implementations.
To fix this error, you need to mark all the parent implementations as default.
Example:
```
#![feature(specialization)]
trait SpaceLlama {
fn fly(&self);
}
// applies to all T
impl<T> SpaceLlama for T {
default fn fly(&self) {} // This is a parent implementation.
}
// applies to all `Clone` T; overrides the previous impl
impl<T: Clone> SpaceLlama for T {
default fn fly(&self) {} // This is a parent implementation but was
// previously not a default one, causing the error
}
// applies to i32, overrides the previous two impls
impl SpaceLlama for i32 {
fn fly(&self) {} // And now that's ok!
}
```
"##,
E0527: r##"
The number of elements in an array or slice pattern differed from the number of
elements in the array being matched.
Example of erroneous code:
```compile_fail,E0527
#![feature(slice_patterns)]
let r = &[1, 2, 3, 4];
match r {
&[a, b] => { // error: pattern requires 2 elements but array
// has 4
println!("a={}, b={}", a, b);
}
}
```
Ensure that the pattern is consistent with the size of the matched
array. Additional elements can be matched with `..`:
```
#![feature(slice_patterns)]
let r = &[1, 2, 3, 4];
match r {
&[a, b, ..] => { // ok!
println!("a={}, b={}", a, b);
}
}
```
"##,
E0528: r##"
An array or slice pattern required more elements than were present in the
matched array.
Example of erroneous code:
```compile_fail,E0528
#![feature(slice_patterns)]
let r = &[1, 2];
match r {
&[a, b, c, rest..] => { // error: pattern requires at least 3
// elements but array has 2
println!("a={}, b={}, c={} rest={:?}", a, b, c, rest);
}
}
```
Ensure that the matched array has at least as many elements as the pattern
requires. You can match an arbitrary number of remaining elements with `..`:
```
#![feature(slice_patterns)]
let r = &[1, 2, 3, 4, 5];
match r {
&[a, b, c, rest..] => { // ok!
// prints `a=1, b=2, c=3 rest=[4, 5]`
println!("a={}, b={}, c={} rest={:?}", a, b, c, rest);
}
}
```
"##,
E0529: r##"
An array or slice pattern was matched against some other type.
Example of erroneous code:
```compile_fail,E0529
#![feature(slice_patterns)]
let r: f32 = 1.0;
match r {
[a, b] => { // error: expected an array or slice, found `f32`
println!("a={}, b={}", a, b);
}
}
```
Ensure that the pattern and the expression being matched on are of consistent
types:
```
#![feature(slice_patterns)]
let r = [1.0, 2.0];
match r {
[a, b] => { // ok!
println!("a={}, b={}", a, b);
}
}
```
"##,
E0559: r##"
An unknown field was specified into an enum's structure variant.
Erroneous code example:
```compile_fail,E0559
enum Field {
Fool { x: u32 },
}
let s = Field::Fool { joke: 0 };
// error: struct variant `Field::Fool` has no field named `joke`
```
Verify you didn't misspell the field's name or that the field exists. Example:
```
enum Field {
Fool { joke: u32 },
}
let s = Field::Fool { joke: 0 }; // ok!
```
"##,
E0560: r##"
An unknown field was specified into a structure.
Erroneous code example:
```compile_fail,E0560
struct Simba {
mother: u32,
}
let s = Simba { mother: 1, father: 0 };
// error: structure `Simba` has no field named `father`
```
Verify you didn't misspell the field's name or that the field exists. Example:
```
struct Simba {
mother: u32,
father: u32,
}
let s = Simba { mother: 1, father: 0 }; // ok!
```
"##,
E0570: r##"
The requested ABI is unsupported by the current target.
The rust compiler maintains for each target a blacklist of ABIs unsupported on
that target. If an ABI is present in such a list this usually means that the
target / ABI combination is currently unsupported by llvm.
If necessary, you can circumvent this check using custom target specifications.
"##,
E0572: r##"
A return statement was found outside of a function body.
Erroneous code example:
```compile_fail,E0572
const FOO: u32 = return 0; // error: return statement outside of function body
fn main() {}
```
To fix this issue, just remove the return keyword or move the expression into a
function. Example:
```
const FOO: u32 = 0;
fn some_fn() -> u32 {
return FOO;
}
fn main() {
some_fn();
}
```
"##,
E0581: r##"
In a `fn` type, a lifetime appears only in the return type,
and not in the arguments types.
Erroneous code example:
```compile_fail,E0581
fn main() {
// Here, `'a` appears only in the return type:
let x: for<'a> fn() -> &'a i32;
}
```
To fix this issue, either use the lifetime in the arguments, or use
`'static`. Example:
```
fn main() {
// Here, `'a` appears only in the return type:
let x: for<'a> fn(&'a i32) -> &'a i32;
let y: fn() -> &'static i32;
}
```
Note: The examples above used to be (erroneously) accepted by the
compiler, but this was since corrected. See [issue #33685] for more
details.
[issue #33685]: https://github.com/rust-lang/rust/issues/33685
"##,
E0582: r##"
A lifetime appears only in an associated-type binding,
and not in the input types to the trait.
Erroneous code example:
```compile_fail,E0582
fn bar<F>(t: F)
// No type can satisfy this requirement, since `'a` does not
// appear in any of the input types (here, `i32`):
where F: for<'a> Fn(i32) -> Option<&'a i32>
{
}
fn main() { }
```
To fix this issue, either use the lifetime in the inputs, or use
`'static`. Example:
```
fn bar<F, G>(t: F, u: G)
where F: for<'a> Fn(&'a i32) -> Option<&'a i32>,
G: Fn(i32) -> Option<&'static i32>,
{
}
fn main() { }
```
Note: The examples above used to be (erroneously) accepted by the
compiler, but this was since corrected. See [issue #33685] for more
details.
[issue #33685]: https://github.com/rust-lang/rust/issues/33685
"##,
}
register_diagnostics! {
E0090,
E0103,
E0104,
E0183,
E0196,
E0203,
E0208,
E0212,
E0224,
E0227,
E0228,
E0231,
E0245,
E0320,
E0377,
E0436,
E0521,
E0533,
E0562,
E0563,
E0564,
E0567,
E0568,
}