mglTEX package example

Diego Sejas Viscarra, Alexey Balakin
July 8, 2017

The BTEX package mglTEX (was made by Diego Sejas Viscarra) allows one to
make figures directly from MGL scripts located in BTEX file.

For using this package you need to specify --shell-escape option for la-
tex/pdflatex or manually run mglconv tool on produced MGL scripts for gener-
ation of images. Don’t forget to run latex/pdflater a second time to insert the
generated images into the output document.

The package may have following options: draft, final — the same as in
the graphicx package; on, off — to activate/deactivate the creation of scripts
and graphics; comments, nocomments — to make visible/invisible commentaries
contained inside mglcomment environments; jpg, jpeg, png — to export graphics
as JPEG/PNG images; eps, epsz — to export to uncompressed/compressed
EPS format as primitives; bps, bpsz — to export to uncompressed /compressed
EPS format as bitmap (doesn’t work with pdflatex); pdf — to export to 3D
PDF; tex — to export to WTEX/tikz document.

The package defines the following environments:

mgl It writes its contents to a general script which has the same name as the
LaTeX document, but its extension is .mgl. The code in this environ-
ment is compiled and the image produced is included. It takes exactly
the same optional arguments as the \includegraphics command, plus
an additional argument imgext, which specifies the extension to save the
image.

mgladdon It adds its contents to the general script, without producing any
image. It useful to set some global properties (like size of the images) at
beginning of the document.

mglcode Is exactly the same as mgl, but it writes its contents verbatim to its
own file, whose name is specified as a mandatory argument.

mglscript Is exactly the same as mglcode, but it doesn’t produce any image,
nor accepts optional arguments. It is useful, for example, to create a
MGUL script, which can later be post processed by another package like
"listings”.

mglblock It writes its contents verbatim to a file, specified as a mandatory
argument, and to the LaTeX document, and numerates each line of code.

mglverbatim Exactly the same as mglblock, but it doesn’t write to a file.
This environment doesn’t have arguments.

mglfunc Is used to define MGL functions. It takes one mandatory argument,
which is the name of the function, plus one additional argument, which
specifies the number of arguments of the function. The environment needs
to contain only the body of the function, since the first and last lines are
appended automatically, and the resulting code is written at the end of
the general script, which is also written automatically. The warning is
produced if 2 or more function with the same name is defined.

mglsignature Used to defined a commentary that will be added to every script.
It is useful to include signature text or license text. Observe this is a
verbatim-like environment, so no ITEX command will be executed inside
it, but will be copied as is.

As an alternative to this method of declaring signatures, the user can
manually redefine the signature macro \mgltexsignature, according to
the following rules:

e The positions of the comment signs for the MGL language have to
be manually specified in the signature using the \mglcomm macro.

e The new-line character is declared as “~~J”.

e A percent sign (%) has to be added at the end of every physical line
of \mgltexsignature, otherwise an inelegant space at the beginning
of every line will appear.

o Any IXTEX command can be used in this case.

For example, the default signature:

\begin{quote}\small

\mglcomm\\

\mglcomm\ This script was generated from
$<$document$>$.mgl on date $<$today$>$\\

\mglcomm

\end{quote}

can be achieved with

\def\mgltexsignature{%
\mglcomm~"~J%
\mglcomm\ This script was generated from \jobname.mgl on date \today~"J%
\mg1comm,

¥

mglcomment Used to contain multiline commentaries. This commentaries
will be visible/invisible in the output document, depending on the use of
the package options comments and nocomments (see above), or the and
commands (see bellow).

When, visible, the comment will appear like this:

== MGL comment ----------———----- >
<Commentary>
emmmmmm e MGL comment --------—-—————---- >

mglsetup If many scripts with the same code are to be written, the repeti-
tive code can be written inside this environment only once, then this code
will be used automatically every time the \mglplot command is used (see
below). It takes one optional argument, which is a name to be associ-
ated to the corresponding contents of the environment; this name can be
passed to the \mglplot command to use the corresponding block of code
automatically (see below).

