GNU Linear Programming Kit

Reference Manual

for GLPK Version 4.49

(DRAFT, April 2013)

The GLPK package is part of the GNU Project released under the aegis of GNU.

Copyright (©) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013 Andrew
Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All
rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Contents

1 Introduction 10
1.1 LPproblem e 10
1.2 MIP problem e 11
1.3 Using the package 11

1.3.1 Briefexample 11
1.3.2 Compiling L 14
1.3.3 Linking 14

2 Basic API Routines 16

2.1 General conventions L L e e 16
2.1.1 Library header e 16
2.1.2 Error handling 16
2.1.3 Thread safety L 16
2.1.4 Arrayindexing L 17

2.2 Problem object 17
2.2.1 Problem segment 17
2.2.2 Basissegment Lo 18
2.2.3 Interior-point segment 19
2.24 MIP segment e 19

2.3 Problem creating and modifying routines 0oL 20
2.3.1 glp_create_prob — create problem object Lo 20
2.3.2 glp_set_prob_name — assign (change) problem name 20
2.3.3 glp_set_obj name — assign (change) objective function name 20
2.3.4 glp_set_obj_dir — set (change) optimization direction flag 21
2.3.5 glp_-add_rows — add new rows to problem object 21
2.3.6 glp_.add_cols — add new columns to problem object 21
2.3.7 glp_set_-row_name — assign (change) row name 22
2.3.8 glp_set_col name — assign (change) column name 22
2.3.9 glp_set_row_bnds — set (change) row bounds 22
2.3.10 glp_set_col bnds — set (change) column bounds 23
2.3.11 glp_set_obj_coef — set (change) objective coefficient or constant term 23
2.3.12 glp_set_mat_row — set (replace) row of the constraint matrix 24
2.3.13 glp_set_mat_col — set (replace) column of the constraint matrix 24
2.3.14 glp_load _matrix — load (replace) the whole constraint matrix 24

2.4

2.5

2.6

2.7

2.3.15 glp_check_dup — check for duplicate elements in sparse matrix 25

2.3.16 glp_sort_matrix — sort elements of the constraint matrix 25
2.3.17 glp_del_rows — delete rows from problem object 26
2.3.18 glp_del_cols — delete columns from problem object 26
2.3.19 glp_copy_prob — copy problem object content 26
2.3.20 glp_erase_prob — erase problem object content 27
2.3.21 glp_delete_prob — delete problem object L. 27
Problem retrieving routines 28
2.4.1 glp_get_prob_name — retrieve problem name 28
2.4.2 glp_get_obj_name — retrieve objective function name 28
2.4.3 glp_get_obj_dir — retrieve optimization direction flag 28
2.4.4 glp_get_num_rows — retrieve number of rowso 28
2.4.5 glp_get_num_cols — retrieve number of columns 29
2.4.6 glp_get_row_name — retrieve Tow name w e 29
2.4.7 glp_get_col_name — retrieve column name 29
2.4.8 glp_get_ row_type — retrieve row type 29
2.4.9 glp_get row_lb — retrieve row lower bound 30
2.4.10 glp_get_row_ub — retrieve row upper boundo L. 30
2.4.11 glp_get_col_type — retrieve column type 30
2.4.12 glp_get_col lb — retrieve column lower bound 30
2.4.13 glp_get_col_.ub — retrieve column upper bound 31
2.4.14 glp_get_obj_coef — retrieve objective coefficient or constant term 31
2.4.15 glp_get_num_nz — retrieve number of constraint coefficients 31
2.4.16 glp_get_mat_row — retrieve row of the constraint matrix 31
2.4.17 glp_get_mat_col — retrieve column of the constraint matrix 32
Row and column searching routines L. 33
2.5.1 glp_create_index — create the name index 33
2.5.2 glp_find_row — find row by itsname 33
2.5.3 glp_find_col — find column by its name 33
2.5.4 glp_delete_index — delete the name index, 33
Problem scaling routines L L 34
2.6.1 Background 34
2.6.2 glp_set_rii — set (change) row scale factor 34
2.6.3 glp_set_sjj — set (change) column scale factor 34
2.6.4 glp_get_rii — retrieve row scale factor Lo 35
2.6.5 glp_get_sjj — retrieve column scale factor 35
2.6.6 glp_scale_.prob — scale problem data 35
2.6.7 glp_unscale_prob — unscale problem data 35
LP basis constructing routines L L Lo 36
2.7.1 Background e 36
2.7.2 glp_set_row_stat — set (change) row status 36
2.7.3 glp_set_col_stat — set (change) column status 37
2.7.4 glp_std_basis — construct standard initial LP basis 37
2.7.5 glp_adv_basis — construct advanced initial LP basis 37
2.7.6 glp_cpx_basis — construct Bixby’s initial LP basis 38

2.8 Simplex method routines L L 39

2.8.1 glp_simplex — solve LP problem with the primal or dual simplex method . . 40
2.8.2 glp_exact — solve LP problem in exact arithmetic 46
2.8.3 glp_init_smcp — initialize simplex solver control parameters 47
2.8.4 glp_get_status — determine generic status of basic solution 47
2.8.5 glp_get_prim_stat — retrieve status of primal basic solution 47
2.8.6 glp_get_dual_stat — retrieve status of dual basic solution 48
2.8.7 glp_get_obj_val — retrieve objective value 48
2.8.8 glp_get_row_stat — retrieve row status 48
2.8.9 glp_get_row_prim — retrieve row primal value 49
2.8.10 glp_get_row_dual — retrieve row dual value 49
2.8.11 glp_get_col_stat — retrieve column status 49
2.8.12 glp_get_col_prim — retrieve column primal value 49
2.8.13 glp_get_col_dual — retrieve column dual value 50
2.8.14 glp_get_unbnd_ray — determine variable causing unboundedness 50

2.9 Interior-point method routines 51
2.9.1 glp_interior — solve LP problem with the interior-point method 52
2.9.2 glp_init_iptcp — initialize interior-point solver control parameters 56
2.9.3 glp_ipt_status — determine solution status. 56
2.9.4 glp_ipt_obj_val — retrieve objective value 56
2.9.5 glp_ipt_row_prim — retrieve row primal value 56
2.9.6 glp_ipt_ row_dual — retrieve row dual value 57
2.9.7 glp_ipt_col_prim — retrieve column primal value 57
2.9.8 glp_ipt_col_dual — retrieve column dual value 57

2.10 Mixed integer programming routineso 58
2.10.1 glp_set_col kind — set (change) column kind 58
2.10.2 glp_get_col kind — retrieve column kind 58
2.10.3 glp_get num_int — retrieve number of integer columns 58
2.10.4 glp_get_num_bin — retrieve number of binary columns 59
2.10.5 glp_intopt — solve MIP problem with the branch-and-cut method 59
2.10.6 glp_init_iocp — initialize integer optimizer control parameters 63
2.10.7 glp_mip_status — determine status of MIP solution 64
2.10.8 glp_mip_obj_val — retrieve objective value 64
2.10.9 glp_mip_row_val — retrieve row value L. 64
2.10.10 glp_mip_col_val — retrieve column value 64

2.11 Additional routines Lo 65
2.11.1 glp_check kkt — check feasibility /optimality conditions 65

3 Utility API routines 69
3.1 Problem data reading/writing routines oL 69
3.1.1 glp_read_mps — read problem data in MPS format 69
3.1.2 glp_write_mps — write problem data in MPS format 70
3.1.3 glpread.lp — read problem data in CPLEX LP format 70
3.1.4 glp_write_lp — write problem data in CPLEX LP format 71
3.1.5 glp_read_prob — read problem data in GLPK format 71

3.1.6 glp_write_prob — write problem data in GLPK format 76

3.2 Routines for processing MathProg models 7
3.2.1 Introduction 77

3.2.2 glp_mpl_alloc_wksp — allocate the translator workspace 80

3.2.3 glp.mpl_read_model — read and translate model section 80
3.2.4 glp_mpl read_data — read and translate data section 80

3.2.5 glp_mpl_generate — generate the model 81
3.2.6 glp_mpl_build_prob — build problem instance from the model 81
3.2.7 glp_mpl_postsolve — postsolve the model 81

3.2.8 glp_mpl_free_wksp — free the translator workspace 82

3.3 Problem solution reading/writing routines L 83
3.3.1 glp_print_sol — write basic solution in printable format 83

3.3.2 glp_read_sol — read basic solution from text file 83
3.3.3 glp_write_sol — write basic solution to text file 83
3.3.4 glp_print_ipt — write interior-point solution in printable format 84
3.3.5 glp_read_ipt — read interior-point solution from text file 85
3.3.6 glp_write_ipt — write interior-point solution to text file 85
3.3.7 glp_print_mip — write MIP solution in printable format 86

3.3.8 glp_read_mip — read MIP solution from text file 86
3.3.9 glp_write_mip — write MIP solution to text file 87

3.4 Post-optimal analysis routines L L oL 88
3.4.1 glp_print_ranges — print sensitivity analysis report 88

4 Advanced API Routines 94
4.1 Background 94
4.2 LP basisroutines 100
4.2.1 glp_bf_exists — check if the basis factorization exists 100
4.2.2 glp_factorize — compute the basis factorization 101
4.2.3 glp_bf updated — check if the basis factorization has been updated 101
4.2.4 glp_get_bfcp — retrieve basis factorization control parameters 102
4.2.5 glp_set_bfcp — change basis factorization control parameters 102
4.2.6 glp_get_bhead — retrieve the basis header information 105
4.2.7 glp_get row_bind — retrieve row index in the basis header 105
4.2.8 glp_get_col_bind — retrieve column index in the basis header 106
4.2.9 glp_ftran — perform forward transformation. 106
4.2.10 glp_btran — perform backward transformation 106
4.2.11 glp.warm_up — “warm up” LP basis oL, 107

4.3 Simplex tableau routines 108
4.3.1 glp_eval_tab_row — compute row of the tableau 108
4.3.2 glp_eval_tab_col — compute column of the tableau 109
4.3.3 glp_transform_row — transform explicitly specified row 110
4.3.4 glp_transform_col — transform explicitly specified column 111
4.3.5 glp_prim_rtest — perform primal ratiotest 112
4.3.6 glp_dual _rtest — perform dual ratio test oL, 113

4.4 Post-optimal analysis routines 114

4.4.1 glp_analyze_bound — analyze active bound of non-basic variable 114

4.4.2 glp_analyze_coef — analyze objective coefficient at basic variable 114

5 Branch-and-Cut API Routines 116
5.1 Introduction e 116
5.1.1 Using the callback routine oL 116
5.1.2 Branch-and-cut algorithm Lo 117
5.1.3 Thesearch tree e 119
5.1.4 Current subproblem 120
5.1.5 The cut pool e 120
5.1.6 Reasons for calling the callback routine 120

5.2 Basicroutines L L e e e e 123
5.2.1 glp_ios_reason — determine reason for calling the callback routine 123
5.2.2 glp_ios_get_prob — access the problem object 123
5.2.3 glp_ios_row_attr — determine additional row attributes. 124
5.2.4 glp_ios_mip_gap — compute relative MIP gap 124
5.2.5 glp_ios_node_data — access application-specificdata 125
5.2.6 glp_ios_select_node — select subproblem to continue the search 125
5.2.7 glp_ios_heur_sol — provide solution found by heuristic 126
5.2.8 glp_ios_can_branch — check if can branch upon specified variable 126
5.2.9 glp_ios_branch_upon — choose variable to branch upon 126
5.2.10 glp_ios_terminate — terminate the solution process 127

