On M0,n, the divisor kappa may be defined by K + Δ, where K is the canonical divisor, and Δ is the sum of the boundary classes Bi. A fun fact is that kappa . FI1,I2,I3,I4 =1 for every F curve.
i1 : kappaDivisorM0nbar(14) 11 o1 = SymmetricDivisorM0nbar{2 => -- } 13 20 3 => -- 13 27 4 => -- 13 32 5 => -- 13 35 6 => -- 13 36 7 => -- 13 NumberOfPoints => 14 o1 : SymmetricDivisorM0nbar |