Returns true if the two divisors are equal
i1 : R = QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : D = divisor(x*y) o2 = 1*Div(y) + 1*Div(x) of R o2 : WDiv |
i3 : E = divisor(x) o3 = 1*Div(x) of R o3 : WDiv |
i4 : F = divisor(y) o4 = 1*Div(y) of R o4 : WDiv |
i5 : D == E o5 = false |
i6 : D == E+F o6 = true |
Here is an example with rational coefficients compared with integer coefficients
i7 : R = QQ[x,y]; |
i8 : D = (1/2)*divisor(x) o8 = 1/2*Div(x) of R o8 : QDiv |
i9 : D == 2*D o9 = false |
i10 : D + D == 2*D o10 = true |
i11 : E = divisor(x) o11 = 1*Div(x) of R o11 : WDiv |
i12 : D == E o12 = false |
i13 : 2*D == E o13 = true |