1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

pub use self::Integer::*;
pub use self::Layout::*;
pub use self::Primitive::*;

use infer::InferCtxt;
use session::Session;
use traits;
use ty::{self, Ty, TyCtxt, TypeFoldable, ReprOptions};

use syntax::ast::{FloatTy, IntTy, UintTy};
use syntax::attr;
use syntax_pos::DUMMY_SP;

use std::cmp;
use std::fmt;
use std::i64;
use std::iter;

/// Parsed [Data layout](http://llvm.org/docs/LangRef.html#data-layout)
/// for a target, which contains everything needed to compute layouts.
pub struct TargetDataLayout {
    pub endian: Endian,
    pub i1_align: Align,
    pub i8_align: Align,
    pub i16_align: Align,
    pub i32_align: Align,
    pub i64_align: Align,
    pub i128_align: Align,
    pub f32_align: Align,
    pub f64_align: Align,
    pub pointer_size: Size,
    pub pointer_align: Align,
    pub aggregate_align: Align,

    /// Alignments for vector types.
    pub vector_align: Vec<(Size, Align)>
}

impl Default for TargetDataLayout {
    /// Creates an instance of `TargetDataLayout`.
    fn default() -> TargetDataLayout {
        TargetDataLayout {
            endian: Endian::Big,
            i1_align: Align::from_bits(8, 8).unwrap(),
            i8_align: Align::from_bits(8, 8).unwrap(),
            i16_align: Align::from_bits(16, 16).unwrap(),
            i32_align: Align::from_bits(32, 32).unwrap(),
            i64_align: Align::from_bits(32, 64).unwrap(),
            i128_align: Align::from_bits(32, 64).unwrap(),
            f32_align: Align::from_bits(32, 32).unwrap(),
            f64_align: Align::from_bits(64, 64).unwrap(),
            pointer_size: Size::from_bits(64),
            pointer_align: Align::from_bits(64, 64).unwrap(),
            aggregate_align: Align::from_bits(0, 64).unwrap(),
            vector_align: vec![
                (Size::from_bits(64), Align::from_bits(64, 64).unwrap()),
                (Size::from_bits(128), Align::from_bits(128, 128).unwrap())
            ]
        }
    }
}

impl TargetDataLayout {
    pub fn parse(sess: &Session) -> TargetDataLayout {
        // Parse a bit count from a string.
        let parse_bits = |s: &str, kind: &str, cause: &str| {
            s.parse::<u64>().unwrap_or_else(|err| {
                sess.err(&format!("invalid {} `{}` for `{}` in \"data-layout\": {}",
                                  kind, s, cause, err));
                0
            })
        };

        // Parse a size string.
        let size = |s: &str, cause: &str| {
            Size::from_bits(parse_bits(s, "size", cause))
        };

        // Parse an alignment string.
        let align = |s: &[&str], cause: &str| {
            if s.is_empty() {
                sess.err(&format!("missing alignment for `{}` in \"data-layout\"", cause));
            }
            let abi = parse_bits(s[0], "alignment", cause);
            let pref = s.get(1).map_or(abi, |pref| parse_bits(pref, "alignment", cause));
            Align::from_bits(abi, pref).unwrap_or_else(|err| {
                sess.err(&format!("invalid alignment for `{}` in \"data-layout\": {}",
                                  cause, err));
                Align::from_bits(8, 8).unwrap()
            })
        };

        let mut dl = TargetDataLayout::default();
        let mut i128_align_src = 64;
        for spec in sess.target.target.data_layout.split("-") {
            match &spec.split(":").collect::<Vec<_>>()[..] {
                &["e"] => dl.endian = Endian::Little,
                &["E"] => dl.endian = Endian::Big,
                &["a", ref a..] => dl.aggregate_align = align(a, "a"),
                &["f32", ref a..] => dl.f32_align = align(a, "f32"),
                &["f64", ref a..] => dl.f64_align = align(a, "f64"),
                &[p @ "p", s, ref a..] | &[p @ "p0", s, ref a..] => {
                    dl.pointer_size = size(s, p);
                    dl.pointer_align = align(a, p);
                }
                &[s, ref a..] if s.starts_with("i") => {
                    let bits = match s[1..].parse::<u64>() {
                        Ok(bits) => bits,
                        Err(_) => {
                            size(&s[1..], "i"); // For the user error.
                            continue;
                        }
                    };
                    let a = align(a, s);
                    match bits {
                        1 => dl.i1_align = a,
                        8 => dl.i8_align = a,
                        16 => dl.i16_align = a,
                        32 => dl.i32_align = a,
                        64 => dl.i64_align = a,
                        _ => {}
                    }
                    if bits >= i128_align_src && bits <= 128 {
                        // Default alignment for i128 is decided by taking the alignment of
                        // largest-sized i{64...128}.
                        i128_align_src = bits;
                        dl.i128_align = a;
                    }
                }
                &[s, ref a..] if s.starts_with("v") => {
                    let v_size = size(&s[1..], "v");
                    let a = align(a, s);
                    if let Some(v) = dl.vector_align.iter_mut().find(|v| v.0 == v_size) {
                        v.1 = a;
                        continue;
                    }
                    // No existing entry, add a new one.
                    dl.vector_align.push((v_size, a));
                }
                _ => {} // Ignore everything else.
            }
        }

        // Perform consistency checks against the Target information.
        let endian_str = match dl.endian {
            Endian::Little => "little",
            Endian::Big => "big"
        };
        if endian_str != sess.target.target.target_endian {
            sess.err(&format!("inconsistent target specification: \"data-layout\" claims \
                               architecture is {}-endian, while \"target-endian\" is `{}`",
                              endian_str, sess.target.target.target_endian));
        }

        if dl.pointer_size.bits().to_string() != sess.target.target.target_pointer_width {
            sess.err(&format!("inconsistent target specification: \"data-layout\" claims \
                               pointers are {}-bit, while \"target-pointer-width\" is `{}`",
                              dl.pointer_size.bits(), sess.target.target.target_pointer_width));
        }

        dl
    }

    /// Return exclusive upper bound on object size.
    ///
    /// The theoretical maximum object size is defined as the maximum positive `isize` value.
    /// This ensures that the `offset` semantics remain well-defined by allowing it to correctly
    /// index every address within an object along with one byte past the end, along with allowing
    /// `isize` to store the difference between any two pointers into an object.
    ///
    /// The upper bound on 64-bit currently needs to be lower because LLVM uses a 64-bit integer
    /// to represent object size in bits. It would need to be 1 << 61 to account for this, but is
    /// currently conservatively bounded to 1 << 47 as that is enough to cover the current usable
    /// address space on 64-bit ARMv8 and x86_64.
    pub fn obj_size_bound(&self) -> u64 {
        match self.pointer_size.bits() {
            16 => 1 << 15,
            32 => 1 << 31,
            64 => 1 << 47,
            bits => bug!("obj_size_bound: unknown pointer bit size {}", bits)
        }
    }

    pub fn ptr_sized_integer(&self) -> Integer {
        match self.pointer_size.bits() {
            16 => I16,
            32 => I32,
            64 => I64,
            bits => bug!("ptr_sized_integer: unknown pointer bit size {}", bits)
        }
    }
}