5.3 The search tree exploring routines oL 128
5.3.1 glp_ios_tree_size — determine size of the search tree 128
5.3.2 glp_ios_curr_.node — determine current active subproblem 128
5.3.3 glp_ios_next_node — determine next active subproblem 128
5.3.4 glp_ios_prev_node — determine previous active subproblem 129
5.3.5 glp_ios_up_node — determine parent subproblem 129
5.3.6 glp_ios_node_level — determine subproblem level 129
5.3.7 glp_ios_node_bound — determine subproblem local bound 129
5.3.8 glp_ios_best_node — find active subproblem with best local bound 130

5.4 The cut pool routines L 131
5.4.1 glp_ios_pool_size — determine current size of the cut pool 131
5.4.2 glp_ios_add_row — add constraint to the cut pool 131
5.4.3 glp_ios_del_row — remove constraint from the cut pool 132
5.4.4 glp_ios_clear_pool — remove all constraints from the cut pool 133

6 Miscellaneous API Routines 134
6.1 GLPK environment routines e 134
6.1.1 glp_init_env — initialize GLPK environment 134
6.1.2 glp_version — determine library version 134
6.1.3 glp_free_.env — free GLPK environment 135
6.1.4 glp_printf — write formatted output to terminal 135
6.1.5 glp_vprintf — write formatted output to terminal 135
6.1.6 glp_term_out — enable/disable terminal output L. 136

6.1.7

6.1.8

6.1.9

6.1.10
6.1.11
6.1.12
6.1.13
6.1.14
6.1.15
6.1.16
6.1.17

glp_term_hook — intercept terminal output
glp_open_tee — start copying terminal outputo 0L
glp_close_tee — stop copying terminal output
glp_error — display error message and terminate execution
glp_assert — check logical condition
glp_error_hook — install hook to intercept abnormal termination
glp_malloc — allocate memory block
glp_calloc — allocate memory block
glp_free — free memory block oo Lo
glp_mem_usage — get memory usage information
glp_.mem_limit — set memory usage limit

A Installing GLPK on Your Computer
A.1 Downloading the distribution tarball
A.2 Unpacking the distribution tarball 0.
A.3 Configuring the package
A.4 Compiling the package L
A.5 Checking the package L
A.6 Installing the package
A.7 Uninstalling the package L

B MPS Format
B.1 Fixed MPS Format e
B.2 Free MPS Format
B.3 NAME indicator card
B.4 ROWS section e
B.5 COLUMNS Section o v it e e e e e
B.6 RHS section e
B.7 RANGES section e
B.8 BOUNDS section e
B.9 ENDATA indicator cardo
B.10 Specifying objective function L L L
B.11 Example of MPS file
B.12 MIP features e e e

C CPLEX LP Format
C.1 Prelude e e e
C.2 Objective function definition
C.3 Constraints section
C.4 Bounds section e e
C.5 General, integer, and binary sections Lo L
C.6 End keyword
C.7 Example of CPLEX LP file

D Stand-alone LP/MIP Solver

141
141
141
142
143
144
144
144

145
145
146
147
147
148
148
149
150
151
151
151
153

156
156
157
158
159
160
161
161

163

E External Software Modules Used In GLPK 167

E.1 AMD . . 167
E.2 COLAMD/SYMAMD 168
E.3 MiniSat s 169
E.4 zlib . . o e 169
GNU General Public License 171

Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the ANSI C program-
ming language and organized in the form of a callable library. It is intended for solving linear
programming (LP), mixed integer programming (MIP), and other related problems.

1.1 LP problem

GLPK assumes the following formulation of linear programming (LP) problem:
minimize (or maximize)
2= C1Tm41 + C2Tmaa + - ..+ CpTman + Co (1.1)
subject to linear constraints

T1= G11Tm+1 + G12Tm+42 + ...+ AnTmin
Ty = 021Tm+1 T+ G2Tm+42 + ...+ A2nTmin

(1.2)
Tm = Am1Tm+1 T Gm2Tm+2 + - - - + AmnTm4n
and bounds of variables

Lh< 11 <y

< =x <u
2 2 2 (1.3)

lern < Tman < Unin

where: x1,%9,...,z, are auxiliary variables; xy, 1, Zm+2,- .., Tm+n are structural variables; z is
the objective function; ci,ca,. .., ¢, are objective coefficients; ¢y is the constant term (“shift”) of
the objective function; a1, a19, . . ., am, are constraint coefficients; Iy, s, . . ., l;1p are lower bounds

of variables; uq, ug, ..., Um4yn are upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows of the constraint
matrix (i.e. a matrix built of the constraint coefficients). Similarly, structural variables are also
called columns, because they correspond to columns of the constraint matrix.

10

Bounds of variables can be finite as well as infinite. Besides, lower and upper bounds can be
equal to each other. Thus, the following types of variables are possible:

Bounds of variable Type of variable

—00 < 7 < 400 Free (unbounded) variable
I < xpp < 400 Variable with lower bound

—00 < xf < Uy Variable with upper bound
I, < xp < uy Double-bounded variable
lp, = xp = ug Fixed variable

Note that the types of variables shown above are applicable to structural as well as to auxiliary
variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all structural and auxiliary
variables, which:

— satisfy to all the linear constraints (1.2), and
— are within their bounds (1.3), and

— provide smallest (in case of minimization) or largest (in case of maximization) value of the
objective function (1.1).

1.2 MIP problem

Mizxed integer linear programming (MIP) problem is an LP problem in which some variables are
additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordinary (pure) LP problem
(1.1)—(1.3), i.e. includes auxiliary and structural variables, which may have lower and/or upper
bounds. However, in case of MIP problem some variables may be required to be integer. This
additional constraint means that a value of each integer variable must be only integer number.
(Should note that GLPK allows only structural variables to be of integer kind.)

1.3 Using the package

1.3.1 Brief example

In order to understand what GLPK is from the user’s standpoint, consider the following simple
LP problem:

maximize
z = 10x1 + 622 + 4x3

subject to
1+ x4+ 23 <100
10x1 + 4x9 + 5x3 < 600
2x1 + 2x9 + 623 < 300

11

where all variables are non-negative

21 2>0, 29 >0, 23 >0

At first, this LP problem should be transformed to the standard form (1.1)—(1.3). This can be
easily done by introducing auxiliary variables, by one for each original inequality constraint. Thus,
the problem can be reformulated as follows:

maximize
z =10z + 629 + 4z3

subject to
p= T1+ x2+ 3
q = 10x1 4 422 + 5x3
r= 2x1 + 229 + 623

and bounds of variables

—oo < p <100 0< 2 <+
—o0 < g <600 0 < zo < +00
—o0 < r <300 0<z3 <400

where p, ¢, r are auxiliary variables (rows), and x1, x2, x3 are structural variables (columns).

The example C program shown below uses GLPK API routines in order to solve this LP prob-
lem.!

/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *1p;
int ia[1+1000], ja[1+1000];
double ar[1+1000], z, x1, x2, x3;
sl: 1lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);
s4: glp_add_rows(lp, 3);
sb: glp_set_row_name(lp, 1, "p");
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
s7: glp_set_row_name(lp, 2, "q");
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
s9: glp_set_row_name(lp, 3, "r");
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
s11: glp_add_cols(lp, 3);
s12: glp_set_col_name(lp, 1, "x1");

f you just need to solve LP or MIP instance, you may write it in MPS or CPLEX LP format and then use the
GLPK stand-alone solver to obtain a solution. This is much less time-consuming than programming in C with GLPK
APIT routines.

12

s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
s14: glp_set_obj_coef(lp, 1, 10.0);
s15: glp_set_col_name(lp, 2, "x2");
s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
s17: glp_set_obj_coef(lp, 2, 6.0);
s18: glp_set_col_name(lp, 3, "x3");
s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
s20: glp_set_obj_coef(lp, 3, 4.0);

s21: ial1] =1, jal[1]l =1, ar[1] = 1.0; /* a[1,1] = 1 %/
s22: ial2] =1, jal2] = 2, ar[2] = 1.0; /* a[1,2] = 1 %/
s23: ial3] =1, ja[3] = 3, ar[3] = 1.0; /* al[1,3] = 1 %/
s24: ial4] = 2, jal4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
s25: ia[5] = 3, jalb] =1, ar[5] = 2.0; /* a[3,1] = 2 %/
s26: ial6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 %/
s27: ial7] = 3, jal7] = 2, ar[7] = 2.0; /* a[3,2] = 2 %/
s28: ial8] = 2, jal8] = 3, ar[8] = 5.0; /* a[2,3] = 5 %/
s29: ial9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 %/
)

s30: glp_load_matrix(lp, 9, ia, ja, ar
s31: glp_simplex(lp, NULL);
s32: z = glp_get_obj_val(lp);
s33: x1 = glp_get_col_prim(1lp, 1);
s34: x2 = glp_get_col_prim(lp, 2);
s35: x3 = glp_get_col_prim(lp, 3);
s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",
z, x1, x2, x3);

s37: glp_delete_prob(lp);

return 0O;

}

/* eof */

The statement s1 creates a problem object. Being created the object is initially empty. The
statement s2 assigns a symbolic name to the problem object.

The statement s3 calls the routine glp_set_obj_dir in order to set the optimization direction
flag, where GLP_MAX means maximization.

The statement s4 adds three rows to the problem object.

The statement s5 assigns the symbolic name ‘p’ to the first row, and the statement s6 sets the
type and bounds of the first row, where GLP_UP means that the row has an upper bound. The
statements s7, 8, s9, s10 are used in the same way in order to assign the symbolic names ‘q’ and
‘r’ to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.

The statement s12 assigns the symbolic name ‘x1’ to the first column, the statement s13 sets
the type and bounds of the first column, where GLP_LO means that the column has an lower bound,
and the statement s14 sets the objective coefficient for the first column. The statements s15—s20
are used in the same way in order to assign the symbolic names ‘x2’ and ‘x3’ to the second and
third columns and set their types, bounds, and objective coefficients.

The statements s21—s29 prepare non-zero elements of the constraint matrix (i.e. constraint
coefficients). Row indices of each element are stored in the array ia, column indices are stored in
the array ja, and numerical values of corresponding elements are stored in the array ar. Then the

13

statement s30 calls the routine glp_load_matrix, which loads information from these three arrays
into the problem object.

Now all data have been entered into the problem object, and therefore the statement s31 calls
the routine glp_simplex, which is a driver to the simplex method, in order to solve the LP problem.
This routine finds an optimal solution and stores all relevant information back into the problem
object.

The statement s32 obtains a computed value of the objective function, and the statements s33—
s35 obtain computed values of structural variables (columns), which correspond to the optimal basic
solution found by the solver.

The statement s36 writes the optimal solution to the standard output. The printout may look
like follows:

0.000000000e+00 infeas
7.333333333e+02 infeas

0.000000000e+00 (0)
0.000000000e+00 (0)

* 0: objval
* 2: objval
OPTIMAL SOLUTION FOUND

z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine glp_delete_prob, which frees all the memory
allocated to the problem object.

1.3.2 Compiling

The GLPK package has the only header file glpk.h, which should be available on compiling a
C (or C++) program using GLPK API routines.

If the header file is installed in the default location /usr/local/include, the following typical
command may be used to compile, say, the example C program described above with the GNU C
compiler:

$ gcc -c sample.c

If glpk.h is not in the default location, the corresponding directory containing it should be
made known to the C compiler through -I option, for example:

$ gcc -I/foo/bar/glpk-4.15/include -c sample.c

In any case the compilation results in an object file sample.o.

1.3.3 Linking

The GLPK library is a single file 1ibglpk.a. (On systems which support shared libraries there
may be also a shared version of the library 1ibglpk.so.)

