1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::graph::{Direction, INCOMING, Graph, NodeIndex, OUTGOING};
use std::fmt::Debug;
use std::hash::Hash;

use super::DepNode;

pub struct DepGraphQuery<D: Clone + Debug + Hash + Eq> {
    pub graph: Graph<DepNode<D>, ()>,
    pub indices: FxHashMap<DepNode<D>, NodeIndex>,
}

impl<D: Clone + Debug + Hash + Eq> DepGraphQuery<D> {
    pub fn new(nodes: &[DepNode<D>],
               edges: &[(DepNode<D>, DepNode<D>)])
               -> DepGraphQuery<D> {
        let mut graph = Graph::new();
        let mut indices = FxHashMap();
        for node in nodes {
            indices.insert(node.clone(), graph.next_node_index());
            graph.add_node(node.clone());
        }

        for &(ref source, ref target) in edges {
            let source = indices[source];
            let target = indices[target];
            graph.add_edge(source, target, ());
        }

        DepGraphQuery {
            graph: graph,
            indices: indices
        }
    }

    pub fn contains_node(&self, node: &DepNode<D>) -> bool {
        self.indices.contains_key(&node)
    }

    pub fn nodes(&self) -> Vec<&DepNode<D>> {
        self.graph.all_nodes()
                  .iter()
                  .map(|n| &n.data)
                  .collect()
    }

    pub fn edges(&self) -> Vec<(&DepNode<D>,&DepNode<D>)> {
        self.graph.all_edges()
                  .iter()
                  .map(|edge| (edge.source(), edge.target()))
                  .map(|(s, t)| (self.graph.node_data(s),
                                 self.graph.node_data(t)))
                  .collect()
    }

    fn reachable_nodes(&self, node: &DepNode<D>, direction: Direction) -> Vec<&DepNode<D>> {
        if let Some(&index) = self.indices.get(node) {
            self.graph.depth_traverse(index, direction)
                      .map(|s| self.graph.node_data(s))
                      .collect()
        } else {
            vec![]
        }
    }

    /// All nodes reachable from `node`. In other words, things that
    /// will have to be recomputed if `node` changes.
    pub fn transitive_successors(&self, node: &DepNode<D>) -> Vec<&DepNode<D>> {
        self.reachable_nodes(node, OUTGOING)
    }

    /// All nodes that can reach `node`.
    pub fn transitive_predecessors(&self, node: &DepNode<D>) -> Vec<&DepNode<D>> {
        self.reachable_nodes(node, INCOMING)
    }

    /// Just the outgoing edges from `node`.
    pub fn immediate_successors(&self, node: &DepNode<D>) -> Vec<&DepNode<D>> {
        if let Some(&index) = self.indices.get(&node) {
            self.graph.successor_nodes(index)
                      .map(|s| self.graph.node_data(s))
                      .collect()
        } else {
            vec![]
        }
    }
}