/// Endianness of the target, which must match cfg(target-endian).
#[derive(Copy, Clone)]
pub enum Endian {
    Little,
    Big
}

/// Size of a type in bytes.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct Size {
    raw: u64
}

impl Size {
    pub fn from_bits(bits: u64) -> Size {
        Size::from_bytes((bits + 7) / 8)
    }

    pub fn from_bytes(bytes: u64) -> Size {
        if bytes >= (1 << 61) {
            bug!("Size::from_bytes: {} bytes in bits doesn't fit in u64", bytes)
        }
        Size {
            raw: bytes
        }
    }

    pub fn bytes(self) -> u64 {
        self.raw
    }

    pub fn bits(self) -> u64 {
        self.bytes() * 8
    }

    pub fn abi_align(self, align: Align) -> Size {
        let mask = align.abi() - 1;
        Size::from_bytes((self.bytes() + mask) & !mask)
    }

    pub fn checked_add(self, offset: Size, dl: &TargetDataLayout) -> Option<Size> {
        // Each Size is less than dl.obj_size_bound(), so the sum is
        // also less than 1 << 62 (and therefore can't overflow).
        let bytes = self.bytes() + offset.bytes();

        if bytes < dl.obj_size_bound() {
            Some(Size::from_bytes(bytes))
        } else {
            None
        }
    }

    pub fn checked_mul(self, count: u64, dl: &TargetDataLayout) -> Option<Size> {
        // Each Size is less than dl.obj_size_bound(), so the sum is
        // also less than 1 << 62 (and therefore can't overflow).
        match self.bytes().checked_mul(count) {
            Some(bytes) if bytes < dl.obj_size_bound() => {
                Some(Size::from_bytes(bytes))
            }
            _ => None
        }
    }
}

/// Alignment of a type in bytes, both ABI-mandated and preferred.
/// Since alignments are always powers of 2, we can pack both in one byte,
/// giving each a nibble (4 bits) for a maximum alignment of 2^15 = 32768.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Align {
    raw: u8
}

impl Align {
    pub fn from_bits(abi: u64, pref: u64) -> Result<Align, String> {
        Align::from_bytes((abi + 7) / 8, (pref + 7) / 8)
    }

    pub fn from_bytes(abi: u64, pref: u64) -> Result<Align, String> {
        let pack = |align: u64| {
            // Treat an alignment of 0 bytes like 1-byte alignment.
            if align == 0 {
                return Ok(0);
            }

            let mut bytes = align;
            let mut pow: u8 = 0;
            while (bytes & 1) == 0 {
                pow += 1;
                bytes >>= 1;
            }
            if bytes != 1 {
                Err(format!("`{}` is not a power of 2", align))
            } else if pow > 0x0f {
                Err(format!("`{}` is too large", align))
            } else {
                Ok(pow)
            }
        };

        Ok(Align {
            raw: pack(abi)? | (pack(pref)? << 4)
        })
    }

    pub fn abi(self) -> u64 {
        1 << (self.raw & 0xf)
    }

    pub fn pref(self) -> u64 {
        1 << (self.raw >> 4)
    }

    pub fn min(self, other: Align) -> Align {
        let abi = cmp::min(self.raw & 0x0f, other.raw & 0x0f);
        let pref = cmp::min(self.raw & 0xf0, other.raw & 0xf0);
        Align {
            raw: abi | pref
        }
    }

    pub fn max(self, other: Align) -> Align {
        let abi = cmp::max(self.raw & 0x0f, other.raw & 0x0f);
        let pref = cmp::max(self.raw & 0xf0, other.raw & 0xf0);
        Align {
            raw: abi | pref
        }
    }
}

/// Integers, also used for enum discriminants.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Integer {
    I1,
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl Integer {
    pub fn size(&self) -> Size {
        match *self {
            I1 => Size::from_bits(1),
            I8 => Size::from_bytes(1),
            I16 => Size::from_bytes(2),
            I32 => Size::from_bytes(4),
            I64  => Size::from_bytes(8),
            I128  => Size::from_bytes(16),
        }
    }

    pub fn align(&self, dl: &TargetDataLayout)-> Align {
        match *self {
            I1 => dl.i1_align,
            I8 => dl.i8_align,
            I16 => dl.i16_align,
            I32 => dl.i32_align,
            I64 => dl.i64_align,
            I128 => dl.i128_align,
        }
    }

    pub fn to_ty<'a, 'tcx>(&self, tcx: &ty::TyCtxt<'a, 'tcx, 'tcx>,
                           signed: bool) -> Ty<'tcx> {
        match (*self, signed) {
            (I1, false) => tcx.types.u8,
            (I8, false) => tcx.types.u8,
            (I16, false) => tcx.types.u16,
            (I32, false) => tcx.types.u32,
            (I64, false) => tcx.types.u64,
            (I128, false) => tcx.types.u128,
            (I1, true) => tcx.types.i8,
            (I8, true) => tcx.types.i8,
            (I16, true) => tcx.types.i16,
            (I32, true) => tcx.types.i32,
            (I64, true) => tcx.types.i64,
            (I128, true) => tcx.types.i128,
        }
    }

    /// Find the smallest Integer type which can represent the signed value.
    pub fn fit_signed(x: i64) -> Integer {
        match x {
            -0x0000_0000_0000_0001...0x0000_0000_0000_0000 => I1,
            -0x0000_0000_0000_0080...0x0000_0000_0000_007f => I8,
            -0x0000_0000_0000_8000...0x0000_0000_0000_7fff => I16,
            -0x0000_0000_8000_0000...0x0000_0000_7fff_ffff => I32,
            -0x8000_0000_0000_0000...0x7fff_ffff_ffff_ffff => I64,
            _ => I128
        }
    }

    /// Find the smallest Integer type which can represent the unsigned value.
    pub fn fit_unsigned(x: u64) -> Integer {
        match x {
            0...0x0000_0000_0000_0001 => I1,
            0...0x0000_0000_0000_00ff => I8,
            0...0x0000_0000_0000_ffff => I16,
            0...0x0000_0000_ffff_ffff => I32,
            0...0xffff_ffff_ffff_ffff => I64,
            _ => I128,
        }
    }

    /// Find the smallest integer with the given alignment.
    pub fn for_abi_align(dl: &TargetDataLayout, align: Align) -> Option<Integer> {
        let wanted = align.abi();
        for &candidate in &[I8, I16, I32, I64] {
            let ty = Int(candidate);
            if wanted == ty.align(dl).abi() && wanted == ty.size(dl).bytes() {
                return Some(candidate);
            }
        }
        None
    }

    /// Get the Integer type from an attr::IntType.
    pub fn from_attr(dl: &TargetDataLayout, ity: attr::IntType) -> Integer {
        match ity {
            attr::SignedInt(IntTy::I8) | attr::UnsignedInt(UintTy::U8) => I8,
            attr::SignedInt(IntTy::I16) | attr::UnsignedInt(UintTy::U16) => I16,
            attr::SignedInt(IntTy::I32) | attr::UnsignedInt(UintTy::U32) => I32,
            attr::SignedInt(IntTy::I64) | attr::UnsignedInt(UintTy::U64) => I64,
            attr::SignedInt(IntTy::I128) | attr::UnsignedInt(UintTy::U128) => I128,
            attr::SignedInt(IntTy::Is) | attr::UnsignedInt(UintTy::Us) => {
                dl.ptr_sized_integer()
            }
        }
    }