If the library is installed in the default location /usr/local/lib, the following typical command
may be used to link, say, the example C program described above against with the library:

$ gcc sample.o -lglpk -1lm
If the GLPK library is not in the default location, the corresponding directory containing it

14

should be made known to the linker through -L option, for example:
$ gcc -L/foo/bar/glpk-4.15 sample.o -1lglpk -1lm

Depending on configuration of the package linking against with the GLPK library may require
optional libraries, in which case these libraries should be also made known to the linker, for example:

$ gcc sample.o -1lglpk -lgmp -1m
For more details about configuration options of the GLPK package see Appendix A, page 141.

15

Chapter 2

Basic APl Routines

2.1 General conventions

2.1.1 Library header

All GLPK API data types and routines are defined in the header file glpk.h. It should be
included in all source files which use GLPK API, either directly or indirectly through some other
header file as follows:

#include <glpk.h>

2.1.2 Error handling

If some GLPK API routine detects erroneous or incorrect data passed by the application pro-
gram, it writes appropriate diagnostic messages to the terminal and then abnormally terminates
the application program. In most practical cases this allows to simplify programming by avoiding
numerous checks of return codes. Thus, in order to prevent crashing the application program should
check all data, which are suspected to be incorrect, before calling GLPK API routines.

Should note that this kind of error handling is used only in cases of incorrect data passed by
the application program. If, for example, the application program calls some GLPK API routine
to read data from an input file and these data are incorrect, the GLPK API routine reports about
error in the usual way by means of the return code.

2.1.3 Thread safety

The standard version of GLPK API is not thread safe and therefore should not be used in
multi-threaded programs.

16

2.1.4 Array indexing

Normally all GLPK API routines start array indexing from 1, not from 0 (except the specially
stipulated cases). This means, for example, that if some vector x of the length n is passed as an
array to some GLPK API routine, the latter expects vector components to be placed in locations
x[1], x[2], ..., x[n], and the location x[0] normally is not used.

To avoid indexing errors it is most convenient and most reliable to declare the array x as follows:
double x[1+n];
or to allocate it as follows:

double *x;

x = calloc(1+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing the array to GLPK routines
in a usual way.

2.2 Problem object

All GLPK API routines deal with so called problem object, which is a program object of type
glp_prob and intended to represent a particular LP or MIP instance.

The type glp_prob is a data structure declared in the header file glpk.h as follows:
typedef struct glp_prob glp_prob;

Problem objects (i.e. program objects of the glp_prob type) are allocated and managed in-
ternally by the GLPK API routines. The application program should never use any members
of the glp_prob structure directly and should deal only with pointers to these objects (that is,
glp_prob * values).

The problem object consists of the following segments:
— problem segment,
— basis segment,
— interior-point segment, and

— MIP segment.

2.2.1 Problem segment

The problem segment contains original LP/MIP data, which corresponds to the problem formu-
lation (1.1)—(1.3) (see Section 1.1, page 10). This segment includes the following components:

— rows (auxiliary variables),

— columns (structural variables),

17

— objective function, and
— constraint matrix.
Rows and columns have the same set of the following attributes:
— ordinal number,
— symbolic name (1 up to 255 arbitrary graphic characters),
— type (free, lower bound, upper bound, double bound, fixed),
— numerical values of lower and upper bounds,

— scale factor.

Ordinal numbers are intended for referencing rows and columns. Row ordinal numbers are
integers 1,2,...,m, and column ordinal numbers are integers 1,2,...,n, where m and n are, re-
spectively, the current number of rows and columns in the problem object.

Symbolic names are intended for informational purposes. They also can be used for referencing
rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural variables) are explained
above (see Section 1.1, page 10).

Scale factors are used internally for scaling rows and columns of the constraint matrix.

Information about the objective function includes numerical values of objective coefficients and
a flag, which defines the optimization direction (i.e. minimization or maximization).

The constraint matriz is a m X n rectangular matrix built of constraint coefficients a;;, which
defines the system of linear constraints (1.2) (see Section 1.1, page 10). This matrix is stored in
the problem object in both row-wise and column-wise sparse formats.

Once the problem object has been created, the application program can access and modify any
components of the problem segment in arbitrary order.

2.2.2 Basis segment

The basis segment of the problem object keeps information related to the current basic solution.
It includes:

— row and column statuses,

— basic solution statuses,

— factorization of the current basis matrix, and
— basic solution components.

The row and column statuses define which rows and columns are basic and which are non-basic.
These statuses may be assigned either by the application program of by some API routines. Note
that these statuses are always defined independently on whether the corresponding basis is valid
or not.

The basic solution statuses include the primal status and the dual status, which are set by the
simplex-based solver once the problem has been solved. The primal status shows whether a primal

18

basic solution is feasible, infeasible, or undefined. The dual status shows the same for a dual basic
solution.

The factorization of the basis matriz is some factorized form (like L U-factorization) of the
current basis matrix (defined by the current row and column statuses). The factorization is used
by simplex-based solvers and kept when the solver terminates the search. This feature allows
efficiently reoptimizing the problem after some modifications (for example, after changing some
bounds or objective coefficients). It also allows performing the post-optimal analysis (for example,
computing components of the simplex table, etc.).

The basic solution components include primal and dual values of all auxiliary and structural
variables for the most recently obtained basic solution.

2.2.3 Interior-point segment

The interior-point segment contains interior-point solution components, which include the solu-
tion status, and primal and dual values of all auxiliary and structural variables.

2.2.4 MIP segment

The MIP segment is used only for MIP problems. This segment includes:
— column kinds,
— MIP solution status, and
— MIP solution components.

The column kinds define which columns (i.e. structural variables) are integer and which are
continuous.

The MIP solution status is set by the MIP solver and shows whether a MIP solution is integer
optimal, integer feasible (non-optimal), or undefined.

The MIP solution components are computed by the MIP solver and include primal values of all
auxiliary and structural variables for the most recently obtained MIP solution.

Note that in case of MIP problem the basis segment corresponds to the optimal solution of LP
relaxation, which is also available to the application program.

Currently the search tree is not kept in the MIP segment, so if the search has been terminated,
it cannot be continued.

19

2.3 Problem creating and modifying routines

2.3.1 glp_create_prob — create problem object

Synopsis
glp_prob *glp_create_prob(void) ;
Description

The routine glp_create_prob creates a new problem object, which initially is “empty”, i.e.
has no rows and columns.

Returns

The routine returns a pointer to the created object, which should be used in any subsequent
operations on this object.

2.3.2 glp_set_prob_name — assign (change) problem name

Synopsis
void glp_set_prob_name(glp_prob *P, const char *name) ;
Description

The routine glp_set_prob_name assigns a given symbolic name (1 up to 255 characters) to the
specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing symbolic name of
the problem object.

2.3.3 glp_set_obj name — assign (change) objective function name

Synopsis
void glp_set_obj_name(glp_prob *P, const char *name);
Description

The routine glp_set_obj_name assigns a given symbolic name (1 up to 255 characters) to the
objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing symbolic name of
the objective function.

20

2.3.4 glp_set_obj_dir — set (change) optimization direction flag

Synopsis
void glp_set_obj_dir(glp_prob *P, int dir);
Description

The routine glp_set_obj_dir sets (changes) the optimization direction flag (i.e. “sense” of the
objective function) as specified by the parameter dir:

GLP_MIN means minimization;
GLP_MAX means maximization.

(Note that by default the problem is minimization.)

2.3.5 glp_add rows — add new rows to problem object

Synopsis
int glp_add_rows(glp_prob *P, int nrs);
Description

The routine glp_add_rows adds nrs rows (constraints) to the specified problem object. New
rows are always added to the end of the row list, so the ordinal numbers of existing rows are not
changed.

Being added each new row is initially free (unbounded) and has empty list of the constraint
coefficients.

Returns

The routine glp_add_rows returns the ordinal number of the first new row added to the problem
object.

2.3.6 glp_add_cols — add new columns to problem object

Synopsis
int glp_add_cols(glp_prob *P, int ncs);
Description

The routine glp_add_cols adds ncs columns (structural variables) to the specified problem
object. New columns are always added to the end of the column list, so the ordinal numbers of
existing columns are not changed.

Being added each new column is initially fixed at zero and has empty list of the constraint
coefficients.

Returns

The routine glp_add_cols returns the ordinal number of the first new column added to the
problem object.

21

2.3.7 glp_set_row_name — assign (change) row name

Synopsis
void glp_set_row_name(glp_prob *P, int i, const char *name);
Description

The routine glp_set_row_name assigns a given symbolic name (1 up to 255 characters) to i-th
row (auxiliary variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing name of i-th row.

2.3.8 glp_set_col name — assign (change) column name

Synopsis
void glp_set_col_name(glp_prob *P, int j, const char *name);
Description

The routine glp_set_col_name assigns a given symbolic name (1 up to 255 characters) to j-th
column (structural variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an existing name of j-th
column.

2.3.9 glp_set_row_bnds — set (change) row bounds

Synopsis
void glp-set_row_bnds(glp_prob *P, int i, int type, double 1lb, double ub);
Description

The routine glp_set_row_bnds sets (changes) the type and bounds of i-th row (auxiliary
variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and upper bound, respectively,
as follows:
Type Bounds Comment

GLP_FR —o0o <z < +oo Free (unbounded) variable

GLP_LO Ib < x <400 Variable with lower bound

GLP_UP —oo <z < ub Variable with upper bound

GLP_DB b<z<ub Double-bounded variable

GLP_FX Ib=2x=ub Fixed variable

where x is the auxiliary variable associated with i-th row.

If the row has no lower bound, the parameter 1b is ignored. If the row has no upper bound,
the parameter ub is ignored. If the row is an equality constraint (i.e. the corresponding auxiliary
variable is of fixed type), only the parameter 1b is used while the parameter ub is ignored.

Being added to the problem object each row is initially free, i.e. its type is GLP_FR.

22

2.3.10 glp_set_col_bnds — set (change) column bounds

Synopsis
void glp-set_col_bnds(glp_prob *P, int j, int type, double 1lb, double ub);
Description

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th column (structural
variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and upper bound, respectively,
as follows:
Type Bounds Comment

GLP_FR —oo < x < +oo Free (unbounded) variable

GLP_LO b < x < 400 Variable with lower bound

GLP_.UP -—-oo<zxz <ub Variable with upper bound

GLP_DB b<z<ub Double-bounded variable

GLP_FX b=z =ub Fixed variable

where z is the structural variable associated with j-th column.

If the column has no lower bound, the parameter 1b is ignored. If the column has no upper
bound, the parameter ub is ignored. If the column is of fixed type, only the parameter 1b is used
while the parameter ub is ignored.

Being added to the problem object each column is initially fixed at zero, i.e. its type is GLP_FX
and both bounds are 0.

2.3.11 glp set_obj_coef — set (change) objective coefficient or constant term

Synopsis
void glp_set_obj_coef(glp_prob *P, int j, double coef);
Description

The routine glp_set_obj_coef sets (changes) the objective coefficient at j-th column (struc-
tural variable). A new value of the objective coefficient is specified by the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term (“shift”) of the objective
function.

23

2.3.12 glp_set_mat_row — set (replace) row of the constraint matrix

Synopsis

void glp_set_mat_row(glp_prob *P, int i, int len, const int ind[],
const double valll);

Description

The routine glp_set_mat_row stores (replaces) the contents of i-th row of the constraint matrix
of the specified problem object.

Column indices and numerical values of new row elements should be placed in locations
ind[1], ..., ind[len] and vall[1], ..., val[len], respectively, where 0 < len < n is the new
length of i-th row, n is the current number of columns in the problem object. Elements with
identical column indices are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified as NULL.

