Introduction

apt-cudf bridges apt-get with external CUDF solvers. It implements a trans-
lator from the EDSP [| format to the CUDF [] format, invokes an external solver,
and transmits back to apt-get the outcome using the EDSP format.

This primer applies to version of apt-cudf.

Why Using External Solvers with apt-get
Basic Usage

Starting from release 0.9.x, apt-get is able to use external solvers via the EDSP
protocol. In order to use apt-get with an external solver you need to have
installed , besides apt itself, the package apt-cudf and at least one solver
package. Currently available solver packages in debian are aspcud, mccs, and
packup.

The integration of CUDF solvers in apt-get is transparent from the user’s
perspective. To invoke an external solver you just have to pass the option
-solver to apt-get, followed by the name of the CUDF solver to use. These
solvers use different technologies and can provide slightly different solutions.

Using an external CUDF solver does not require any other particular action
from the user. The -simulate (or -s) option is used here to make apt-get just
display the action it would perform, without actually performing it:

$apt-get --simulate --solver aspcud install gnome
NOTE: This is only a simulation!
apt-get needs root privileges for real execution.
Keep also in mind that locking is deactivated,
so don’t depend on the relevance to the real current situation!
Reading package lists... Done
Building dependency tree

Reading state information... Done

Execute external solver... Done

The following extra packages will be installed:
[...]

Depending on the solver, the invocation of an external solver can take longer
then the apt-get internal solver. This difference is to due to the additional
conversion step from EDSP to CUDF and back, plus the effective solving time.

apt-get itself ships two EDSP-compatible tools:

1. internal (since release 0.8.x) refers to the internal apt-get dependency
solver;

2. dump is not a real solver but just dumps the EDSP document into the text
file /tmp/dump . edsp.

For example, the following invocation is equivalent to invoking apt-get without
the -solver argument:

apt-get install --solver internal <package-to-be-installed>

Advanced Usage

CUDF-based solvers understand user preferences and use them to select a best
solution. Compared with apt-get, this gives the user a greater flexibility to
define “optimal” solutions for installation problems, for instance to minimize the
number of new packages that are installed, or to minimize the total installation
size the packages to upgrade.

Optimization Criteria
Using Optimization Criteria

Each CUDF solver understands a basic optimization language, and some of them
implement extensions to this basic language to implement more sophisticated
optimization criteria. apt-cudf, that is the bridge between apt-get and the
CUDF solver, associates to each apt-get command an optimization criterion
that can be either configured at each invocation using one apt-get configuration
option or by using the configuration file (/etc/apt-cudf.conf) of apt-cudf
(see Section 4.1.2 for their precise meaning):

solver: x*

upgrade: -count(new),-count(removed),-count(notuptodate)

dist-upgrade: -count(notuptodate),-count(new)

install: -count(removed),-count(changed)

remove: -count(removed) ,-count(changed)

trendy: -count(removed),-count(notuptodate) ,-count(unsat_recommends) ,-count (new)
paranoid: -count(removed),-count(changed)

The field solver defines the (comma-separated) list of solvers to which this
stanza applies. The symbol “*” indicates that this stanza applies to all solvers
that do not have a specific stanza.

Each field of the stanza defines the default optimization criterion. If one field
name coincides with a standard apt-get action, like install, remove, upgrade
or dist-upgrade, then the corresponding criterion will be used by the external
solver. Otherwise, the field is interpreted as a short-cut definition that can be
used on the apt-get command line.

Using the configuration option of apt-get APT: :Solver: :aspcud: :Preferences,
the user can pass a specific optimization criterion on the command line overwrit-
ing the default. For example :

apt-get -s --solver aspcud install totem -o "APT::Solver::aspcud::Preferences=trendy"

Defining Optimization Criteria

Sets of packages The measurements that may be used in optimization criteria
are taken on selected sets of packages in order to measure the quality of a proposed
solution. In this context, when we speak of package we mean a package in a
specific version. That is, a package with name p and version 1 is considered a
different package then the one with the same name p and different version 2.
We will denote with I the set of packages (always name and version) that are
initially in state installed on the machine, and with S the set of packages that
are in state installed as a result of the apt-get action.

solution the set S

changed the symmetric difference between I and S, that is the set of packages
that are either in I and not in S, or in S and not in I.

new the set of packages in S for which no package with the same name is in .

removed the set of packages in I for which no package with the same name is
in S.

up the set of of packages in S for which a package with the same name but
smaller version is in I.

down the set of of packages in S for which a package with the same name but
greater version is in I.

Measurements on sets of packages Several ways to measure sets are defined.
All these measurements yield an integer value. Here, X can be any of the sets
defined above:

count(X) the number of elements of set X

sum(X,f) where f is an integer package property. Yields the sum of all f-values
of all the packages in X.