    /// Find the appropriate Integer type and signedness for the given
    /// signed discriminant range and #[repr] attribute.
    /// N.B.: u64 values above i64::MAX will be treated as signed, but
    /// that shouldn't affect anything, other than maybe debuginfo.
    fn repr_discr(tcx: TyCtxt, ty: Ty, repr: &ReprOptions, min: i64, max: i64)
                      -> (Integer, bool) {
        // Theoretically, negative values could be larger in unsigned representation
        // than the unsigned representation of the signed minimum. However, if there
        // are any negative values, the only valid unsigned representation is u64
        // which can fit all i64 values, so the result remains unaffected.
        let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u64, max as u64));
        let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max));

        let mut min_from_extern = None;
        let min_default = I8;

        if let Some(ity) = repr.int {
            let discr = Integer::from_attr(&tcx.data_layout, ity);
            let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
            if discr < fit {
                bug!("Integer::repr_discr: `#[repr]` hint too small for \
                  discriminant range of enum `{}", ty)
            }
            return (discr, ity.is_signed());
        }

        if repr.c {
            match &tcx.sess.target.target.arch[..] {
                // WARNING: the ARM EABI has two variants; the one corresponding
                // to `at_least == I32` appears to be used on Linux and NetBSD,
                // but some systems may use the variant corresponding to no
                // lower bound.  However, we don't run on those yet...?
                "arm" => min_from_extern = Some(I32),
                _ => min_from_extern = Some(I32),
            }
        }

        let at_least = min_from_extern.unwrap_or(min_default);

        // If there are no negative values, we can use the unsigned fit.
        if min >= 0 {
            (cmp::max(unsigned_fit, at_least), false)
        } else {
            (cmp::max(signed_fit, at_least), true)
        }
    }
}

/// Fundamental unit of memory access and layout.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum Primitive {
    Int(Integer),
    F32,
    F64,
    Pointer
}

impl Primitive {
    pub fn size(self, dl: &TargetDataLayout) -> Size {
        match self {
            Int(I1) | Int(I8) => Size::from_bits(8),
            Int(I16) => Size::from_bits(16),
            Int(I32) | F32 => Size::from_bits(32),
            Int(I64) | F64 => Size::from_bits(64),
            Int(I128) => Size::from_bits(128),
            Pointer => dl.pointer_size
        }
    }

    pub fn align(self, dl: &TargetDataLayout) -> Align {
        match self {
            Int(I1) => dl.i1_align,
            Int(I8) => dl.i8_align,
            Int(I16) => dl.i16_align,
            Int(I32) => dl.i32_align,
            Int(I64) => dl.i64_align,
            Int(I128) => dl.i128_align,
            F32 => dl.f32_align,
            F64 => dl.f64_align,
            Pointer => dl.pointer_align
        }
    }
}

/// Path through fields of nested structures.
// FIXME(eddyb) use small vector optimization for the common case.
pub type FieldPath = Vec<u32>;

/// A structure, a product type in ADT terms.
#[derive(PartialEq, Eq, Hash, Debug)]
pub struct Struct {
    pub align: Align,

    /// If true, no alignment padding is used.
    pub packed: bool,

    /// If true, the size is exact, otherwise it's only a lower bound.
    pub sized: bool,

    /// Offsets for the first byte of each field, ordered to match the source definition order.
    /// This vector does not go in increasing order.
    /// FIXME(eddyb) use small vector optimization for the common case.
    pub offsets: Vec<Size>,

    /// Maps source order field indices to memory order indices, depending how fields were permuted.
    /// FIXME (camlorn) also consider small vector  optimization here.
    pub memory_index: Vec<u32>,

    pub min_size: Size,
}

// Info required to optimize struct layout.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
enum StructKind {
    // A tuple, closure, or univariant which cannot be coerced to unsized.
    AlwaysSizedUnivariant,
    // A univariant, the last field of which may be coerced to unsized.
    MaybeUnsizedUnivariant,
    // A univariant, but part of an enum.
    EnumVariant,
}

impl<'a, 'gcx, 'tcx> Struct {
    // FIXME(camlorn): reprs need a better representation to deal with multiple reprs on one type.
    fn new(dl: &TargetDataLayout, fields: &Vec<&'a Layout>,
                  repr: &ReprOptions, kind: StructKind,
                  scapegoat: Ty<'gcx>) -> Result<Struct, LayoutError<'gcx>> {
        let packed = repr.packed;
        let mut ret = Struct {
            align: if packed { dl.i8_align } else { dl.aggregate_align },
            packed: packed,
            sized: true,
            offsets: vec![],
            memory_index: vec![],
            min_size: Size::from_bytes(0),
        };

        // Anything with repr(C) or repr(packed) doesn't optimize.
        // Neither do  1-member and 2-member structs.
        // In addition, code in trans assume that 2-element structs can become pairs.
        // It's easier to just short-circuit here.
        let mut can_optimize = (fields.len() > 2 || StructKind::EnumVariant == kind)
            && ! (repr.c || repr.packed);

        // Disable field reordering until we can decide what to do.
        // The odd pattern here avoids a warning about the value never being read.
        if can_optimize { can_optimize = false; }

        let (optimize, sort_ascending) = match kind {
            StructKind::AlwaysSizedUnivariant => (can_optimize, false),
            StructKind::MaybeUnsizedUnivariant => (can_optimize, false),
            StructKind::EnumVariant => {
                assert!(fields.len() >= 1, "Enum variants must have discriminants.");
                (can_optimize && fields[0].size(dl).bytes() == 1, true)
            }
        };

        ret.offsets = vec![Size::from_bytes(0); fields.len()];
        let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();

        if optimize {
            let start = if let StructKind::EnumVariant = kind { 1 } else { 0 };
            let end = if let StructKind::MaybeUnsizedUnivariant = kind {
                fields.len() - 1
            } else {
                fields.len()
            };
            if end > start {
                let optimizing  = &mut inverse_memory_index[start..end];
                if sort_ascending {
                    optimizing.sort_by_key(|&x| fields[x as usize].align(dl).abi());
                } else {
                    optimizing.sort_by(| &a, &b | {
                        let a = fields[a as usize].align(dl).abi();
                        let b = fields[b as usize].align(dl).abi();
                        b.cmp(&a)
                    });
                }
            }
        }

        // inverse_memory_index holds field indices by increasing memory offset.
        // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
        // We now write field offsets to the corresponding offset slot;
        // field 5 with offset 0 puts 0 in offsets[5].
        // At the bottom of this function, we use inverse_memory_index to produce memory_index.