2.3.13 glp_set_mat_col — set (replace) column of the constraint matrix

Synopsis

void glp_set_mat_col(glp_prob *P, int j, int len, const int ind[],
const double vall]);

Description

The routine glp_set_mat_col stores (replaces) the contents of j-th column of the constraint
matrix of the specified problem object.

Row indices and numerical values of new column elements should be placed in locations
ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where 0 < len < m is the new
length of j-th column, m is the current number of rows in the problem object. Elements with
identical row indices are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified as NULL.

2.3.14 glp_load _matrix — load (replace) the whole constraint matrix

Synopsis

void glp_load_matrix(glp_prob *P, int ne, const int ial[],
const int ja[l, const double ar[]);

Description

The routine glp_load_matrix loads the constraint matrix passed in the arrays ia, ja, and ar
into the specified problem object. Before loading the current contents of the constraint matrix is
destroyed.

24

Constraint coefficients (elements of the constraint matrix) should be specified as triplets (ia[k],
jalk], ar[k]) for £ = 1,...,ne, where ia[k] is the row index, ja[k] is the column index, and
ar[k] is a numeric value of corresponding constraint coefficient. The parameter ne specifies the
total number of (non-zero) elements in the matrix to be loaded. Coefficients with identical indices
are not allowed. Zero coefficients are allowed, however, they are not stored in the constraint matrix.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be specified as NULL.

2.3.15 glp_check dup — check for duplicate elements in sparse matrix

Synopsis
int glp_check dup(int m, int n, int ne, const int ia[], const int ja[l);
Description

The routine glp_check_dup checks for duplicate elements (that is, elements with identical
indices) in a sparse matrix specified in the coordinate format.

The parameters m and n specifies, respectively, the number of rows and columns in the matrix,
m>0,n>0.

The parameter ne specifies the number of (structurally) non-zero elements in the matrix,
ne > 0.

Elements of the matrix are specified as doublets (ia[k], ja[k]) for k = 1,...,ne, where ia[k] is a
row index, jalk| is a column index.

The routine glp_check_dup can be used prior to a call to the routine glp_load_matrix to
check that the constraint matrix to be loaded has no duplicate elements.

Returns

0 the matrix representation is correct;

—k indices ia[k] or/and ja[k] are out of range;
+k element (ia[k], ja[k]) is duplicate.

2.3.16 glp_sort_matrix — sort elements of the constraint matrix

Synopsis
void glp_sort_matrix(glp_prob *P);
Description

The routine glp_sort_matrix sorts elements of the constraint matrix by rebuilding its row and
column linked lists.

On exit from the routine the constraint matrix is not changed, however, elements in the row
linked lists become ordered by ascending column indices, and the elements in the column linked
lists become ordered by ascending row indices.

25

2.3.17 glp_del_ rows — delete rows from problem object

Synopsis
void glp_del_rows(glp_prob *P, int nrs, const int num[]);
Description

The routine glp_del_rows deletes rows from the specified problem object. Ordinal numbers of
rows to be deleted should be placed in locations num[1], ..., num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows remaining in the
problem object. New ordinal numbers of the remaining rows are assigned under the assumption
that the original order of rows is not changed. Let, for example, before deletion there be five rows
a, b, ¢, d, e with ordinal numbers 1, 2, 3, 4, 5, and let rows b and d have been deleted. Then after
deletion the remaining rows a, c, e are assigned new oridinal numbers 1, 2, 3.

2.3.18 glp_del_cols — delete columns from problem object

Synopsis
void glp_del_cols(glp_prob *P, int ncs, const int num[]);
Description

The routine glp_del_cols deletes columns from the specified problem object. Ordinal numbers
of columns to be deleted should be placed in locations num[1], ..., num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other columns remaining in
the problem object. New ordinal numbers of the remaining columns are assigned under the as-
sumption that the original order of columns is not changed. Let, for example, before deletion there
be six columns p, ¢, r, s, t, u with ordinal numbers 1, 2, 3, 4, 5, 6, and let columns p, g, s have
been deleted. Then after deletion the remaining columns r, ¢, u are assigned new ordinal numbers
1, 2, 3.

2.3.19 glp_copy_prob — copy problem object content

Synopsis
void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
Description

The routine glp_copy_prob copies the content of the problem object prob to the problem object
dest.

The parameter names is a flag. If it is GLP_ON, the routine also copies all symbolic names;
otherwise, if it is GLP_OFF, no symbolic names are copied.

26

2.3.20 glp_erase_prob — erase problem object content

Synopsis
void glp_erase_prob(glp_prob *P);
Description

The routine glp_erase_prob erases the content of the specified problem object. The ef-
fect of this operation is the same as if the problem object would be deleted with the routine
glp_delete_prob and then created anew with the routine glp_create_prob, with the only excep-
tion that the pointer to the problem object remains valid.

2.3.21 glp_delete_prob — delete problem object

Synopsis
void glp_delete_prob(glp_prob *P);
Description

The routine glp_delete_prob deletes a problem object, which the parameter 1p points to,
freeing all the memory allocated to this object.

27

2.4 Problem retrieving routines

2.4.1 glp_get_prob_name — retrieve problem name

Synopsis
const char *glp_get_prob_name(glp_prob *P);
Returns

The routine glp_get_prob_name returns a pointer to an internal buffer, which contains symbolic
name of the problem. However, if the problem has no assigned name, the routine returns NULL.

2.4.2 glp_get_obj name — retrieve objective function name

Synopsis
const char *glp_get_obj_name(glp_prob *P);
Returns

The routine glp_get_obj_name returns a pointer to an internal buffer, which contains symbolic
name assigned to the objective function. However, if the objective function has no assigned name,
the routine returns NULL.

2.4.3 glp_get_obj_dir — retrieve optimization direction flag

Synopsis
int glp_get_obj_dir(glp_prob *P);
Returns

The routine glp_get_obj_dir returns the optimization direction flag (i.e. “sense” of the ob-
jective function):

GLP_MIN means minimization;

GLP_MAX means maximization.

2.4.4 glp_get num rows — retrieve number of rows

Synopsis
int glp_get_num_rows(glp_prob *P);
Returns

The routine glp_get_num_rows returns the current number of rows in the specified problem
object.

28

2.4.5 glp_get_ num cols — retrieve number of columns

Synopsis
int glp_get_num_cols(glp_prob *P);
Returns

The routine glp_get_num_cols returns the current number of columns in the specified problem
object.

2.4.6 glp_get_ row_name — retrieve row name

Synopsis
const char *glp_get_row_name(glp_prob *P, int i);
Returns

The routine glp_get_row_name returns a pointer to an internal buffer, which contains a symbolic
name assigned to i-th row. However, if the row has no assigned name, the routine returns NULL.

2.4.7 glp_get_col name — retrieve column name

Synopsis
const char *glp_get_col_name(glp_prob *P, int j);
Returns

The routine glp_get_col_name returns a pointer to an internal buffer, which contains a symbolic
name assigned to j-th column. However, if the column has no assigned name, the routine returns
NULL.

2.4.8 glp_get row_type — retrieve row type

Synopsis
int glp_get_row_type(glp_prob *P, int i);
Returns

The routine glp_get_row_type returns the type of i-th row, i.e. the type of corresponding
auxiliary variable, as follows:

GLP_FR — free (unbounded) variable;
GLP_LO — variable with lower bound;
GLP_UP — variable with upper bound;
GLP_DB — double-bounded variable;
GLP_FX — fixed variable.

29

2.4.9 glp_get_row_lb — retrieve row lower bound

Synopsis
double glp_get_row_lb(glp_prob *P, int i);
Returns

The routine glp_get_row_1lb returns the lower bound of i-th row, i.e. the lower bound of
corresponding auxiliary variable. However, if the row has no lower bound, the routine returns
-DBL_MAX.

2.4.10 glp_get_ row_ub — retrieve row upper bound

Synopsis
double glp_get_row_ub(glp_prob *P, int i);
Returns

The routine glp_get_row_ub returns the upper bound of i-th row, i.e. the upper bound of
corresponding auxiliary variable. However, if the row has no upper bound, the routine returns
+DBL_MAX.

2.4.11 glp_get_col type — retrieve column type

Synopsis
int glp_get_col_type(glp_prob *P, int j);
Returns

The routine glp_get_col_type returns the type of j-th column, i.e. the type of corresponding
structural variable, as follows:

GLP_FR — free (unbounded) variable;
GLP_LO — variable with lower bound;
GLP_UP — variable with upper bound;
GLP_DB — double-bounded variable;
GLP_FX — fixed variable.

2.4.12 glp_get_col_lb — retrieve column lower bound

Synopsis
double glp_get_col_lb(glp_prob *P, int j);
Returns

The routine glp_get_col_1b returns the lower bound of j-th column, i.e. the lower bound of
corresponding structural variable. However, if the column has no lower bound, the routine returns
-DBL_MAX.

30

2.4.13 glp_get_col_ ub — retrieve column upper bound

Synopsis
double glp_get_col_ub(glp_prob *P, int j);
Returns

The routine glp_get_col_ub returns the upper bound of j-th column, i.e. the upper bound of
corresponding structural variable. However, if the column has no upper bound, the routine returns
+DBL_MAX.

2.4.14 glp_get_obj_coef — retrieve objective coefficient or constant term

Synopsis
double glp_get_obj_coef(glp_prob *P, int j);
Returns

The routine glp_get_obj_coef returns the objective coefficient at j-th structural variable (col-
umn).

If the parameter j is 0, the routine returns the constant term (“shift”) of the objective function.

2.4.15 glp_get_ num nz — retrieve number of constraint coefficients

Synopsis
int glp_get_num_nz(glp_prob *P);
Returns

The routine glp_get_num_nz returns the number of non-zero elements in the constraint matrix
of the specified problem object.

2.4.16 glp_get_mat_row — retrieve row of the constraint matrix

Synopsis
int glp_get_mat_row(glp_prob *P, int i, int ind[], double vall[l);
Description

The routine glp_get_mat_row scans (non-zero) elements of i-th row of the constraint matrix
of the specified problem object and stores their column indices and numeric values to locations
ind[1], ..., ind[len] and vall[1], ..., val[len], respectively, where 0 < len < n is the number
of elements in i-th row, n is the number of columns.

The parameter ind and/or val can be specified as NULL, in which case corresponding information
is not stored.

31

Returns

The routine glp_get_mat_row returns the length len, i.e. the number of (non-zero) elements
in i-th row.

2.4.17 glp_get_mat_col — retrieve column of the constraint matrix

Synopsis
int glp_get_mat_col(glp_prob *P, int j, int ind[], double vall[l);
Description

The routine glp_get_mat_col scans (non-zero) elements of j-th column of the constraint ma-
trix of the specified problem object and stores their row indices and numeric values to locations
ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where 0 < len < m is the number
of elements in j-th column, m is the number of rows.

The parameter ind and/or val can be specified as NULL, in which case corresponding information
is not stored.

Returns

The routine glp_get_mat_col returns the length len, i.e. the number of (non-zero) elements
in j-th column.

32

2.5 Row and column searching routines

2.5.1 glp_create_index — create the name index

Synopsis
void glp_create_index(glp_prob *P);
Description

The routine glp_create_index creates the name index for the specified problem object. The
name index is an auxiliary data structure, which is intended to quickly (i.e. for logarithmic time)
find rows and columns by their names.

This routine can be called at any time. If the name index already exists, the routine does
nothing.