Example: sum(solution,Installed-Size) is the size taken up by all installed
packages when the apt-get action has succeeded (as declared in the
Packages file).

notuptodate(X) the number of packages in X whose version is not the latest
version.

Example: notuptodate(solution) is the number of packages that will be
installed when the apt-get action has succeeded, but not in their latest
version.

unsat__recommends(X) this is the number of recommended packages in X
that are not in S (or not satisfied in S, in case the recommendation uses
alternatives).

For instance, if package a recommends b, cldle, elflg, blg, h and
if S'is {a,e, f,h} then one would obtain for the package a alone a value
of 2 for unsat_ recommends since the 2nd, 3rd and 5th disjunct of the
recommendation are satisfied, and the 1st and 4th disjunct are not. If no
other package in X contains recommendations that means that, in that
case, unsat_ recommends(X)=2.

aligned(X,f1,f2) where f1 and f2 are integer or string properties. This is the
number of of different pairs (z.f1,z.f2) for packages z in X, minus the
number of different values x.f1 for packages = in X.

In other words, we cluster the packages in X according to their values at
the properties f1 and f2 and count the number of clusters, yielding a value
vl. Then we do the same when clustering only by the property gl, yielding
a value v2. The value returned is v1-v2.

Combining Measurements into Criteria An optimization criterion is a
comma-separated list of signed measurements.

A measurement signed with + means that we seek to maximize this value, a
measurement signed with — that we seek to minimize this value. To compare
two possible solutions we use the signed measurements from left to right. If both
measurements yield the same value on both solutions then we continue with the
next signed measurement (or conclude that both solutions are equally good in
case we are at the end of the list). If the measurements are different on both
solutions then we use this measurement to decide which of the solutions is the
better one.

Example 1: -count (removed), -count(changed), sometimes called the para-
noid criterion. It means that we seek to remove as few packages as possible. If
there are several solutions with the same number of packages to remove then we
chose the one which changes the least number of packages.

Example 2: -count (removed) ,-count (notuptodate) ,-count (unsat_recommends) ,-count (new),
sometimes called the trendy criterion. Here we use the following priority list of
criteria:

1. remove as few packages as possible
2. have as few packages as possible in a version which is not the latest version
3. have as few as possible recommendations of packages that are not satisfied

4. install as few new packages as possible.

Pinning
Strict Pinning and Its Limitations

When a package is available in more than one version, apt-get uses a mechanism
known as pinning to decide which version should be installed. However, since

this mechanism determines early in the process which package versions must
be considered and which package versions should be ignored, it has also the
consequence of considerably limiting the search space. This might lead to
apt-get with its internal solver not finding a solution even if one might exist
when all packages are considered.

Anther consequence of the strict pinning policy of apt-get is that if a package
is specified on the command line with version or suite annotations, overwriting
the pinning strategy for this package, but not for its dependencies, then the
solver might not be able to find a solution because not all packages are available.

Ignoring Pinning

To circumvent this restriction and to allow the underlying solver to explore the
entire search space, apt-get can be configured to let the CUDF solver ignore
the pinning annotation.

The option APT::Solver::Strict-Pinning, when used in conjunction with
an external solver, tells apt-get to ignore pinning information when solving
dependencies. This may allow the external solver to find a solution that is not
found by the apt-get internal solver.

Relaxed Pinning

Without relaxing the way that pinning information are encoded, apt-cudf with
an external CUDF solver would be effectively unable to do better then apt-get
because important information is lost on the way. In order to overcome this
limitation, apt-cudf has the ability to reconstruct the user request and to use
this information to provide a possible solution. To this end, apt-cudf reads an
environment variable, named APT_GET_CUDF_CMDLINE which the user can pass
along containing the invocation of apt-get.

To make it straightforward for the user, a very simple script called apt-cudf-get
is provided by the apt-cudf package.

#!/bin/sh
export APT_GET_CUDF_CMDLINE="apt-get $* -o APT::Solver::Strict-Pinning=\"false\""
apt-get $* -o APT::Solver::Strict-Pinning="false"

The wrapper is invoked using the same commands as apt-get:

apt-cudf-get -s --solver aspcud install totem \
-0 "APT::Solver::aspcud: :Preferences=-count (new) ,-count (changed) "

	Introduction
	Why Using External Solvers with apt-get
	Basic Usage
	Advanced Usage
	Optimization Criteria
	Using Optimization Criteria
	Defining Optimization Criteria

	Pinning
	Strict Pinning and Its Limitations
	Ignoring Pinning
	Relaxed Pinning

