1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// FIXME: This needs an audit for correctness and completeness.

use llvm::{Integer, Pointer, Float, Double, Struct, Vector, Array};
use abi::{self, FnType, ArgType};
use context::CrateContext;
use type_::Type;

fn ty_size(ty: Type) -> usize {
    if ty.kind() == Vector {
        bug!("ty_size: unhandled type")
    } else {
        abi::ty_size(ty, 8)
    }
}

fn is_homogenous_aggregate_ty(ty: Type) -> Option<(Type, u64)> {
    fn check_array(ty: Type) -> Option<(Type, u64)> {
        let len = ty.array_length() as u64;
        if len == 0 {
            return None
        }
        let elt = ty.element_type();

        // if our element is an HFA/HVA, so are we; multiply members by our len
        is_homogenous_aggregate_ty(elt).map(|(base_ty, members)| (base_ty, len * members))
    }

    fn check_struct(ty: Type) -> Option<(Type, u64)> {
        let str_tys = ty.field_types();
        if str_tys.len() == 0 {
            return None
        }

        let mut prev_base_ty = None;
        let mut members = 0;
        for opt_homog_agg in str_tys.iter().map(|t| is_homogenous_aggregate_ty(*t)) {
            match (prev_base_ty, opt_homog_agg) {
                // field isn't itself an HFA, so we aren't either
                (_, None) => return None,

                // first field - store its type and number of members
                (None, Some((field_ty, field_members))) => {
                    prev_base_ty = Some(field_ty);
                    members = field_members;
                },

                // 2nd or later field - give up if it's a different type; otherwise incr. members
                (Some(prev_ty), Some((field_ty, field_members))) => {
                    if prev_ty != field_ty {
                        return None;
                    }
                    members += field_members;
                }
            }
        }

        // Because of previous checks, we know prev_base_ty is Some(...) because
        //   1. str_tys has at least one element; and
        //   2. prev_base_ty was filled in (or we would've returned early)
        let (base_ty, members) = (prev_base_ty.unwrap(), members);

        // Ensure there is no padding.
        if ty_size(ty) == ty_size(base_ty) * (members as usize) {
            Some((base_ty, members))
        } else {
            None
        }
    }

    let homog_agg = match ty.kind() {
        Float  => Some((ty, 1)),
        Double => Some((ty, 1)),
        Array  => check_array(ty),
        Struct => check_struct(ty),
        _ => None
    };

    // Ensure we have at most eight uniquely addressable members
    homog_agg.and_then(|(base_ty, members)| {
        if members > 0 && members <= 8 {
            Some((base_ty, members))
        } else {
            None
        }
    })
}

fn classify_ret_ty(ccx: &CrateContext, ret: &mut ArgType) {
    if is_reg_ty(ret.ty) {
        ret.extend_integer_width_to(64);
        return;
    }

    // don't return aggregates in registers
    ret.make_indirect(ccx);

    if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ret.ty) {
        ret.cast = Some(Type::array(&base_ty, members));
        return;
    }
    let size = ty_size(ret.ty);
    if size <= 16 {
        let llty = if size <= 1 {
            Type::i8(ccx)
        } else if size <= 2 {
            Type::i16(ccx)
        } else if size <= 4 {
            Type::i32(ccx)
        } else if size <= 8 {
            Type::i64(ccx)
        } else {
            Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64)
        };
        ret.cast = Some(llty);
        return;
    }
}

fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType) {
    if is_reg_ty(arg.ty) {
        arg.extend_integer_width_to(64);
        return;
    }

    if let Some((base_ty, members)) = is_homogenous_aggregate_ty(arg.ty) {
        arg.cast = Some(Type::array(&base_ty, members));
        return;
    }

    arg.cast = Some(struct_ty(ccx, arg.ty));
}

fn is_reg_ty(ty: Type) -> bool {
    match ty.kind() {
        Integer
        | Pointer
        | Float
        | Double => true,
        _ => false
    }
}

fn coerce_to_long(ccx: &CrateContext, size: usize) -> Vec<Type> {
    let long_ty = Type::i64(ccx);
    let mut args = Vec::new();

    let mut n = size / 64;
    while n > 0 {
        args.push(long_ty);
        n -= 1;
    }

    let r = size % 64;
    if r > 0 {
        args.push(Type::ix(ccx, r as u64));
    }

    args
}

fn struct_ty(ccx: &CrateContext, ty: Type) -> Type {
    let size = ty_size(ty) * 8;
    Type::struct_(ccx, &coerce_to_long(ccx, size), false)
}

pub fn compute_abi_info(ccx: &CrateContext, fty: &mut FnType) {
    if !fty.ret.is_ignore() {
        classify_ret_ty(ccx, &mut fty.ret);
    }

    for arg in &mut fty.args {
        if arg.is_ignore() { continue; }
        classify_arg_ty(ccx, arg);
    }
}