2.5.2 glp_find row — find row by its name

Synopsis
int glp_find_row(glp_prob *P, const char *name);
Returns

The routine glp_find_row returns the ordinal number of a row, which is assigned the specified
symbolic name. If no such row exists, the routine returns 0.

2.5.3 glp_find col — find column by its name

Synopsis
int glp_find_col(glp_prob *P, const char *name);
Returns

The routine glp_find_col returns the ordinal number of a column, which is assigned the
specified symbolic name. If no such column exists, the routine returns 0.

2.5.4 glp_delete_index — delete the name index

Synopsis
void glp_delete_index(glp_prob *P);
Description

The routine glp_delete_index deletes the name index previously created by the routine
glp_create_index and frees the memory allocated to this auxiliary data structure.

This routine can be called at any time. If the name index does not exist, the routine does
nothing.

33

2.6 Problem scaling routines

2.6.1 Background

In GLPK the scaling means a linear transformation applied to the constraint matrix to improve
its numerical properties.!

The main equality is the following: B
A= RAS, (2.1)

where A = (a;j) is the original constraint matrix, R = (r;) > 0 is a diagonal matrix used to scale
rows (constraints), S = (s;;) > 0 is a diagonal matrix used to scale columns (variables), A is the
scaled constraint matrix.

From (2.1) it follows that in the scaled problem instance each original constraint coefficient a;;

is replaced by corresponding scaled constraint coefficient:

Ziij = riiaiijj. (22)

Note that the scaling is performed internally and therefore transparently to the user. This
means that on API level the user always deal with unscaled data.

Scale factors 7; and s;; can be set or changed at any time either directly by the application
program in a problem specific way (with the routines glp_set_rii and glp_set_sjj), or by some
API routines intended for automatic scaling.

2.6.2 glp_set_rii — set (change) row scale factor

Synopsis
void glp_set_rii(glp_prob *P, int i, double rii);
Description

The routine glp_set_rii sets (changes) the scale factor r;; for i-th row of the specified problem
object.

2.6.3 glp_set_sjj — set (change) column scale factor

Synopsis
void glp_set_sjj(glp_prob *P, int j, double sjj);
Description

The routine glp_set_sjj sets (changes) the scale factor sj; for j-th column of the specified
problem object.

In many cases a proper scaling allows making the constraint matrix to be better conditioned, i.e. decreasing its
condition number, that makes computations numerically more stable.

34

2.6.4 glp_get_rii — retrieve row scale factor

Synopsis
double glp_get_rii(glp_prob *P, int i);
Returns

The routine glp_get_rii returns current scale factor r;; for i-th row of the specified problem
object.

2.6.5 glp_get_sjj — retrieve column scale factor
Synopsis

double glp_get_sjj(glp_prob *P, int j);
Returns

The routine glp_get_sjj returns current scale factor s;; for j-th column of the specified problem
object.

2.6.6 glp_scale prob — scale problem data
Synopsis

void glp_scale_prob(glp_prob *P, int flags);
Description

The routine glp_scale_prob performs automatic scaling of problem data for the specified
problem object.

The parameter flags specifies scaling options used by the routine. The options can be combined
with the bitwise OR operator and may be the following:

GLP_SF_GM — perform geometric mean scaling;
GLP_SF_EQ — perform equilibration scaling;
GLP_SF_2N — round scale factors to nearest power of two;

GLP_SF_SKIP — skip scaling, if the problem is well scaled.

The parameter flags may be also specified as GLP_SF_AUTO, in which case the routine chooses
the scaling options automatically.

2.6.7 glp_unscale_prob — unscale problem data

Synopsis
void glp_unscale_prob(glp_prob *P);

The routine glp_unscale_prob performs unscaling of problem data for the specified problem
object.

“Unscaling” means replacing the current scaling matrices R and S by unity matrices that cancels
the scaling effect.

35

2.7 LP basis constructing routines

2.7.1 Background

To start the search the simplex method needs a valid initial basis. In GLPK the basis is
completely defined by a set of statuses assigned to all (auxiliary and structural) variables, where
the status may be one of the following:

GLP_BS — basic variable;

GLP_NL — non-basic variable having active lower bound;
GLP_NU — non-basic variable having active upper bound;
GLP_NF — non-basic free variable;

GLP_NS — non-basic fixed variable.

The basis is valid, if the basis matrix, which is a matrix built of columns of the augmented
constraint matrix (I | — A) corresponding to basic variables, is non-singular. This, in particular,
means that the number of basic variables must be the same as the number of rows in the problem
object. (For more details see Section 4.2, page 100.)

Any initial basis may be constructed (or restored) with the API routines glp_set_row_stat and
glp_set_col_stat by assigning appropriate statuses to auxiliary and structural variables. Another
way to construct an initial basis is to use API routines like glp_adv_basis, which implement so
called crashing.? Note that on normal exit the simplex solver remains the basis valid, so in case of
reoptimization there is no need to construct an initial basis from scratch.

2.7.2 glp_set_row_stat — set (change) row status

Synopsis
void glp_set_row_stat(glp_prob *P, int i, int stat);
Description

The routine glp_set_row_stat sets (changes) the current status of i-th row (auxiliary variable)
as specified by the parameter stat:

GLP_BS — make the row basic (make the constraint inactive);
GLP_NL — make the row non-basic (make the constraint active);

GLP_NU — make the row non-basic and set it to the upper bound; if the row is not double-
bounded, this status is equivalent to GLP_NL (only in case of this routine);

GLP_NF — the same as GLP_NL (only in case of this routine);
GLP_NS — the same as GLP_NL (only in case of this routine).

2This term is from early linear programming systems and means a heuristic to construct a valid initial basis.

36

2.7.3 glp_set_col stat — set (change) column status

Synopsis
void glp_set_col_stat(glp_prob *P, int j, int stat);
Description

The routine glp_set_col_stat sets (changes) the current status of j-th column (structural
variable) as specified by the parameter stat:

GLP_BS — make the column basic;
GLP_NL — make the column non-basic;

GLP_NU — make the column non-basic and set it to the upper bound; if the column is not
double-bounded, this status is equivalent to GLP_NL (only in case of this routine);

GLP_NF — the same as GLP_NL (only in case of this routine);
GLP_NS — the same as GLP_NL (only in case of this routine).

2.7.4 glp_std_basis — construct standard initial LP basis

Synopsis
void glp_std_basis(glp_prob *P);
Description

The routine glp_std_basis constructs the “standard” (trivial) initial LP basis for the specified
problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and all structural variables
(columns) are non-basic (so the corresponding basis matrix is unity).

2.7.5 glp_adv_basis — construct advanced initial LP basis

Synopsis
void glp_adv_basis(glp_prob *P, int flags);
Description

The routine glp_adv_basis constructs an advanced initial LP basis for the specified problem
object.

The parameter flags is reserved for use in the future and must be specified as zero.
In order to construct the advanced initial LP basis the routine does the following:
1) includes in the basis all non-fixed auxiliary variables;

2) includes in the basis as many non-fixed structural variables as possible keeping the triangular
form of the basis matrix;

3) includes in the basis appropriate (fixed) auxiliary variables to complete the basis.

37

As a result the initial LP basis has as few fixed variables as possible and the corresponding basis
matrix is triangular.

2.7.6 glp_cpx_basis — construct Bixby’s initial LP basis

Synopsis
void glp_cpx_basis(glp_prob *P);
Description

The routine glp_cpx_basis constructs an initial basis for the specified problem object with the
algorithm proposed by R. Bixby.?

3Robert E. Bixby, “Implementing the Simplex Method: The Initial Basis.” ORSA Journal on Computing, Vol. 4,
No. 3, 1992, pp. 267-84.

38

2.8 Simplex method routines

The simplex method is a well known efficient numerical procedure to solve LP problems.

On each iteration the simplex method transforms the original system of equaility constraints
(1.2) resolving them through different sets of variables to an equivalent system called the simplex
table (or sometimes the simplex tableau), which has the following form:

z= di(zn)1+ de(zn)2+...+ du(zn)n
()1 = &u(azn)1+ S2(zn)2 +...+ &n(@2N)n
(xB)2= &i(zn)1 + &n(zn)2+...+ Ln(zn)n (2.3)

(B)m =&m1(TN)1 + Ema(TN)2 + - -+ Emn (TN)n
where: (zg)1,(xB)2,. .., (xB)m are basic variables; (zn)1, (zN)2, ..., (zN)n are non-basic variables;
dy,ds, ..., d, are reduced costs; £11,&12, .. ,&mn are coefficients of the simplex table. (May note

that the original LP problem (1.1)—(1.3) also has the form of a simplex table, where all equalities
are resolved through auxiliary variables.)

From the linear programming theory it is known that if an optimal solution of the LP problem
(1.1)—(1.3) exists, it can always be written in the form (2.3), where non-basic variables are set
on their bounds while values of the objective function and basic variables are determined by the
corresponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the simplex table is called basic
solution. If all basic variables are within their bounds, the basic solution is called (primal) feasible,
otherwise it is called (primal) infeasible. A feasible basic solution, which provides a smallest (in
case of minimization) or a largest (in case of maximization) value of the objective function is called
optimal. Therefore, for solving LP problem the simplex method tries to find its optimal basic
solution.

Primal feasibility of some basic solution may be stated by simple checking if all basic variables
are within their bounds. Basic solution is optimal if additionally the following optimality conditions
are satisfied for all non-basic variables:

Status of (zn); Minimization Maximization
(xn); is free d; =0 d; =0
(xn); is on its lower bound d;j >0 d; <0
(zn); is on its upper bound d; <0 d; >0

In other words, basic solution is optimal if there is no non-basic variable, which changing in the
feasible direction (i.e. increasing if it is free or on its lower bound, or decreasing if it is free or
on its upper bound) can improve (i.e. decrease in case of minimization or increase in case of
maximization) the objective function.

If all non-basic variables satisfy to the optimality conditions shown above (independently on
whether basic variables are within their bounds or not), the basic solution is called dual feasible,
otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution due to incorrect
formulation — this means that its constraints conflict with each other. It also may happen that

39

some LP problem has unbounded solution again due to incorrect formulation — this means that
some non-basic variable can improve the objective function, i.e. the optimality conditions are vi-
olated, and at the same time this variable can infinitely change in the feasible direction meeting
no resistance from basic variables. (May note that in the latter case the LP problem has no dual
feasible solution.)

2.8.1 glp_simplex — solve LP problem with the primal or dual simplex method

Synopsis
int glp_simplex(glp_prob *P, const glp_smcp *parm);
Description

The routine glp_simplex is a driver to the LP solver based on the simplex method. This
routine retrieves problem data from the specified problem object, calls the solver to solve the
problem instance, and stores results of computations back into the problem object.

The simplex solver has a set of control parameters. Values of the control parameters can be
passed in the structure glp_smcp, which the parameter parm points to. For detailed description
of this structure see paragraph “Control parameters” below. Before specifying some control pa-
rameters the application program should initialize the structure glp_smcp by default values of all
control parameters using the routine glp_init_smcp (see the next subsection). This is needed for
backward compatibility, because in the future there may appear new members in the structure
glp_smcp.

The parameter parm can be specified as NULL, in which case the solver uses default settings.

Returns

0 The LP problem instance has been successfully solved. (This code does not nec-
essarily mean that the solver has found optimal solution. It only means that the
solution process was successful.)

GLP_EBADB Unable to start the search, because the initial basis specified in the problem object
is invalid—the number of basic (auxiliary and structural) variables is not the same
as the number of rows in the problem object.

GLP_ESING Unable to start the search, because the basis matrix corresponding to the initial
basis is singular within the working precision.