        if let StructKind::EnumVariant = kind {
            assert_eq!(inverse_memory_index[0], 0,
              "Enum variant discriminants must have the lowest offset.");
        }

        let mut offset = Size::from_bytes(0);

        for i in inverse_memory_index.iter() {
            let field = fields[*i as usize];
            if !ret.sized {
                bug!("Struct::new: field #{} of `{}` comes after unsized field",
                     ret.offsets.len(), scapegoat);
            }

            if field.is_unsized() {
                ret.sized = false;
            }

            // Invariant: offset < dl.obj_size_bound() <= 1<<61
            if !ret.packed {
                let align = field.align(dl);
                ret.align = ret.align.max(align);
                offset = offset.abi_align(align);
            }

            debug!("Struct::new offset: {:?} field: {:?} {:?}", offset, field, field.size(dl));
            ret.offsets[*i as usize] = offset;

            offset = offset.checked_add(field.size(dl), dl)
                           .map_or(Err(LayoutError::SizeOverflow(scapegoat)), Ok)?;
        }


        debug!("Struct::new min_size: {:?}", offset);
        ret.min_size = offset;

        // As stated above, inverse_memory_index holds field indices by increasing offset.
        // This makes it an already-sorted view of the offsets vec.
        // To invert it, consider:
        // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
        // Field 5 would be the first element, so memory_index is i:
        // Note: if we didn't optimize, it's already right.

        if optimize {
            ret.memory_index = vec![0; inverse_memory_index.len()];

            for i in 0..inverse_memory_index.len() {
                ret.memory_index[inverse_memory_index[i] as usize]  = i as u32;
            }
        } else {
            ret.memory_index = inverse_memory_index;
        }

        Ok(ret)
    }

    /// Get the size with trailing alignment padding.
    pub fn stride(&self) -> Size {
        self.min_size.abi_align(self.align)
    }

    /// Determine whether a structure would be zero-sized, given its fields.
    pub fn would_be_zero_sized<I>(dl: &TargetDataLayout, fields: I)
                                  -> Result<bool, LayoutError<'gcx>>
    where I: Iterator<Item=Result<&'a Layout, LayoutError<'gcx>>> {
        for field in fields {
            let field = field?;
            if field.is_unsized() || field.size(dl).bytes() > 0 {
                return Ok(false);
            }
        }
        Ok(true)
    }

    /// Get indices of the tys that made this struct by increasing offset.
    #[inline]
    pub fn field_index_by_increasing_offset<'b>(&'b self) -> impl iter::Iterator<Item=usize>+'b {
        let mut inverse_small = [0u8; 64];
        let mut inverse_big = vec![];
        let use_small = self.memory_index.len() <= inverse_small.len();

        // We have to write this logic twice in order to keep the array small.
        if use_small {
            for i in 0..self.memory_index.len() {
                inverse_small[self.memory_index[i] as usize] = i as u8;
            }
        } else {
            inverse_big = vec![0; self.memory_index.len()];
            for i in 0..self.memory_index.len() {
                inverse_big[self.memory_index[i] as usize] = i as u32;
            }
        }

        (0..self.memory_index.len()).map(move |i| {
            if use_small { inverse_small[i] as usize }
            else { inverse_big[i] as usize }
        })
    }

    /// Find the path leading to a non-zero leaf field, starting from
    /// the given type and recursing through aggregates.
    /// The tuple is `(path, source_path)`,
    /// where `path` is in memory order and `source_path` in source order.
    // FIXME(eddyb) track value ranges and traverse already optimized enums.
    fn non_zero_field_in_type(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
                               ty: Ty<'gcx>)
                               -> Result<Option<(FieldPath, FieldPath)>, LayoutError<'gcx>> {
        let tcx = infcx.tcx.global_tcx();
        match (ty.layout(infcx)?, &ty.sty) {
            (&Scalar { non_zero: true, .. }, _) |
            (&CEnum { non_zero: true, .. }, _) => Ok(Some((vec![], vec![]))),
            (&FatPointer { non_zero: true, .. }, _) => {
                Ok(Some((vec![FAT_PTR_ADDR as u32], vec![FAT_PTR_ADDR as u32])))
            }

            // Is this the NonZero lang item wrapping a pointer or integer type?
            (&Univariant { non_zero: true, .. }, &ty::TyAdt(def, substs)) => {
                let fields = &def.struct_variant().fields;
                assert_eq!(fields.len(), 1);
                match *fields[0].ty(tcx, substs).layout(infcx)? {
                    // FIXME(eddyb) also allow floating-point types here.
                    Scalar { value: Int(_), non_zero: false } |
                    Scalar { value: Pointer, non_zero: false } => {
                        Ok(Some((vec![0], vec![0])))
                    }
                    FatPointer { non_zero: false, .. } => {
                        let tmp = vec![FAT_PTR_ADDR as u32, 0];
                        Ok(Some((tmp.clone(), tmp)))
                    }
                    _ => Ok(None)
                }
            }

            // Perhaps one of the fields of this struct is non-zero
            // let's recurse and find out
            (&Univariant { ref variant, .. }, &ty::TyAdt(def, substs)) if def.is_struct() => {
                Struct::non_zero_field_paths(infcx, def.struct_variant().fields
                                                      .iter().map(|field| {
                    field.ty(tcx, substs)
                }),
                Some(&variant.memory_index[..]))
            }

            // Perhaps one of the upvars of this closure is non-zero
            (&Univariant { ref variant, .. }, &ty::TyClosure(def, substs)) => {
                let upvar_tys = substs.upvar_tys(def, tcx);
                Struct::non_zero_field_paths(infcx, upvar_tys,
                    Some(&variant.memory_index[..]))
            }
            // Can we use one of the fields in this tuple?
            (&Univariant { ref variant, .. }, &ty::TyTuple(tys, _)) => {
                Struct::non_zero_field_paths(infcx, tys.iter().cloned(),
                    Some(&variant.memory_index[..]))
            }

            // Is this a fixed-size array of something non-zero
            // with at least one element?
            (_, &ty::TyArray(ety, d)) if d > 0 => {
                Struct::non_zero_field_paths(infcx, Some(ety).into_iter(), None)
            }

            (_, &ty::TyProjection(_)) | (_, &ty::TyAnon(..)) => {
                let normalized = normalize_associated_type(infcx, ty);
                if ty == normalized {
                    return Ok(None);
                }
                return Struct::non_zero_field_in_type(infcx, normalized);
            }

            // Anything else is not a non-zero type.
            _ => Ok(None)
        }
    }

    /// Find the path leading to a non-zero leaf field, starting from
    /// the given set of fields and recursing through aggregates.
    /// Returns Some((path, source_path)) on success.
    /// `path` is translated to memory order. `source_path` is not.
    fn non_zero_field_paths<I>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
                                  fields: I,
                                  permutation: Option<&[u32]>)
                                  -> Result<Option<(FieldPath, FieldPath)>, LayoutError<'gcx>>
    where I: Iterator<Item=Ty<'gcx>> {
        for (i, ty) in fields.enumerate() {
            if let Some((mut path, mut source_path)) = Struct::non_zero_field_in_type(infcx, ty)? {
                source_path.push(i as u32);
                let index = if let Some(p) = permutation {
                    p[i] as usize
                } else {
                    i
                };
                path.push(index as u32);
                return Ok(Some((path, source_path)));
            }
        }
        Ok(None)
    }
}