The package also defines the following commands:

\mglplot It takes one mandatory argument, which is MGL instructions sepa-
rated by the symbol 2’ this argument can be more than one line long. It
takes the same optional arguments as the mgl environment, plus an addi-
tional argument settings, which indicates the name associated to a block
of code inside a mglsetup environment. The code inside the mandatory
argument will be appended to the block of code specified, and the resulting
code will be written to the general script.

\mglgraphics This command takes the same optional arguments as the mgl
environment, and one mandatory argument, which is the name of a MGL
script. This command will compile the corresponding script and include
the resulting image. It is useful when you have a script outside the LaTeX
document, and you want to include the image, but you don’t want to type
the script again.

\mglinclude This is like \mglgraphics but, instead of creating/including the
corresponding image, it writes the contents of the MGL script to the
LaTeX document, and numerates the lines.

\mgldir This command can be used in the preamble of the document to specify
a directory where LaTeX will save the MGL scripts and generate the
corresponding images. This directory is also where \mglgraphics and
\mglinclude will look for scripts.

\mglquality Can be used to adjust the quality of the MGL graphics produced.
The following table shows the available qualities:

Quality Description

0 No face drawing (fastest)

No color interpolation (fast)

High quality (normal)

High quality with 3d primitives (not implemented yet)

No face drawing, direct bitmap drawing (low memory usage)

No color interpolation, direct bitmap drawing (low memory usage)

High quality, direct bitmap drawing (low memory usage)

High quality with 3d primitives, direct bitmap drawing (not implemented yet)

QO | O U W= | W DN —

Draw dots instead of primitives (extremely fast)

\mglswitch{on}, \mglswitch{off} To activate/deactivate the creation of
MGL scripts and images. Notice these commands have local behavior
in the sense that their effect is from the point they are called on.

\mglcomment{on}, \mglnocomment{off} To make visible/invisible the con-
tents of the mglcomment environments. These commands have local effect
too.

\mglTeX It just pretty prints the name of the package “mglTEX”.
An example of usage of mgl and mglfunc environments would be:

\begin{mglfunc}{prepare2d}
new a 50 40 ’0.6*sin(pi*(x+1))*sin(1.5*%pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))’
new b 50 40 ’0.6%cos(pi*(x+1))*cos(1.5*pix(y+1))+0.4%cos(0.75*pi*(x+1)*(y+1))’
\end{mglfunc}

\begin{figure} [!ht]
\centering
\begin{mgl} [width=0.85\textwidth,height=7.5cm]
fog 0.5
call ’prepare2d’
subplot 2 2 0O:title ’Surf plot (default)’:rotate 50 60:1light on:box:surf a

subplot 2 2 1:title ’"\#" style; meshnum 10’:rotate 50 60:box
surf a ’#’; meshnum 10

subplot 2 2 2 : title ’Mesh plot’ : rotate 50 60 : box
mesh a

new x 50 40 ’0.8*sin(pi*x)*sin(pix*(y+1)/2)’

new y 50 40 ’0.8*cos(pi*x)*sin(pi*(y+1)/2)’

new z 50 40 ’0.8*cos(pi*(y+1)/2)’

subplot 2 2 3 : title ’parametric form’ : rotate 50 60 : box
surf x y z ’BbwrR’

\end{mgl}
\end{figure}

Note, that mglfunc environment(s) can be located at any position (at the be-
ginning, at the end, or somewhere else) of LaTeX document.

Surf plot (default) "#" style; meshnum 10

. e .