GLP_ECOND Unable to start the search, because the basis matrix corresponding to the initial
basis is ill-conditioned, i.e. its condition number is too large.

GLP_EBOUND Unable to start the search, because some double-bounded (auxiliary or structural)
variables have incorrect bounds.

GLP_EFAIL The search was prematurely terminated due to the solver failure.

GLP_EOBJLL The search was prematurely terminated, because the objective function being max-
imized has reached its lower limit and continues decreasing (the dual simplex only).

40

GLP_EOBJUL The search was prematurely terminated, because the objective function being mini-
mized has reached its upper limit and continues increasing (the dual simplex only).

GLP_EITLIM The search was prematurely terminated, because the simplex iteration limit has
been exceeded.

GLP_ETMLIM The search was prematurely terminated, because the time limit has been exceeded.

GLP_ENOPFS The LP problem instance has no primal feasible solution (only if the LP presolver
is used).

GLP_ENODFS The LP problem instance has no dual feasible solution (only if the LP presolver is
used).

Built-in LP presolver

The simplex solver has built-in LP presolver. 1t is a subprogram that transforms the original
LP problem specified in the problem object to an equivalent LP problem, which may be easier for
solving with the simplex method than the original one. This is attained mainly due to reducing
the problem size and improving its numeric properties (for example, by removing some inactive
constraints or by fixing some non-basic variables). Once the transformed LP problem has been
solved, the presolver transforms its basic solution back to the corresponding basic solution of the
original problem.

Presolving is an optional feature of the routine glp_simplex, and by default it is disabled. In
order to enable the LP presolver the control parameter presolve should be set to GLP_ON (see
paragraph “Control parameters” below). Presolving may be used when the problem instance is
solved for the first time. However, on performing re-optimization the presolver should be disabled.

The presolving procedure is transparent to the API user in the sense that all necessary processing
is performed internally, and a basic solution of the original problem recovered by the presolver is
the same as if it were computed directly, i.e. without presolving.

Note that the presolver is able to recover only optimal solutions. If a computed solution is
infeasible or non-optimal, the corresponding solution of the original problem cannot be recovered
and therefore remains undefined. If you need to know a basic solution even if it is infeasible or
non-optimal, the presolver should be disabled.

Terminal output

Solving large problem instances may take a long time, so the solver reports some information
about the current basic solution, which is sent to the terminal. This information has the following
format:

nnn: obj = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objective function (it is is
unscaled and has correct sign); ‘yyy’ is the current sum of primal or dual infeasibilities (it is scaled
and therefore may be used only for visual estimating), ‘ddd’ is the current number of fixed basic
variables.

The symbol preceding the iteration number indicates which phase of the simplex method is in
effect:

41

Blank means that the solver is searching for primal feasible solution using the primal simplex
or for dual feasible solution using the dual simplex;

Asterisk (*) means that the solver is searching for optimal solution using the primal simplex;
Vertical dash (|) means that the solver is searching for optimal solution using the dual simplex.
Control parameters

This paragraph describes all control parameters currently used in the simplex solver. Symbolic
names of control parameters are names of corresponding members in the structure glp_smcp.

int msg_lev (default: GLP_MSG_ALL)

Message level for terminal output:

GLP_MSG_OFF — no output;

GLP_MSG_ERR — error and warning messages only;

GLP_MSG_ON — normal output;

GLP_MSG_ALL — full output (including informational messages).

int meth (default: GLP_PRIMAL)

Simplex method option:

GLP_PRIMAL — use two-phase primal simplex;

GLP_DUAL — use two-phase dual simplex;

GLP_DUALP — use two-phase dual simplex, and if it fails, switch to the primal simplex.

int pricing (default: GLP_PT_PSE)
Pricing technique:

GLP_PT_STD — standard (“textbook”);
GLP_PT_PSE — projected steepest edge.

int r_test (default: GLP_RT_HAR)

Ratio test technique:

GLP_RT_STD — standard (“textbook”);
GLP_RT_HAR — Harris’ two-pass ratio test.

double tol_bnd (default: 1e-7)

Tolerance used to check if the basic solution is primal feasible. (Do not change this parameter
without detailed understanding its purpose.)

42

double tol_dj (default: 1e-7)

Tolerance used to check if the basic solution is dual feasible. (Do not change this parameter
without detailed understanding its purpose.)

double tol_piv (default: 1e-10)

Tolerance used to choose eligble pivotal elements of the simplex table. (Do not change this
parameter without detailed understanding its purpose.)

double obj_11 (default: -DBL_MAX)

Lower limit of the objective function. If the objective function reaches this limit and continues
decreasing, the solver terminates the search. (Used in the dual simplex only.)

double obj_ul (default: +DBL_MAX)

Upper limit of the objective function. If the objective function reaches this limit and continues
increasing, the solver terminates the search. (Used in the dual simplex only.)

int it_lim (default: INT_MAX)

Simplex iteration limit.

int tm_lim (default: INT_MAX)

Searching time limit, in milliseconds.

int out_frq (default: 500)

Output frequency, in iterations. This parameter specifies how frequently the solver sends infor-
mation about the solution process to the terminal.

int out_dly (default: 0)

Output delay, in milliseconds. This parameter specifies how long the solver should delay sending
information about the solution process to the terminal.

int presolve (default: GLP_OFF)

LP presolver option:

GLP_ON — enable using the LP presolver;
GLP_OFF — disable using the LP presolver.

43

Example 1

The following example main program reads LP problem instance in fixed MPS format from
file 25£v47 .mps,* constructs an advanced initial basis, solves the instance with the primal simplex
method (by default), and writes the solution to file 25£v47. txt.

/* spxsampl.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_adv_basis(P, 0);
glp_simplex (P, NULL);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...
Problem: 25FV47

Objective: RO00O

822 rows, 1571 columns, 11127 non-zeros
6919 records were read

Crashing. ..

Size of triangular part = 799

0: obj = 1.627307307e+04 infeas = 5.194e+04 (23)

200: obj = 1.474901610e+04 infeas = 1.233e+04 (19)
400: obj = 1.343909995e+04 infeas = 3.648e+03 (13)
600: obj = 1.756052217e+04 infeas = 4.179e+02 (7)

* 775: obj = 1.789251591e+04 infeas = 4.982e-14 (1)
* 800: obj = 1.663354510e+04 infeas = 2.857e-14 (1)
* 1000: obj = 1.024935068e+04 infeas = 1.958e-12 (1)
* 1200: obj = 7.860174791e+03 infeas = 2.810e-29 (1)
* 1400: obj = 6.642378184e+03 infeas = 2.036e-16 (1)
* 1600: obj = 6.037014568e+03 infeas = 0.000e+00 (1)
* 1800: obj = 5.662171307e+03 infeas = 6.447e-15 (1)
* 2000: obj = 5.528146165e+03 infeas = 9.764e-13 (1)
* 2125: obj = 5.501845888e+03 infeas = 0.000e+00 (1)

OPTIMAL SOLUTION FOUND
Writing basic solution to ‘25fv47.txt’...

4This instance in fixed MPS format can be found in the Netlib LP collection; see ftp://ftp.netlib.org/lp/data/.

44

Example 2

The following example main program solves the same LP problem instance as in Example 1
above, however, it uses the dual simplex method, which starts from the standard initial basis.

/* spxsamp2.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)

{ glp_prob *P;
glp_smcp parm;
P = glp_create_prob();
glp_read_mps (P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_init_smcp(&parm) ;
parm.meth = GLP_DUAL;
glp_simplex (P, &parm);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

Below here is shown the terminal output from this example program.

Reading problem data from ‘25fv47.mps’...
Problem: 25FV47

Objective: R0O000

822 rows, 1571 columns, 11127 non-zeros
6919 records were read

0: infeas = 1.223e+03 (516)
200: infeas = 7.000e+00 (471)
240: infeas = 1.106e-14 (461)
| 400: obj = -5.394267152e+03 infeas = 5.571e-16 (391)
| 600: obj = -4.586395752e+03 infeas = 1.389e-15 (340)
| 800: obj = -4.158268146e+03 infeas = 1.640e-15 (264)
| 1000: obj = -3.725320045e+03 infeas = 5.181le-15 (245)
| 1200: obj = -3.104802163e+03 infeas = 1.019e-14 (210)
| 1400: obj = -2.584190499e+03 infeas = 8.865e-15 (178)
| 1600: obj = -2.073852927e+03 infeas = 7.867e-15 (142)
| 1800: obj = -1.164037407e+03 infeas = 8.792e-15 (109)
| 2000: obj = -4.370590250e+02 infeas = 2.591e-14 (85)
| 2200: obj = 1.068240144e+03 infeas = 1.025e-13 (70)
| 2400: obj = 1.607481126e+03 infeas = 3.272e-14 (67)
| 2600: obj = 3.038230551e+03 infeas = 4.850e-14 (52)
| 2800: obj = 4.316238187e+03 infeas = 2.622e-14 (36)
| 3000: obj = 5.443842629e+03 infeas = 3.976e-15 (11)
| 3060: obj = 5.501845888e+03 infeas = 8.806e-15 (2)

OPTIMAL SOLUTION FOUND
Writing basic solution to ‘25fv47.txt’...

45

2.8.2 glp_exact — solve LP problem in exact arithmetic

Synopsis

int glp_exact(glp_prob *P, const glp_smcp *parm);

Description

The routine glp_exact is a tentative implementation of the primal two-phase simplex method
based on exact (rational) arithmetic. It is similar to the routine glp_simplex, however, for all
internal computations it uses arithmetic of rational numbers, which is exact in mathematical sense,
i.e. free of round-off errors unlike floating-point arithmetic.

Note that the routine glp_exact uses only two control parameters passed in the structure
glp_smcp, namely, it_lim and tm_lim.

Returns

0

GLP_EBADB

GLP_ESING

GLP_EBOUND

GLP_EFAIL

GLP_EITLIM

GLP_ETMLIM
Note

The LP problem instance has been successfully solved. (This code does not nec-
essarily mean that the solver has found optimal solution. It only means that the
solution process was successful.)

Unable to start the search, because the initial basis specified in the problem object
is invalid—the number of basic (auxiliary and structural) variables is not the same
as the number of rows in the problem object.

Unable to start the search, because the basis matrix corresponding to the initial
basis is exactly singular.

Unable to start the search, because some double-bounded (auxiliary or structural)
variables have incorrect bounds.

The problem instance has no rows/columns.

The search was prematurely terminated, because the simplex iteration limit has
been exceeded.

The search was prematurely terminated, because the time limit has been exceeded.

Computations in exact arithmetic are very time-consuming, so solving LP problem with the
routine glp_exact from the very beginning is not a good idea. It is much better at first to find an
optimal basis with the routine glp_simplex and only then to call glp_exact, in which case only
a few simplex iterations need to be performed in exact arithmetic.

46

2.8.3 glp_init_smcp — initialize simplex solver control parameters

Synopsis
int glp_init_smcp(glp_smcp *parm);
Description

The routine glp_init_smcp initializes control parameters, which are used by the simplex solver,
with default values.

Default values of the control parameters are stored in a glp_smcp structure, which the parameter
parm points to.

2.8.4 glp_get_status — determine generic status of basic solution

Synopsis
int glp_get_status(glp_prob *P);
Returns

The routine glp_get_status reports the generic status of the current basic solution for the
specified problem object as follows:

GLP_OPT — solution is optimal;

GLP_FEAS — solution is feasible;

GLP_INFEAS — solution is infeasible;
GLP_NOFEAS — problem has no feasible solution;
GLP_UNBND — problem has unbounded solution;
GLP_UNDEF — solution is undefined.

More detailed information about the status of basic solution can be retrieved with the routines
glp_get_prim_stat and glp_get_dual_stat.