/// An untagged union.
#[derive(PartialEq, Eq, Hash, Debug)]
pub struct Union {
    pub align: Align,

    pub min_size: Size,

    /// If true, no alignment padding is used.
    pub packed: bool,
}

impl<'a, 'gcx, 'tcx> Union {
    pub fn new(dl: &TargetDataLayout, packed: bool) -> Union {
        Union {
            align: if packed { dl.i8_align } else { dl.aggregate_align },
            min_size: Size::from_bytes(0),
            packed: packed,
        }
    }

    /// Extend the Struct with more fields.
    pub fn extend<I>(&mut self, dl: &TargetDataLayout,
                     fields: I,
                     scapegoat: Ty<'gcx>)
                     -> Result<(), LayoutError<'gcx>>
    where I: Iterator<Item=Result<&'a Layout, LayoutError<'gcx>>> {
        for (index, field) in fields.enumerate() {
            let field = field?;
            if field.is_unsized() {
                bug!("Union::extend: field #{} of `{}` is unsized",
                     index, scapegoat);
            }

            debug!("Union::extend field: {:?} {:?}", field, field.size(dl));

            if !self.packed {
                self.align = self.align.max(field.align(dl));
            }
            self.min_size = cmp::max(self.min_size, field.size(dl));
        }

        debug!("Union::extend min-size: {:?}", self.min_size);

        Ok(())
    }

    /// Get the size with trailing alignment padding.
    pub fn stride(&self) -> Size {
        self.min_size.abi_align(self.align)
    }
}

/// The first half of a fat pointer.
/// - For a trait object, this is the address of the box.
/// - For a slice, this is the base address.
pub const FAT_PTR_ADDR: usize = 0;

/// The second half of a fat pointer.
/// - For a trait object, this is the address of the vtable.
/// - For a slice, this is the length.
pub const FAT_PTR_EXTRA: usize = 1;

/// Type layout, from which size and alignment can be cheaply computed.
/// For ADTs, it also includes field placement and enum optimizations.
/// NOTE: Because Layout is interned, redundant information should be
/// kept to a minimum, e.g. it includes no sub-component Ty or Layout.
#[derive(Debug, PartialEq, Eq, Hash)]
pub enum Layout {
    /// TyBool, TyChar, TyInt, TyUint, TyFloat, TyRawPtr, TyRef or TyFnPtr.
    Scalar {
        value: Primitive,
        // If true, the value cannot represent a bit pattern of all zeroes.
        non_zero: bool
    },

    /// SIMD vectors, from structs marked with #[repr(simd)].
    Vector {
        element: Primitive,
        count: u64
    },

    /// TyArray, TySlice or TyStr.
    Array {
        /// If true, the size is exact, otherwise it's only a lower bound.
        sized: bool,
        align: Align,
        size: Size
    },

    /// TyRawPtr or TyRef with a !Sized pointee.
    FatPointer {
        metadata: Primitive,
        // If true, the pointer cannot be null.
        non_zero: bool
    },

    // Remaining variants are all ADTs such as structs, enums or tuples.

    /// C-like enums; basically an integer.
    CEnum {
        discr: Integer,
        signed: bool,
        non_zero: bool,
        // Inclusive discriminant range.
        // If min > max, it represents min...u64::MAX followed by 0...max.
        // FIXME(eddyb) always use the shortest range, e.g. by finding
        // the largest space between two consecutive discriminants and
        // taking everything else as the (shortest) discriminant range.
        min: u64,
        max: u64
    },

    /// Single-case enums, and structs/tuples.
    Univariant {
        variant: Struct,
        // If true, the structure is NonZero.
        // FIXME(eddyb) use a newtype Layout kind for this.
        non_zero: bool
    },

    /// Untagged unions.
    UntaggedUnion {
        variants: Union,
    },

    /// General-case enums: for each case there is a struct, and they
    /// all start with a field for the discriminant.
    General {
        discr: Integer,
        variants: Vec<Struct>,
        size: Size,
        align: Align
    },

    /// Two cases distinguished by a nullable pointer: the case with discriminant
    /// `nndiscr` must have single field which is known to be nonnull due to its type.
    /// The other case is known to be zero sized. Hence we represent the enum
    /// as simply a nullable pointer: if not null it indicates the `nndiscr` variant,
    /// otherwise it indicates the other case.
    ///
    /// For example, `std::option::Option` instantiated at a safe pointer type
    /// is represented such that `None` is a null pointer and `Some` is the
    /// identity function.
    RawNullablePointer {
        nndiscr: u64,
        value: Primitive
    },

    /// Two cases distinguished by a nullable pointer: the case with discriminant
    /// `nndiscr` is represented by the struct `nonnull`, where the `discrfield`th
    /// field is known to be nonnull due to its type; if that field is null, then
    /// it represents the other case, which is known to be zero sized.
    StructWrappedNullablePointer {
        nndiscr: u64,
        nonnull: Struct,
        // N.B. There is a 0 at the start, for LLVM GEP through a pointer.
        discrfield: FieldPath,
        // Like discrfield, but in source order. For debuginfo.
        discrfield_source: FieldPath
    }
}

#[derive(Copy, Clone, Debug)]
pub enum LayoutError<'tcx> {
    Unknown(Ty<'tcx>),
    SizeOverflow(Ty<'tcx>)
}

impl<'tcx> fmt::Display for LayoutError<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            LayoutError::Unknown(ty) => {
                write!(f, "the type `{:?}` has an unknown layout", ty)
            }
            LayoutError::SizeOverflow(ty) => {
                write!(f, "the type `{:?}` is too big for the current architecture", ty)
            }
        }
    }
}

/// Helper function for normalizing associated types in an inference context.
fn normalize_associated_type<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
                                             ty: Ty<'gcx>)
                                             -> Ty<'gcx> {
    if !ty.has_projection_types() {
        return ty;
    }

    let mut selcx = traits::SelectionContext::new(infcx);
    let cause = traits::ObligationCause::dummy();
    let traits::Normalized { value: result, obligations } =
        traits::normalize(&mut selcx, cause, &ty);

    let mut fulfill_cx = traits::FulfillmentContext::new();

    for obligation in obligations {
        fulfill_cx.register_predicate_obligation(infcx, obligation);
    }

    infcx.drain_fulfillment_cx_or_panic(DUMMY_SP, &mut fulfill_cx, &result)
}

impl<'a, 'gcx, 'tcx> Layout {
    pub fn compute_uncached(ty: Ty<'gcx>,
                            infcx: &InferCtxt<'a, 'gcx, 'tcx>)
                            -> Result<&'gcx Layout, LayoutError<'gcx>> {
        let tcx = infcx.tcx.global_tcx();
        let success = |layout| Ok(tcx.intern_layout(layout));
        let dl = &tcx.data_layout;
        assert!(!ty.has_infer_types());

        let ptr_layout = |pointee: Ty<'gcx>| {
            let non_zero = !ty.is_unsafe_ptr();
            let pointee = normalize_associated_type(infcx, pointee);
            if pointee.is_sized(tcx, &infcx.parameter_environment, DUMMY_SP) {
                Ok(Scalar { value: Pointer, non_zero: non_zero })
            } else {
                let unsized_part = tcx.struct_tail(pointee);
                let meta = match unsized_part.sty {
                    ty::TySlice(_) | ty::TyStr => {
                        Int(dl.ptr_sized_integer())
                    }
                    ty::TyDynamic(..) => Pointer,
                    _ => return Err(LayoutError::Unknown(unsized_part))
                };
                Ok(FatPointer { metadata: meta, non_zero: non_zero })
            }
        };

