1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::hash::Hasher;
use std::marker::PhantomData;
use std::mem;
use blake2b::Blake2bHasher;
use rustc_serialize::leb128;

fn write_unsigned_leb128_to_buf(buf: &mut [u8; 16], value: u64) -> usize {
    leb128::write_unsigned_leb128_to(value as u128, |i, v| buf[i] = v)
}

fn write_signed_leb128_to_buf(buf: &mut [u8; 16], value: i64) -> usize {
    leb128::write_signed_leb128_to(value as i128, |i, v| buf[i] = v)
}

/// When hashing something that ends up affecting properties like symbol names. We
/// want these symbol names to be calculated independent of other factors like
/// what architecture you're compiling *from*.
///
/// The hashing just uses the standard `Hash` trait, but the implementations of
/// `Hash` for the `usize` and `isize` types are *not* architecture independent
/// (e.g. they has 4 or 8 bytes). As a result we want to avoid `usize` and
/// `isize` completely when hashing.
///
/// To do that, we encode all integers to be hashed with some
/// arch-independent encoding.
///
/// At the moment, we pass i8/u8 straight through and encode
/// all other integers using leb128.
///
/// This hasher currently always uses the stable Blake2b algorithm
/// and allows for variable output lengths through its type
/// parameter.
#[derive(Debug)]
pub struct StableHasher<W> {
    state: Blake2bHasher,
    bytes_hashed: u64,
    width: PhantomData<W>,
}

pub trait StableHasherResult: Sized {
    fn finish(hasher: StableHasher<Self>) -> Self;
}

impl<W: StableHasherResult> StableHasher<W> {
    pub fn new() -> Self {
        StableHasher {
            state: Blake2bHasher::new(mem::size_of::<W>(), &[]),
            bytes_hashed: 0,
            width: PhantomData,
        }
    }

    pub fn finish(self) -> W {
        W::finish(self)
    }
}

impl StableHasherResult for [u8; 20] {
    fn finish(mut hasher: StableHasher<Self>) -> Self {
        let mut result: [u8; 20] = [0; 20];
        result.copy_from_slice(hasher.state.finalize());
        result
    }
}

impl StableHasherResult for u64 {
    fn finish(mut hasher: StableHasher<Self>) -> Self {
        hasher.state.finalize();
        hasher.state.finish()
    }
}

impl<W> StableHasher<W> {
    #[inline]
    pub fn finalize(&mut self) -> &[u8] {
        self.state.finalize()
    }

    #[inline]
    pub fn bytes_hashed(&self) -> u64 {
        self.bytes_hashed
    }

    #[inline]
    fn write_uleb128(&mut self, value: u64) {
        let mut buf = [0; 16];
        let len = write_unsigned_leb128_to_buf(&mut buf, value);
        self.state.write(&buf[..len]);
        self.bytes_hashed += len as u64;
    }

    #[inline]
    fn write_ileb128(&mut self, value: i64) {
        let mut buf = [0; 16];
        let len = write_signed_leb128_to_buf(&mut buf, value);
        self.state.write(&buf[..len]);
        self.bytes_hashed += len as u64;
    }
}

// For the non-u8 integer cases we leb128 encode them first. Because small
// integers dominate, this significantly and cheaply reduces the number of
// bytes hashed, which is good because blake2b is expensive.
impl<W> Hasher for StableHasher<W> {
    fn finish(&self) -> u64 {
        panic!("use StableHasher::finish instead");
    }

    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.state.write(bytes);
        self.bytes_hashed += bytes.len() as u64;
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.state.write_u8(i);
        self.bytes_hashed += 1;
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.write_uleb128(i as u64);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.write_uleb128(i as u64);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.write_uleb128(i);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.write_uleb128(i as u64);
    }

    #[inline]
    fn write_i8(&mut self, i: i8) {
        self.state.write_i8(i);
        self.bytes_hashed += 1;
    }

    #[inline]
    fn write_i16(&mut self, i: i16) {
        self.write_ileb128(i as i64);
    }

    #[inline]
    fn write_i32(&mut self, i: i32) {
        self.write_ileb128(i as i64);
    }

    #[inline]
    fn write_i64(&mut self, i: i64) {
        self.write_ileb128(i);
    }

    #[inline]
    fn write_isize(&mut self, i: isize) {
        self.write_ileb128(i as i64);
    }
}