2.8.5 glp_get_prim stat — retrieve status of primal basic solution

Synopsis
int glp_get_prim_stat(glp_prob *P);
Returns

The routine glp_get_prim_stat reports the status of the primal basic solution for the specified
problem object as follows:

GLP_UNDEF — primal solution is undefined;
GLP_FEAS — primal solution is feasible;
GLP_INFEAS — primal solution is infeasible;
GLP_NOFEAS — no primal feasible solution exists.

47

2.8.6 glp_get_dual stat — retrieve status of dual basic solution

Synopsis
int glp_get_dual_stat(glp_prob *P);
Returns

The routine glp_get_dual_stat reports the status of the dual basic solution for the specified
problem object as follows:

GLP_UNDEF — dual solution is undefined;
GLP_FEAS — dual solution is feasible;
GLP_INFEAS — dual solution is infeasible;
GLP_NOFEAS — no dual feasible solution exists.

2.8.7 glp_get_obj_val — retrieve objective value

Synopsis
double glp_get_obj_val(glp_prob *P);
Returns

The routine glp_get_obj_val returns current value of the objective function.

2.8.8 glp_get_row_stat — retrieve row status

Synopsis
int glp_get_row_stat(glp_prob *P, int 1i);
Returns

The routine glp_get_row_stat returns current status assigned to the auxiliary variable asso-
ciated with i-th row as follows:

GLP_BS — basic variable;

GLP_NL — non-basic variable on its lower bound;
GLP_NU — non-basic variable on its upper bound;
GLP_NF — non-basic free (unbounded) variable;

GLP_NS — non-basic fixed variable.

48

2.8.9 glp_get_row_prim — retrieve row primal value

Synopsis
double glp_get_row_prim(glp_prob *P, int i);
Returns

The routine glp_get_row_prim returns primal value of the auxiliary variable associated with
i-th row.

2.8.10 glp_get_row_dual — retrieve row dual value

Synopsis
double glp_get_row_dual(glp_prob *P, int i);
Returns

The routine glp_get_row_dual returns dual value (i.e. reduced cost) of the auxiliary variable
associated with i-th row.

2.8.11 glp_get_col stat — retrieve column status

Synopsis
int glp_get_col_stat(glp_prob *P, int j);
Returns

The routine glp_get_col_stat returns current status assigned to the structural variable asso-
ciated with j-th column as follows:

GLP_BS — basic variable;

GLP_NL — non-basic variable on its lower bound;
GLP_NU — non-basic variable on its upper bound;
GLP_NF — non-basic free (unbounded) variable;

GLP_NS — non-basic fixed variable.

2.8.12 glp_get_col prim — retrieve column primal value

Synopsis
double glp_get_col_prim(glp_prob *P, int j);
Returns

The routine glp_get_col_prim returns primal value of the structural variable associated with
j-th column.

49

2.8.13 glp_get_col dual — retrieve column dual value

Synopsis
double glp_get_col_dual(glp_prob *P, int j);
Returns

The routine glp_get_col_dual returns dual value (i.e. reduced cost) of the structural variable
associated with j-th column.

2.8.14 glp_get_unbnd ray — determine variable causing unboundedness

Synopsis

int glp_get_unbnd_ray(glp_prob *P);
Returns

The routine glp_get_unbnd_ray returns the number k of a variable, which causes primal or
dual unboundedness. If 1 < k < m, it is k-th auxiliary variable, and if m +1 < k < m + n, it is

(k — m)-th structural variable, where m is the number of rows, n is the number of columns in the
problem object. If such variable is not defined, the routine returns 0.

Note

If it is not exactly known which version of the simplex solver detected unboundedness, i.e.
whether the unboundedness is primal or dual, it is sufficient to check the status of the variable with
the routine glp_get_row_stat or glp_get_col_stat. If the variable is non-basic, the unbounded-
ness is primal, otherwise, if the variable is basic, the unboundedness is dual (the latter case means
that the problem has no primal feasible dolution).

50

2.9 Interior-point method routines

Interior-point methods (also known as barrier methods) are more modern and powerful numerical
methods for large-scale linear programming. Such methods are especially efficient for very sparse
LP problems and allow solving such problems much faster than the simplex method.

In brief, the GLPK interior-point solver works as follows.
At first, the solver transforms the original LP to a working LP in the standard format:
minimize
Z=C1Tmi1 + C2Tmy2 + -« F CnTmgn + 0 (2.4)
subject to linear constraints

A1 Tm41 + 12Ty + ..+ Q1pTgn = b1
21 Tm11 + A22Tmi2 + ...+ A2pTman = b2

(2.5)
Am1Tm41 + Om2Tma2 + - ..+ G Tmgn = b
and non-negative variables
1 >0, 22>0, ..., 2, >0 (2.6)
where: z is the objective function; x1, ..., x, are variables; c1, ..., ¢, are objective coefficients;
co is a constant term of the objective function; aq1, ..., am, are constraint coefficients; by, ..., by,
are right-hand sides.
Using vector and matrix notations the working LP (2.4)—(2.6) can be written as follows:
z=c'z+cy — min, (2.7)
Az = b, (2.8)
x>0, (2.9)

where: z = (z;) is n-vector of variables, ¢ = (¢;) is n-vector of objective coefficients, A = (a;;) is
m x n-matrix of constraint coefficients, and b = (b;) is m-vector of right-hand sides.

Karush-Kuhn-Tucker optimality conditions for LP (2.7)—(2.9) are the following:

Az = b, (2.10)
ATr 4 x=¢, (2.11)
Mz =0, (2.12)
x>0, \>0, (2.13)

where: 7 is m-vector of Lagrange multipliers (dual variables) for equality constraints (2.8),
A is m-vector of Lagrange multipliers (dual variables) for non-negativity constraints (2.9),
(2.10) is the primal feasibility condition, (2.11) is the dual feasibility condition, (2.12) is the primal-
dual complementarity condition, and (2.13) is the non-negativity conditions.

o1

The main idea of the primal-dual interior-point method is based on finding a point in the
primal-dual space (i.e. in the space of all primal and dual variables z, 7, and \), which satisfies
to all optimality conditions (2.10)—(2.13). Obviously, z-component of such point then provides an
optimal solution to the working LP (2.7)—(2.9).

To find the optimal point (x*,7*, *) the interior-point method attempts to solve the system
of equations (2.10)—(2.12), which is closed in the sense that the number of variables z;, m;, and
A;j and the number equations are the same and equal to m + 2n. Due to condition (2.12) this
system of equations is non-linear, so it can be solved with a version of Newton’s method provided
with additional rules to keep the current point within the positive orthant as required by the
non-negativity conditions (2.13).

Finally, once the optimal point (z*,7*, A*) has been found, the solver performs inverse trans-
formations to recover corresponding solution to the original LP passed to the solver from the
application program.

2.9.1 glp_interior — solve LP problem with the interior-point method

Synopsis
int glp_interior(glp_prob *P, const glp_iptcp *parm);
Description

The routine glp_interior is a driver to the LP solver based on the primal-dual interior-point
method. This routine retrieves problem data from the specified problem object, calls the solver to
solve the problem instance, and stores results of computations back into the problem object.

The interior-point solver has a set of control parameters. Values of the control parameters
can be passed in the structure glp_iptcp, which the parameter parm points to. For detailed
description of this structure see paragraph “Control parameters” below. Before specifying some
control parameters the application program should initialize the structure glp_iptcp by default
values of all control parameters using the routine glp_init_iptcp (see the next subsection). This
is needed for backward compatibility, because in the future there may appear new members in the
structure glp_iptcp.

The parameter parm can be specified as NULL, in which case the solver uses default settings.

Returns

0 The LP problem instance has been successfully solved. (This code does not nec-
essarily mean that the solver has found optimal solution. It only means that the
solution process was successful.)

GLP_EFAIL The problem has no rows/columns.
GLP_ENOCVG Very slow convergence or divergence.
GLP_EITLIM Iteration limit exceeded.

GLP_EINSTAB Numerical instability on solving Newtonian system.

52

Comments

The routine glp_interior implements an easy version of the primal-dual interior-point method
based on Mehrotra’s technique.’

Note that currently the GLPK interior-point solver does not include many important features,
in particular:

— it is not able to process dense columns. Thus, if the constraint matrix of the LP problem has

dense columns, the solving process may be inefficient;

— it has no features against numerical instability. For some LP problems premature termination
may happen if the matrix ADA” becomes singular or ill-conditioned;

— it is not able to identify the optimal basis, which corresponds to the interior-point solution

found.

Terminal output

Solving large LP problems may take a long time, so the solver reports some information about
every interior-point iteration,® which is sent to the terminal. This information has the following
format:
nnn: obj = fff; rpi = ppp; rdi = ddd; gap = ggg

where: nnn is iteration number, ££ff is the current value of the objective function (in the case of
maximization it has wrong sign), ppp is the current relative primal infeasibility (cf. (2.10)):

[A=® — o]
_ (2.14)
1+ [jo]
ddd is the current relative dual infeasibility (cf. (2.11)):
AT (k) L \(k) _
L+ |lell
ggg is the current primal-dual gap (cf. (2.12)):
T (k) _ pT (k)
o il (2.16)
1+ [Tz
and [:U(k),ﬂ(k),)\(k)] is the current point on k-th iteration, £k = 0,1,2,... . Note that all solution

components are internally scaled, so information sent to the terminal is suitable only for visual
inspection.

5S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J. on Optim., 2(4), pp.
575-601, 1992.

SUnlike the simplex method the interior point method usually needs 30—350 iterations (independently on the
problem size) in order to find an optimal solution.

53

Control parameters

This paragraph describes all control parameters currently used in the interior-point solver. Sym-
bolic names of control parameters are names of corresponding members in the structure glp_iptcp.

int msg_lev (default: GLP_MSG_ALL)

Message level for terminal output:
GLP_MSG_OFF—mo output;

GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;

GLP_MSG_ALL—full output (including informational messages).

int ord._alg (default: GLP_ORD_AMD)

Ordering algorithm used prior to Cholesky factorization:
GLP_ORD_NONE —use natural (original) ordering;
GLP_ORD_QMD —quotient minimum degree (QMD);
GLP_ORD_AMD —approximate minimum degree (AMD);
GLP_ORD_SYMAMD—approximate minimum degree (SYMAMD).

Example

The following main program reads LP problem instance in fixed MPS format from file
25fv47 .mps,” solves it with the interior-point solver, and writes the solution to file 256£v47.txt.

/* iptsamp.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)

{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_interior (P, NULL);
glp_print_ipt(P, "25fv47.txt");
glp_delete_prob(P);
return O;

}

/* eof */

"This instance in fixed MPS format can be found in the Netlib LP collection; see ftp://ftp.netlib.org/lp/data/.

54

Reading problem data from ‘25fv47.mps’...

Problem: 25FV47

Objective: RO00O

822 rows,

1571 columns,

6919 records were read
Original LP has 822 row(s), 1571 column(s), and 11127 non-zero(s)
Working LP has 821 row(s), 1876 column(s), and 10705 non-zero(s)
Matrix A has 10705 non-zeros

Matrix S = A*A’ has 11895 non-zeros (upper triangle)

Minimal degree ordering...
Computing Cholesky factorization S = L’*L...
Matrix L has 35411 non-zeros
Guessing initial point...
Optimization begins...