        let layout = match ty.sty {
            // Basic scalars.
            ty::TyBool => Scalar { value: Int(I1), non_zero: false },
            ty::TyChar => Scalar { value: Int(I32), non_zero: false },
            ty::TyInt(ity) => {
                Scalar {
                    value: Int(Integer::from_attr(dl, attr::SignedInt(ity))),
                    non_zero: false
                }
            }
            ty::TyUint(ity) => {
                Scalar {
                    value: Int(Integer::from_attr(dl, attr::UnsignedInt(ity))),
                    non_zero: false
                }
            }
            ty::TyFloat(FloatTy::F32) => Scalar { value: F32, non_zero: false },
            ty::TyFloat(FloatTy::F64) => Scalar { value: F64, non_zero: false },
            ty::TyFnPtr(_) => Scalar { value: Pointer, non_zero: true },

            // The never type.
            ty::TyNever => Univariant {
                variant: Struct::new(dl, &vec![], &ReprOptions::default(),
                  StructKind::AlwaysSizedUnivariant, ty)?,
                non_zero: false
            },

            // Potentially-fat pointers.
            ty::TyRef(_, ty::TypeAndMut { ty: pointee, .. }) |
            ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                ptr_layout(pointee)?
            }
            ty::TyAdt(def, _) if def.is_box() => {
                ptr_layout(ty.boxed_ty())?
            }

            // Arrays and slices.
            ty::TyArray(element, count) => {
                let element = element.layout(infcx)?;
                Array {
                    sized: true,
                    align: element.align(dl),
                    size: element.size(dl).checked_mul(count as u64, dl)
                                 .map_or(Err(LayoutError::SizeOverflow(ty)), Ok)?
                }
            }
            ty::TySlice(element) => {
                Array {
                    sized: false,
                    align: element.layout(infcx)?.align(dl),
                    size: Size::from_bytes(0)
                }
            }
            ty::TyStr => {
                Array {
                    sized: false,
                    align: dl.i8_align,
                    size: Size::from_bytes(0)
                }
            }

            // Odd unit types.
            ty::TyFnDef(..) => {
                Univariant {
                    variant: Struct::new(dl, &vec![],
                      &ReprOptions::default(), StructKind::AlwaysSizedUnivariant, ty)?,
                    non_zero: false
                }
            }
            ty::TyDynamic(..) => {
                let mut unit = Struct::new(dl, &vec![], &ReprOptions::default(),
                  StructKind::AlwaysSizedUnivariant, ty)?;
                unit.sized = false;
                Univariant { variant: unit, non_zero: false }
            }

            // Tuples and closures.
            ty::TyClosure(def_id, ref substs) => {
                let tys = substs.upvar_tys(def_id, tcx);
                let st = Struct::new(dl,
                    &tys.map(|ty| ty.layout(infcx))
                      .collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(),
                    StructKind::AlwaysSizedUnivariant, ty)?;
                Univariant { variant: st, non_zero: false }
            }

            ty::TyTuple(tys, _) => {
                // FIXME(camlorn): if we ever allow unsized tuples, this needs to be checked.
                // See the univariant case below to learn how.
                let st = Struct::new(dl,
                    &tys.iter().map(|ty| ty.layout(infcx))
                      .collect::<Result<Vec<_>, _>>()?,
                    &ReprOptions::default(), StructKind::AlwaysSizedUnivariant, ty)?;
                Univariant { variant: st, non_zero: false }
            }

            // SIMD vector types.
            ty::TyAdt(def, ..) if def.repr.simd => {
                let element = ty.simd_type(tcx);
                match *element.layout(infcx)? {
                    Scalar { value, .. } => {
                        return success(Vector {
                            element: value,
                            count: ty.simd_size(tcx) as u64
                        });
                    }
                    _ => {
                        tcx.sess.fatal(&format!("monomorphising SIMD type `{}` with \
                                                a non-machine element type `{}`",
                                                ty, element));
                    }
                }
            }

            // ADTs.
            ty::TyAdt(def, substs) => {
                if def.variants.is_empty() {
                    // Uninhabitable; represent as unit
                    // (Typechecking will reject discriminant-sizing attrs.)

                    return success(Univariant {
                        variant: Struct::new(dl, &vec![],
                          &def.repr, StructKind::AlwaysSizedUnivariant, ty)?,
                        non_zero: false
                    });
                }

                if def.is_enum() && def.variants.iter().all(|v| v.fields.is_empty()) {
                    // All bodies empty -> intlike
                    let (mut min, mut max, mut non_zero) = (i64::max_value(),
                                                            i64::min_value(),
                                                            true);
                    for discr in def.discriminants(tcx) {
                        let x = discr.to_u128_unchecked() as i64;
                        if x == 0 { non_zero = false; }
                        if x < min { min = x; }
                        if x > max { max = x; }
                    }

                    // FIXME: should handle i128? signed-value based impl is weird and hard to
                    // grok.
                    let (discr, signed) = Integer::repr_discr(tcx, ty, &def.repr, min, max);
                    return success(CEnum {
                        discr: discr,
                        signed: signed,
                        non_zero: non_zero,
                        // FIXME: should be u128?
                        min: min as u64,
                        max: max as u64
                    });
                }

                if !def.is_enum() || (def.variants.len() == 1 &&
                                      !def.repr.inhibit_enum_layout_opt()) {
                    // Struct, or union, or univariant enum equivalent to a struct.
                    // (Typechecking will reject discriminant-sizing attrs.)

                    let kind = if def.is_enum() || def.variants[0].fields.len() == 0{
                        StructKind::AlwaysSizedUnivariant
                    } else {
                        use middle::region::ROOT_CODE_EXTENT;
                        let param_env = tcx.construct_parameter_environment(DUMMY_SP,
                          def.did, ROOT_CODE_EXTENT);
                        let fields = &def.variants[0].fields;
                        let last_field = &fields[fields.len()-1];
                        let always_sized = last_field.ty(tcx, param_env.free_substs)
                          .is_sized(tcx, &param_env, DUMMY_SP);
                        if !always_sized { StructKind::MaybeUnsizedUnivariant }
                        else { StructKind::AlwaysSizedUnivariant }
                    };

                    let fields = def.variants[0].fields.iter().map(|field| {
                        field.ty(tcx, substs).layout(infcx)
                    }).collect::<Result<Vec<_>, _>>()?;
                    let layout = if def.is_union() {
                        let mut un = Union::new(dl, def.repr.packed);
                        un.extend(dl, fields.iter().map(|&f| Ok(f)), ty)?;
                        UntaggedUnion { variants: un }
                    } else {
                        let st = Struct::new(dl, &fields, &def.repr,
                          kind, ty)?;
                        let non_zero = Some(def.did) == tcx.lang_items.non_zero();
                        Univariant { variant: st, non_zero: non_zero }
                    };
                    return success(layout);
                }