Following example show the usage of mglscript environment

\begin{mglscript}{Vectoriall}

call ’prepare2v’

subplot 3 2 0 ’’ : title ’lolo’ : box

vect a b

subplot 3 2 1 ’’ : title ’"." style; "=" style’ : box
vect ab ’.=’

subplot 3 2 2 ’’ : title ’"f" style’ : box

vect a b ’f’

subplot 3 2 3 ’’ : title ’">" style’ : box

vect a b ’>’

subplot 3 2 4 ’’ : title ’"<" style’ : box

vect a b ’<’

call ’prepare3v’

subplot 3 2 5 : title ’3d variant’ : rotate 50 60 : box
vect ex ey ez

stop

func ’prepare2v’
new a 20 30 ’0.6*sin(pi*(x+1))*sin(1.5%pi*(y+1))+0.4*cos(0.75*pix (x+1)*(y+1))’

new b 20 30 ’0.6%cos(pi*(x+1))*cos(1.5*pix(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))’
return

func ’prepare3dv’
define $1 pow(x*x+y*y+(z-0.3)*(z-0.3)+0.03,1.5)
define $2 pow(x*x+y*y+(z+0.3)*(z+0.3)+0.03,1.5)
new ex 10 10 10 ’0.2*x/$1-0.2*x/$2’
new ey 10 10 10 ’0.2*y/$1-0.2*y/$2’
new ez 10 10 10 ’0.2%(z-0.3)/$1-0.2%(z+0.3)/$2’
return
\end{mglscript}

You should use \mglgraphics command to display its contents

\begin{figure}[!ht]
\centering
\mglgraphics [width=40em,height=20em] {Vectorial}
\caption{A beautiful example}

\end{figure}

lolo

T T = e

Figure 1: A beautiful example

Alternatively, you can display the contents of the script in parallel to saving
to a file, if you are using mglblock environment

\begin{mglblock}{Axis_projection}
ranges 01 010 1
new x 50 ’0.25*%(1+cos(2*pi*x))’
new y 50 ’0.25%(1+sin(2*pi*x))’

—— |Axis_projection.mgl

new z 50 ’x’

new a 20 30 ’30*x*y*(1-x-y) "2% (x+y<1)’

new rx 10 ’rnd’:new ry 10:fill ry ’(1-v)*rnd’ rx
light on

title ’Projection sample’:ternary 4:rotate 50 60
box:axis:grid

plot x y z ’r2’:surf a ’#’

xlabel ’X’:ylabel ’Y’:zlabel ’Z’

\end{mglblock}

\begin{figure} [!ht]

\centering
\mglgraphics[scale=0.5]{Axis_projection}

\caption{The image from Axis_projection.mgl script}

\end{figure}

ranges 0 1 01 01

new x 50 ’0.25%(1+cos(2*pix*x))’

new y 50 ’0.25%(1+sin(2*pi*x))’

new z 50 ’x’

new a 20 30 ’30xxxy*(1-x-y) 2% (x+y<1)’
new rx 10 ’rnd’:new ry 10:£fill ry °’(1-v)*rnd’rx
light on

© 00 N O O W N

e e
N = O

title ’Projection sample’:ternary 4:rotate 50 60
box:axis:grid

plot x y z ’r2’:surf a ’#’

xlabel ’X’:ylabel ’Y’:zlabel ’Z’

Finally, you can just show MGL script itself

\begin{mglverbatim}
ranges 0 1 01 01
new x 50 ’0.25%(1+cos(2*pi*x))’
new y 50 ’0.25%(1+sin(2*pi*x))’
new z 50 ’x’
new a 20 30 ’30*x*y*(1-x-y) "2x(x+y<1)’
new rx 10 ’rnd’:new ry 10:fill ry ’(1-v)*rnd’ rx

light on

title ’Projection sample’:ternary 4:rotate 50 60
box:axis:grid
plot x y z ’r2’:surf a ’#’

Projection sample

0 02 04 06 OF

Figure 2: The image from Axis_projection.mgl script

xlabel ’X’:ylabel ’Y’:zlabel ’Z’