0:

NDDNDONODNNNER B B B R B s R
O NS WN R, OWWONOO D WN R O

© 00 ~NO Ol WN -

obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj

: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
: obj
28:

obj

1.
.260045192e+04;
.596999742e+04;
.989627568e+04 ;
.430215557e+04;
.155716505e+04;
.660273208e+03;
.694348283e+03;
.019543639e+03;
.122676293e+03;
.514534518e+03;
.361572203e+03;
.203355508e+03;
.032943411e+03;
.796553021e+03;
.667032431e+03;
.613911867e+03;
.560572626e+03;
.5637276001e+03;
.522746942e+03;
.509956679e+03;
.504571733e+03;
.502576367e+03;
.502057119e+03;
.501885996e+03;
.501852464e+03;
.501846549e+03;
.501845954e+03;
5.

(S B¢ 2 T2 BNG 2 Ix I &2 BN@ 2 NG A IO B @2 N2 @ 2 B 61 B &) B o) i o) B o) B @) B\ IR e o B 0 o BV I i il @V Ve

823377629e+05;

501845895e+03;

OPTIMAL SOLUTION FOUND
Writing interior-point solution to ‘25fv47.txt’...

rpi
rpi
rpi
rpi
rpi
rpi
rpi
rpi

rpi =

rpi
rpi
rpi
rpi
rpi
rpi
rpi
rpi

rpi =

rpi
rpi
rpi
rpi
rpi
rpi
rpi
rpi
rpi
rpi
rpi

11127 non-zeros

B B R RO 0 W NNOTONEDONWEEOODRNWOONRE D = O

.3e+01;
.3e+00;
.5e+00;
.7e-01;
.1e-01;
.3e-02;
.7e-03;
.7e-03;
.4e-03;
.2e-03;
.1le-04;
.8e-04;
.2e-04;
.0e-04;
.8e-05;
.4e-05;
.be-05;
.9e-06;
.5e-06;
.2e-06;
.5e-07;
.6e-07;
.4e-08;
.1e-09;
.4e-10;
.4e-10;
.4e-11;
.4e-12;
.5e-13;

rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =
rdi =

95

P R, RP,r R, RP,OF,O0O0FrPDPONPRP,OORNPDPERPL,WOREAENDOOWEROEE

.4e+01;
.6e+00;
.2e+00;
.0e-01;
.6e-02;
.4e-02;
.6e-03;
.7e-03;
.9e-04;
.5e-04;
.3e-05;
.2e-05;
.7e-05;
.3e-06;
.2e-06;
.1e-06;
.1e-07;
.3e-07;
.4e-08;
.0e-08;
.8e-08;
.8e-09;
.0e-09;
.0e-10;
.2e-10;
.2e-11;
.2e-12;
.2e-13;
.2e-14;

gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap
gap

W WWWNNTNNENOFERNWOAOFLDNDNNWPPOERLNWOOERRRPB OO

Below here is shown the terminal output from this example program.

.3e-01
.8e+00
.8e+01
.9e+01
.4e+01
.8e+00
.9e+00
.0e+00
.0e+00
.6e-01
.1le-01
.0e-01
.6e-01
.1le-01
.0e-01
.6e-02

5e-02

.1e-02
.1e-02
.7e-03

9e-03

.1e-03
.5e-04
.7e-05
.4e-05
.0e-06
.0e-07
.0e-08
.0e-09

2.9.2 glp_init_iptcp — initialize interior-point solver control parameters

Synopsis
int glp_init_iptcp(glp_iptcp *parm);
Description

The routine glp_init_iptcp initializes control parameters, which are used by the interior-point
solver, with default values.

Default values of the control parameters are stored in the structure glp_iptcp, which the
parameter parm points to.

2.9.3 glp_ipt_status — determine solution status

Synopsis
int glp_ipt_status(glp_prob *P);
Returns

The routine glp_ipt_status reports the status of a solution found by the interior-point solver
as follows:

GLP_UNDEF — interior-point solution is undefined;
GLP_OPT — interior-point solution is optimal;
GLP_INFEAS — interior-point solution is infeasible;
GLP_NOFEAS — no feasible primal-dual solution exists.

2.9.4 glp_ipt_obj_val — retrieve objective value

Synopsis
double glp_ipt_obj_val(glp_prob *P);
Returns

The routine glp_ipt_obj_val returns value of the objective function for interior-point solution.

2.9.5 glp_ipt_row_prim — retrieve row primal value

Synopsis
double glp_ipt_row_prim(glp_prob *P, int 1i);
Returns

The routine glp_ipt_row_prim returns primal value of the auxiliary variable associated with
i-th row.

56

2.9.6 glp_ipt_row_dual — retrieve row dual value

Synopsis
double glp_ipt_row_dual(glp_prob *P, int i);
Returns

The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) of the auxiliary variable
associated with i-th row.

2.9.7 glp_ipt_col prim — retrieve column primal value

Synopsis
double glp_ipt_col_prim(glp_prob *P, int j);
Returns

The routine glp_ipt_col_prim returns primal value of the structural variable associated with
j-th column.

2.9.8 glp_ipt_col dual — retrieve column dual value

Synopsis
double glp_ipt_col_dual(glp_prob *P, int j);
Returns

The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) of the structural variable
associated with j-th column.

57

2.10 Mixed integer programming routines

2.10.1 glp_set_col kind — set (change) column kind

Synopsis
void glp_set_col_kind(glp_prob *P, int j, int kind);
Description

The routine glp_set_col_kind sets (changes) the kind of j-th column (structural variable) as
specified by the parameter kind:

GLP_CV — continuous variable;
GLP_IV — integer variable;
GLP_BV — binary variable.

Setting a column to GLP_BV has the same effect as if it were set to GLP_IV, its lower bound were
set 0, and its upper bound were set to 1.

2.10.2 glp_get_col kind — retrieve column kind

Synopsis
int glp_get_col_kind(glp_prob *P, int j);
Returns
The routine glp_get_col_kind returns the kind of j-th column (structural variable) as follows:
GLP_CV — continuous variable;
GLP_IV — integer variable;
GLP_BV — binary variable.

2.10.3 glp_get_ num_int — retrieve number of integer columns

Synopsis
int glp_get_num_int(glp_prob *P);
Returns

The routine glp_get_num_int returns the number of columns (structural variables), which are
marked as integer. Note that this number does include binary columns.

58

2.10.4 glp_get_ num _bin — retrieve number of binary columns

Synopsis
int glp_get_num_bin(glp_prob *P);
Returns

The routine glp_get_num_bin returns the number of columns (structural variables), which are
marked as integer and whose lower bound is zero and upper bound is one.

2.10.5 glp_intopt — solve MIP problem with the branch-and-cut method

Synopsis
int glp_intopt(glp_prob *P, const glp_iocp *parm);
Description

The routine glp_intopt is a driver to the MIP solver based on the branch-and-cut method,
which is a hybrid of branch-and-bound and cutting plane methods.

If the presolver is disabled (see paragraph “Control parameters” below), on entry to the routine
glp_intopt the problem object, which the parameter mip points to, should contain optimal solution
to LP relaxation (it can be obtained, for example, with the routine glp_simplex). Otherwise, if
the presolver is enabled, it is not necessary.

The MIP solver has a set of control parameters. Values of the control parameters can be passed
in the structure glp_iocp, which the parameter parm points to. For detailed description of this
structure see paragraph “Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_iocp by default values of all control
parameters using the routine glp_init_iocp (see the next subsection). This is needed for backward
compatibility, because in the future there may appear new members in the structure glp_iocp.

The parameter parm can be specified as NULL, in which case the solver uses default settings.

Note that the GLPK branch-and-cut solver is not perfect, so it is unable to solve hard or very
large scale MIP instances for a reasonable time.

Returns

0 The MIP problem instance has been successfully solved. (This code does not nec-
essarily mean that the solver has found optimal solution. It only means that the
solution process was successful.)

GLP_EBOUND Unable to start the search, because some double-bounded variables have incorrect
bounds or some integer variables have non-integer (fractional) bounds.

GLP_EROOT Unable to start the search, because optimal basis for initial LP relaxation is not
provided. (This code may appear only if the presolver is disabled.)

GLP_ENOPFS Unable to start the search, because LP relaxation of the MIP problem instance has
no primal feasible solution. (This code may appear only if the presolver is enabled.)

59

GLP_ENODFS Unable to start the search, because LP relaxation of the MIP problem instance has
no dual feasible solution. In other word, this code means that if the LP relaxation
has at least one primal feasible solution, its optimal solution is unbounded, so if the
MIP problem has at least one integer feasible solution, its (integer) optimal solution
is also unbounded. (This code may appear only if the presolver is enabled.)

GLP_EFAIL The search was prematurely terminated due to the solver failure.

GLP_EMIPGAP The search was prematurely terminated, because the relative mip gap tolerance has
been reached.

GLP_ETMLIM The search was prematurely terminated, because the time limit has been exceeded.

GLP_ESTOP The search was prematurely terminated by application. (This code may appear only
if the advanced solver interface is used.)

Built-in MIP presolver

The branch-and-cut solver has built-in MIP presolver. It is a subprogram that transforms the
original MIP problem specified in the problem object to an equivalent MIP problem, which may be
easier for solving with the branch-and-cut method than the original one. For example, the presolver
can remove redundant constraints and variables, whose optimal values are known, perform bound
and coefficient reduction, etc. Once the transformed MIP problem has been solved, the presolver
transforms its solution back to corresponding solution of the original problem.

Presolving is an optional feature of the routine glp_intopt, and by default it is disabled. In
order to enable the MIP presolver, the control parameter presolve should be set to GLP_ON (see
paragraph “Control parameters” below).

Advanced solver interface

The routine glp_intopt allows the user to control the branch-and-cut search by passing to
the solver a user-defined callback routine. For more details see Chapter “Branch-and-Cut API
Routines”.

Terminal output

Solving a MIP problem may take a long time, so the solver reports some information about best
known solutions, which is sent to the terminal. This information has the following format:

+nnn: mip = xxx <rho> yyy gap (ppp; 9q9q)

where: ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective function for the
best known integer feasible solution (if no integer feasible solution has been found yet, ‘xxx’ is
the text ‘not found yet’); ‘rho’ is the string ‘>=" (in case of minimization) or ‘<=’ (in case of
maximization); ‘yyy’ is a global bound for exact integer optimum (i.e. the exact integer optimum
is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative mip gap, in percents, computed as
gap = |rxx — yyy|/(|xxz| + DBL_EPSILON) - 100% (if gap is greater than 999.9%, it is not printed);
‘ppp’ is the number of subproblems in the active list, ‘qqq’ is the number of subproblems which
have been already fathomed and therefore removed from the branch-and-bound search tree.

60

Control parameters

This paragraph describes all control parameters currently used in the MIP solver. Symbolic
names of control parameters are names of corresponding members in the structure glp_iocp.

int msg_lev (default: GLP_MSG_ALL)

Message level for terminal output:

GLP_MSG_OFF — no output;

GLP_MSG_ERR — error and warning messages only;
GLP_MSG_ON — normal output;

GLP_MSG_ALL — full output (including informational messages).

int br_tech (default: GLP_BR_DTH)

Branching technique option:

GLP_BR_FFV — first fractional variable;
GLP_BR_LFV — last fractional variable;
GLP_BR_MFV — most fractional variable;
GLP_BR_DTH — heuristic by Driebeck and Tomlin;
GLP_BR_PCH — hybrid pseudo-cost heuristic.

int bt_tech (default: GLP_BT_BLB)
Backtracking technique option:
GLP_BT_DFS — depth first search;
GLP_BT_BFS — breadth first search;
GLP_BT_BLB — best local bound;
GLP_BT_BPH — best projection heuristic.

int pp-tech (default: GLP_PP_ALL)

Preprocessing technique option:

GLP_PP_NONE — disable prep