                // Since there's at least one
                // non-empty body, explicit discriminants should have
                // been rejected by a checker before this point.
                for (i, v) in def.variants.iter().enumerate() {
                    if v.discr != ty::VariantDiscr::Relative(i) {
                        bug!("non-C-like enum {} with specified discriminants",
                            tcx.item_path_str(def.did));
                    }
                }

                // Cache the substituted and normalized variant field types.
                let variants = def.variants.iter().map(|v| {
                    v.fields.iter().map(|field| field.ty(tcx, substs)).collect::<Vec<_>>()
                }).collect::<Vec<_>>();

                if variants.len() == 2 && !def.repr.inhibit_enum_layout_opt() {
                    // Nullable pointer optimization
                    for discr in 0..2 {
                        let other_fields = variants[1 - discr].iter().map(|ty| {
                            ty.layout(infcx)
                        });
                        if !Struct::would_be_zero_sized(dl, other_fields)? {
                            continue;
                        }
                        let paths = Struct::non_zero_field_paths(infcx,
                            variants[discr].iter().cloned(),
                            None)?;
                        let (mut path, mut path_source) = if let Some(p) = paths { p }
                          else { continue };

                        // FIXME(eddyb) should take advantage of a newtype.
                        if path == &[0] && variants[discr].len() == 1 {
                            let value = match *variants[discr][0].layout(infcx)? {
                                Scalar { value, .. } => value,
                                CEnum { discr, .. } => Int(discr),
                                _ => bug!("Layout::compute: `{}`'s non-zero \
                                           `{}` field not scalar?!",
                                           ty, variants[discr][0])
                            };
                            return success(RawNullablePointer {
                                nndiscr: discr as u64,
                                value: value,
                            });
                        }

                        let st = Struct::new(dl,
                            &variants[discr].iter().map(|ty| ty.layout(infcx))
                              .collect::<Result<Vec<_>, _>>()?,
                            &def.repr, StructKind::AlwaysSizedUnivariant, ty)?;

                        // We have to fix the last element of path here.
                        let mut i = *path.last().unwrap();
                        i = st.memory_index[i as usize];
                        *path.last_mut().unwrap() = i;
                        path.push(0); // For GEP through a pointer.
                        path.reverse();
                        path_source.push(0);
                        path_source.reverse();

                        return success(StructWrappedNullablePointer {
                            nndiscr: discr as u64,
                            nonnull: st,
                            discrfield: path,
                            discrfield_source: path_source
                        });
                    }
                }

                // The general case.
                let discr_max = (variants.len() - 1) as i64;
                assert!(discr_max >= 0);
                let (min_ity, _) = Integer::repr_discr(tcx, ty, &def.repr, 0, discr_max);
                let mut align = dl.aggregate_align;
                let mut size = Size::from_bytes(0);

                // We're interested in the smallest alignment, so start large.
                let mut start_align = Align::from_bytes(256, 256).unwrap();

                // Create the set of structs that represent each variant
                // Use the minimum integer type we figured out above
                let discr = Scalar { value: Int(min_ity), non_zero: false };
                let mut variants = variants.into_iter().map(|fields| {
                    let mut fields = fields.into_iter().map(|field| {
                        field.layout(infcx)
                    }).collect::<Result<Vec<_>, _>>()?;
                    fields.insert(0, &discr);
                    let st = Struct::new(dl,
                        &fields,
                        &def.repr, StructKind::EnumVariant, ty)?;
                    // Find the first field we can't move later
                    // to make room for a larger discriminant.
                    // It is important to skip the first field.
                    for i in st.field_index_by_increasing_offset().skip(1) {
                        let field = fields[i];
                        let field_align = field.align(dl);
                        if field.size(dl).bytes() != 0 || field_align.abi() != 1 {
                            start_align = start_align.min(field_align);
                            break;
                        }
                    }
                    size = cmp::max(size, st.min_size);
                    align = align.max(st.align);
                    Ok(st)
                }).collect::<Result<Vec<_>, _>>()?;

                // Align the maximum variant size to the largest alignment.
                size = size.abi_align(align);

                if size.bytes() >= dl.obj_size_bound() {
                    return Err(LayoutError::SizeOverflow(ty));
                }

                let typeck_ity = Integer::from_attr(dl, def.repr.discr_type());
                if typeck_ity < min_ity {
                    // It is a bug if Layout decided on a greater discriminant size than typeck for
                    // some reason at this point (based on values discriminant can take on). Mostly
                    // because this discriminant will be loaded, and then stored into variable of
                    // type calculated by typeck. Consider such case (a bug): typeck decided on
                    // byte-sized discriminant, but layout thinks we need a 16-bit to store all
                    // discriminant values. That would be a bug, because then, in trans, in order
                    // to store this 16-bit discriminant into 8-bit sized temporary some of the
                    // space necessary to represent would have to be discarded (or layout is wrong
                    // on thinking it needs 16 bits)
                    bug!("layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
                         min_ity, typeck_ity);
                    // However, it is fine to make discr type however large (as an optimisation)
                    // after this point – we’ll just truncate the value we load in trans.
                }

                // Check to see if we should use a different type for the
                // discriminant. We can safely use a type with the same size
                // as the alignment of the first field of each variant.
                // We increase the size of the discriminant to avoid LLVM copying
                // padding when it doesn't need to. This normally causes unaligned
                // load/stores and excessive memcpy/memset operations. By using a
                // bigger integer size, LLVM can be sure about it's contents and
                // won't be so conservative.

                // Use the initial field alignment
                let mut ity = Integer::for_abi_align(dl, start_align).unwrap_or(min_ity);

                // If the alignment is not larger than the chosen discriminant size,
                // don't use the alignment as the final size.
                if ity <= min_ity {
                    ity = min_ity;
                } else {
                    // Patch up the variants' first few fields.
                    let old_ity_size = Int(min_ity).size(dl);
                    let new_ity_size = Int(ity).size(dl);
                    for variant in &mut variants {
                        for i in variant.offsets.iter_mut() {
                            // The first field is the discrimminant, at offset 0.
                            // These aren't in order, and we need to skip it.
                            if *i <= old_ity_size && *i > Size::from_bytes(0) {
                                *i = new_ity_size;
                            }
                        }
                        // We might be making the struct larger.
                        if variant.min_size <= old_ity_size {
                            variant.min_size = new_ity_size;
                        }
                    }
                }

                General {
                    discr: ity,
                    variants: variants,
                    size: size,
                    align: align
                }
            }

            // Types with no meaningful known layout.
            ty::TyProjection(_) | ty::TyAnon(..) => {
                let normalized = normalize_associated_type(infcx, ty);
                if ty == normalized {
                    return Err(LayoutError::Unknown(ty));
                }
                return normalized.layout(infcx);
            }
            ty::TyParam(_) => {
                return Err(LayoutError::Unknown(ty));
            }
            ty::TyInfer(_) | ty::TyError => {
                bug!("Layout::compute: unexpected type `{}`", ty)
            }
        };

        success(layout)
    }

    /// Returns true if the layout corresponds to an unsized type.
    pub fn is_unsized(&self) -> bool {
        match *self {
            Scalar {..} | Vector {..} | FatPointer {..} |
            CEnum {..} | UntaggedUnion {..} | General {..} |
            RawNullablePointer {..} |
            StructWrappedNullablePointer {..} => false,