\end{mglverbatim}
1. ranges 01 0101
2. new x 50 ’0.25%(1+cos(2*pi*x))’
3. new y 50 ’0.25*%(1+sin(2*pi*x))’
4. mnew z 50 ’x’
5. new a 20 30 ’30*x*xy*(1-x-y) 2% (x+y<1)’
6. new rx 10 ’rnd’:new ry 10:fill ry ’(1-v)*rnd’rx
7. light on
8.
9. title ’Projection sample’:ternary 4:rotate 50 60
10. box:axis:grid
11. plot x y z ’r2’:surf a ’#’
12. xlabel ’X’:ylabel ’Y’:zlabel ’Z’

An example of usage of \mglplot command would be:

\begin{mglsetup}
box ’@{W9}’ : axis
\end{mglsetup}
\begin{mglsetup} [2d]
box : axis
grid ’xy’ ’;k’

\end{mglsetup}

\begin{mglsetupl} [3d]
rotate 50 60
box : axis : grid ’xyz’ ’;k’
\end{mglsetup}
\begin{figure} [!ht]
\centering
\mglplot [scale=0.5]{new a 200 ’sin(pi*x)’:plot a ’2B’}
\end{figure}
\begin{figure} [!ht]
\centering

\mglplot[scale=0.5,settings=2d]{
fplot ’sin(pix*x)’ ’2B’
fplot ’cos(pi*x~2)°’ ’2R’
}
\end{figure}
\begin{figure} [!ht]
\centering
\mglplot [width=0.5 \textwidth, settings=3d]
{fsurf ’sin(pi*x)+cos(pi*y)’}
\end{figure}

As an additional feature, when an image is not found or cannot be included,
instead of issuing an error, mgltex prints a box with the word "MGL image not
found’ in the LaTeX document.

Let’s display the content of the MGL file using \mglinclude command:

_— |Vectoria1.mg1

Dw N e

0.5

MGL
image
not
found

call ’prepare2v’

subplot 3 2 0 ’’: title ’lolo’: box
vect a b
subplot 3 2 1 ’’: title ’"." style; "=" style’: box

10

© 00 N o o

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

vect a b ’.=’

subplot 3 2 2 ’’: title ’"f" style’: box
vect a b ’f’
subplot 3 2 3 ’’: title ’">" style’: box
vect a b ’>’
subplot 3 2 4 ’’: title ’"<" style’: box

vect a b ’<’

call ’prepare3v’

subplot 3 2 5 : title ’3d variant’: rotate 50 60 : box
vect ex ey ez

stop

func ’prepare2v’

new a 20 30 ’0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))’
new b 20 30 ’0.6%cos(pi*(x+1))*cos(1.5*pi*x(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))’
return

func ’prepare3dv’

define $1 pow(x*x+y*y+(z-0.3)*(z-0.3)+0.03,1.5)
define $2 pow(x*x+y*y+(z+0.3)*(z+0.3)+0.03,1.5)
new ex 10 10 10 ’0.2*x/$1-0.2*x/$2’

new ey 10 10 10 ’0.2xy/$1-0.2*y/$2’

new ez 10 10 10 ’0.2%*(z-0.3)/$1-0.2%(z+0.3)/$2’
return

The following commentary will be visible, since mglTEX has been called with

the comments option.

\begin{mglcomment}
This is a visible commentary
that can have multiple lines
\end{mglcomment}

The result is:

This is a visible commentary
that can have multiple lines
———————————————— MGL commentary---------------->

The following commentary won’t be visible, since it is wrapped by \mglnocomments{off}

and \mglcomments{on}.

\mglcomments{off}
\begin{mglcomment}

11

This is an invisible commentary
that can have multiple lines
\end{mglcomment}
\mglcomments{on}

This is an invisible commentary
that can have multiple lines
<—-mmmmmm === = MGL commentary - --------------- >

The last example is the use of the \mglswitch{on} and \mglswitch{off}
commands. For example, the following image won’t be generated:

\mglswitch{off}
\begin{figure}['ht]
\centering
\begin{mgl}
box : axis
fplot ’sin(pix*x)’ ’2B’
\end{mgl}
\end{figure}
\mglswitch{on}

The result is:

mglTEX
is off;
no image
included

12