            Array { sized, .. } |
            Univariant { variant: Struct { sized, .. }, .. } => !sized
        }
    }

    pub fn size(&self, dl: &TargetDataLayout) -> Size {
        match *self {
            Scalar { value, .. } | RawNullablePointer { value, .. } => {
                value.size(dl)
            }

            Vector { element, count } => {
                let elem_size = element.size(dl);
                let vec_size = match elem_size.checked_mul(count, dl) {
                    Some(size) => size,
                    None => bug!("Layout::size({:?}): {} * {} overflowed",
                                 self, elem_size.bytes(), count)
                };
                vec_size.abi_align(self.align(dl))
            }

            FatPointer { metadata, .. } => {
                // Effectively a (ptr, meta) tuple.
                Pointer.size(dl).abi_align(metadata.align(dl))
                       .checked_add(metadata.size(dl), dl).unwrap()
                       .abi_align(self.align(dl))
            }

            CEnum { discr, .. } => Int(discr).size(dl),
            Array { size, .. } | General { size, .. } => size,
            UntaggedUnion { ref variants } => variants.stride(),

            Univariant { ref variant, .. } |
            StructWrappedNullablePointer { nonnull: ref variant, .. } => {
                variant.stride()
            }
        }
    }

    pub fn align(&self, dl: &TargetDataLayout) -> Align {
        match *self {
            Scalar { value, .. } | RawNullablePointer { value, .. } => {
                value.align(dl)
            }

            Vector { element, count } => {
                let elem_size = element.size(dl);
                let vec_size = match elem_size.checked_mul(count, dl) {
                    Some(size) => size,
                    None => bug!("Layout::align({:?}): {} * {} overflowed",
                                 self, elem_size.bytes(), count)
                };
                for &(size, align) in &dl.vector_align {
                    if size == vec_size {
                        return align;
                    }
                }
                // Default to natural alignment, which is what LLVM does.
                // That is, use the size, rounded up to a power of 2.
                let align = vec_size.bytes().next_power_of_two();
                Align::from_bytes(align, align).unwrap()
            }

            FatPointer { metadata, .. } => {
                // Effectively a (ptr, meta) tuple.
                Pointer.align(dl).max(metadata.align(dl))
            }

            CEnum { discr, .. } => Int(discr).align(dl),
            Array { align, .. } | General { align, .. } => align,
            UntaggedUnion { ref variants } => variants.align,

            Univariant { ref variant, .. } |
            StructWrappedNullablePointer { nonnull: ref variant, .. } => {
                variant.align
            }
        }
    }
}

/// Type size "skeleton", i.e. the only information determining a type's size.
/// While this is conservative, (aside from constant sizes, only pointers,
/// newtypes thereof and null pointer optimized enums are allowed), it is
/// enough to statically check common usecases of transmute.
#[derive(Copy, Clone, Debug)]
pub enum SizeSkeleton<'tcx> {
    /// Any statically computable Layout.
    Known(Size),

    /// A potentially-fat pointer.
    Pointer {
        // If true, this pointer is never null.
        non_zero: bool,
        // The type which determines the unsized metadata, if any,
        // of this pointer. Either a type parameter or a projection
        // depending on one, with regions erased.
        tail: Ty<'tcx>
    }
}

impl<'a, 'gcx, 'tcx> SizeSkeleton<'gcx> {
    pub fn compute(ty: Ty<'gcx>, infcx: &InferCtxt<'a, 'gcx, 'tcx>)
                   -> Result<SizeSkeleton<'gcx>, LayoutError<'gcx>> {
        let tcx = infcx.tcx.global_tcx();
        assert!(!ty.has_infer_types());

        // First try computing a static layout.
        let err = match ty.layout(infcx) {
            Ok(layout) => {
                return Ok(SizeSkeleton::Known(layout.size(&tcx.data_layout)));
            }
            Err(err) => err
        };

        let ptr_skeleton = |pointee: Ty<'gcx>| {
            let non_zero = !ty.is_unsafe_ptr();
            let tail = tcx.struct_tail(pointee);
            match tail.sty {
                ty::TyParam(_) | ty::TyProjection(_) => {
                    assert!(tail.has_param_types() || tail.has_self_ty());
                    Ok(SizeSkeleton::Pointer {
                        non_zero: non_zero,
                        tail: tcx.erase_regions(&tail)
                    })
                }
                _ => {
                    bug!("SizeSkeleton::compute({}): layout errored ({}), yet \
                            tail `{}` is not a type parameter or a projection",
                            ty, err, tail)
                }
            }
        };

        match ty.sty {
            ty::TyRef(_, ty::TypeAndMut { ty: pointee, .. }) |
            ty::TyRawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
                ptr_skeleton(pointee)
            }
            ty::TyAdt(def, _) if def.is_box() => {
                ptr_skeleton(ty.boxed_ty())
            }

            ty::TyAdt(def, substs) => {
                // Only newtypes and enums w/ nullable pointer optimization.
                if def.is_union() || def.variants.is_empty() || def.variants.len() > 2 {
                    return Err(err);
                }

                // Get a zero-sized variant or a pointer newtype.
                let zero_or_ptr_variant = |i: usize| {
                    let fields = def.variants[i].fields.iter().map(|field| {
                        SizeSkeleton::compute(field.ty(tcx, substs), infcx)
                    });
                    let mut ptr = None;
                    for field in fields {
                        let field = field?;
                        match field {
                            SizeSkeleton::Known(size) => {
                                if size.bytes() > 0 {
                                    return Err(err);
                                }
                            }
                            SizeSkeleton::Pointer {..} => {
                                if ptr.is_some() {
                                    return Err(err);
                                }
                                ptr = Some(field);
                            }
                        }
                    }
                    Ok(ptr)
                };

                let v0 = zero_or_ptr_variant(0)?;
                // Newtype.
                if def.variants.len() == 1 {
                    if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 {
                        return Ok(SizeSkeleton::Pointer {
                            non_zero: non_zero ||
                                Some(def.did) == tcx.lang_items.non_zero(),
                            tail: tail
                        });
                    } else {
                        return Err(err);
                    }
                }

                let v1 = zero_or_ptr_variant(1)?;
                // Nullable pointer enum optimization.
                match (v0, v1) {
                    (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None) |
                    (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => {
                        Ok(SizeSkeleton::Pointer {
                            non_zero: false,
                            tail: tail
                        })
                    }
                    _ => Err(err)
                }
            }

            ty::TyProjection(_) | ty::TyAnon(..) => {
                let normalized = normalize_associated_type(infcx, ty);
                if ty == normalized {
                    Err(err)
                } else {
                    SizeSkeleton::compute(normalized, infcx)
                }
            }

            _ => Err(err)
        }
    }

    pub fn same_size(self, other: SizeSkeleton) -> bool {
        match (self, other) {
            (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b,
            (SizeSkeleton::Pointer { tail: a, .. },
             SizeSkeleton::Pointer { tail: b, .. }) => a == b,
            _ => false
        }
    }
}